Changes of Plasma Fatty Acids in Four Lipid Classes to Understand Energy Metabolism at Different Levels of Non-Esterified Fatty Acid (NEFA) in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Blood Samples
2.2. Blood Analysis
2.3. Statistical Analysis
3. Results
Predictive Fatty Acid and Cut-Off Related to Animals in Hyperketonemia
4. Discussion
4.1. Effect of Blood NEFA on Lipid Class of FFA
4.2. Effect of Blood NEFA on Lipid Class of CE
4.3. Effect of Blood NEFA on Lipid Class of PL
4.4. Effect of Blood NEFA on Lipid Class of TG
4.5. Predictive Fatty Acid and Cut-Off Related to Animals in Hyperketonemia
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grummer, R.R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 1995, 73, 2820–2833. [Google Scholar] [CrossRef]
- Leroy, J.L.M.R.; Vanholder, T.; Van Knegsel, A.T.M.; Garcia-Ispierto, I.; Bols, P.E.J. Nutrient prioritization in dairy cows early postpartum: Mismatch between metabolism and fertility? Reprod. Domest. Anim. 2008, 43, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Block, E. Transition cow research—What makes sense today? In Proceedings of the High Plains Dairy Conference, Amarillo, TX, USA, 10–12 March 2010; pp. 75–98. [Google Scholar]
- Van Der Kolk, J.H.; Gross, J.J.; Gerber, V.; Bruckmaier, R.M. Disturbed bovine mitochondrial lipid metabolism: A review. Vet. Q. 2017, 37, 262–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.H.; Suh, G.H. Effect of the amount of body condition loss from the dry to near calving periods on the subsequent body condition change, occurrence of postpartum diseases, metabolic parameters and reproductive performance in Holstein dairy cows. Theriogenology 2003, 60, 1445–1456. [Google Scholar] [CrossRef]
- LeBlanc, S. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 2010, 56, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53, 124–144. [Google Scholar] [CrossRef]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle. J. Dairy Sci. 2013, 96, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Douglas, G.N.; Rehage, J.; Beaulieu, A.D.; Bahaa, A.O.; Drackley, J.K. Prepartum nutrition alters fatty acid composition in plasma, adipose tissue, and liver lipids of periparturient dairy cows. J. Dairy Sci. 2007, 90, 2941–2959. [Google Scholar] [CrossRef]
- Contreras, G.A.; O’Boyle, N.J.; Herdt, T.H.; Sordillo, L.M. Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids. J. Dairy Sci. 2010, 93, 2508–2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyburczy, C.; Lock, A.L.; Dwyer, D.A.; Destaillats, F.; Mouloungui, Z.; Candy, L.; Bauman, D.E. Uptake and utilization of trans octadecenoic acids in lactating dairy cows. J. Dairy Sci. 2007, 91, 3850–3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ospina, P.A.; McArt, J.A.; Overton, T.R.; Stokol, T.; Nydam, D.V. Using non-esterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K.; Dann, H.M.; Douglas, N.; Janovick Guretzky, N.A.; Litherland, N.B.; Underwood, J.P.; Loor, J.J. Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 2005, 4, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, T.; Oikawa, S.; Iwasaki, Y.; Mizunuma, Y.; Takehana, K.; Endoh, D.; Kurosawa, T.; Sato, H. Metabolic profiles and bile acid extraction rate in the liver of cows with fasting-induced hepatic lipidosis. J. Vet. Med. 2004, 51, 113–118. [Google Scholar] [CrossRef]
- Grummer, R.R. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 1993, 76, 3882–3896. [Google Scholar] [CrossRef]
- Hillreiner, M.; Flinspach, C.; Pfaffl, M.W.; Kliem, H. Effect of the ketone body beta-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells. PLoS ONE 2016, 11, e0157774. [Google Scholar] [CrossRef]
- Baird, G.D. Primary ketosis in the high-producing dairy cow: Clinical and subclinical disorders, treatment, prevention, and outlook. J. Dairy Sci. 1982, 65, 1–10. [Google Scholar] [CrossRef]
- Duffield, T.F.; Kelton, D.F.; Leslie, K.E.; Lissemore, K.D.; Lumsden, J.H. Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Can. Vet. J. 1997, 38, 713–718. [Google Scholar]
- Gross, J.; Van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Jin, M.; Liu, X.; Guo, W.; Jin, X.; Liu, H.; Wang, Y. The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices. Anal. Bioanal. Chim. 2015, 407, 3405–3416. [Google Scholar] [CrossRef] [Green Version]
- Fiore, E.; Tessari, R.; Morgante, M.; Gianesella, M.; Badon, T.; Bedin, S.; Mazzotta, E.; Berlanda, M. Identification of plasma fatty acids in four lipid classes to understand energy metabolism at different levels of ketonemia in dairy cows using thin layer chromatography and gas chromatographic techniques (TLC-GC). Animals 2020, 10, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, E.; Blasi, F.; Morgante, M.; Cossignani, L.; Badon, T.; Gianesella, M.; Contiero, B.; Berlanda, M. Changes of milk fatty acid composition in four lipid classes as biomarkers for the diagnosis of bovine ketosis using bioanalytical Thin Layer Chromatography and Gas Chromatographic techniques (TLC-GC). J. Pharmaceut. Biomed. 2020, 188, 113372. [Google Scholar] [CrossRef] [PubMed]
- Geishauser, T.; Leslie, K.; Kelton, D.; Duffield, T. Monitoring for subclinical ketosis in dairy herds. Food Anim. 2001, 23, 65–71. [Google Scholar]
- Fiore, E.; Barberio, A.; Morgante, M.; Rizzo, M.; Giudice, E.; Piccione, G.; Lora, M.; Gianesella, M. Glucose infusion response to some biochemical parameters in dairy cows during the transition period. Anim. Sci. Pap. Rep. 2015, 33, 129–136. [Google Scholar]
- Rukkwamsuk, T.; Geelen, M.J.H.; Kruip, T.A.M.; Wensing, T. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 2000, 83, 52–59. [Google Scholar] [CrossRef]
- Gillund, O.; Reksen, O.; Grohn, Y.T.; Karlberg, K. Body condition related to ketosis and reproductive performance in norwegian dairy cows. J. Dairy Sci. 2001, 84, 1390–1396. [Google Scholar] [CrossRef]
- De Koster, J.; Nelli, R.K.; Strieder-Barboza, C.; de Souza, J.; Lock, A.L.; Contreras, G.A. The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant adaptation to negative energy balance. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Adewuyi, A.A.; Gruysi, E.; van Eerdenburg, F.J.C.M. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.; Chapinal, N.; LeBlanc, S.J.; Kelton, D.F.; Dubuc, J.; Duffield, T.F. Metabolic parameters in transition cows as indicators for early-lactation culling risk. J. Dairy Sci. 2012, 95, 3057–3063. [Google Scholar] [CrossRef]
- Quiroz-Rocha, G.F.; LeBlanc, S.; Duffield, T.; Wood, D.; Leslie, K.E.; Jacobs, R.M. Evaluation of prepartum serum cholesterol and fatty acids concentrations as predictors of postpartum retention of the placenta in dairy cows. Vet. Clin. N. Am. Food Anim. Pract. 2009, 230, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T. Subclinical ketosis in lactating dairy cattle. Vet. Clin. N. Am. Food Anim. 2000, 16, 231–253. [Google Scholar] [CrossRef]
- Yamdagni, S.; Schultz, L.H. Fatty acid composition of blood plasma lipids of normal and ketotic cows. J. Dairy Sci. 1970, 53, 1046–1050. [Google Scholar] [CrossRef]
- Liu, L.; Shen, T.; Yang, W.; Yu, H.; Gao, S.; Huang, B.; Xu, C. Ketotic cows display a different serum nonesterified fatty acid composition. J. Dairy Res. 2020, 87, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Brumby, P.E.; Anderson, M.; Tuckley, B.; Storry, J.E.; Hibbit, K.G. Lipid metabolism in the cow during starvation-induced ketosis. Biochem. J. 1975, 146, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loften, J.R.; Linn, J.G.; Drackley, J.K.; Jenkins, T.C.; Soderholm, C.G.; Kertz, A.F. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J. Dairy Sci. 2014, 97, 1–14. [Google Scholar] [CrossRef]
- Puppel, K.; Gołebiewski, M.; Solarczyk, P.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Balcerak, M.; Przysucha, T.; Kalińska, A.; Kuczyńska, B. The relationship between plasma β-hydroxybutyric acid and conjugated linoleic acid in milk as a biomarker for early diagnosis of ketosis in postpartum Polish Holstein-Friesian cows. BMC Vet. Res. 2019, 15, 367. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Raheem, S.; Schreiner, M.; Iben, C. Lactational and seasonal variations in plasma fatty acids profiles in dairy cows. Wien. Tierarrztl. Monatsschr. 2010, 97, 149–156. [Google Scholar]
- White, H.M.; Koser, S.L.; Donkin, S.S. Differential regulation of bovine pyruvate carboxylase promoters by fatty acids and peroxisome proliferator-activated receptor-α agonist. J. Dairy Sci. 2011, 94, 3428–3436. [Google Scholar] [CrossRef] [Green Version]
- Large, V.; Peroni, O.; Letexier, D.; Ray, H.; Beylot, M. Metabolism of lipids in human white adipocyte 1. Diabetes Metab. 2004, 30, 294–309. [Google Scholar] [CrossRef]
- Raclot, T. Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog. Lipid Res. 2003, 42, 257–288. [Google Scholar] [CrossRef]
- Pösö, A.R.; Saukko, T.M.; Tesfa, A.T.; Lindberg, L. Fat infiltration in liver and activity of lecithin: Cholesterol acyltransferase in serum of dry and lactating dairy cows. Res. Vet. Sci. 2000, 68, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Tahara, D.; Nakanishi, T.; Akazawa, S.; Yamaguchi, Y.; Yamamoto, H.; Akashi, M.; Chikuba, N.; Okuno, S.; Maeda, Y.; Kusumoto, Y.; et al. Lecithin-cholesterol acyltransferase and lipid transfer protein activities in liver disease. Metabolism 1993, 42, 19–23. [Google Scholar] [CrossRef]
- Nakagawa, H.; Katoh, N. Reduced activity of lecithin: Cholesterol acyltransferase in the serum of cows with ketosis and left displacement of the abomasum. Vet. Res. Commun. 1998, 22, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Van Den Top, A.M.; Van Tol, A.; Jansen, H.; Geelen, M.J.H.; Beynen, A.C. Fatty liver in dairy cows post-partum is associated with decreased concentration of plasma triacylglycerols and decreased activity of lipoprotein lipase in adipocytes. J. Dairy Res. 2005, 72, 129–137. [Google Scholar] [CrossRef]
- Batista, C.P.; Castro, S.M.; Correa, H.J.; Gonçalves, R.S.; de Faria Vale, S.; González, F. Relation between liver lipid content and plasma biochemical indicators in dairy cows. Acta Sci. Vet. 2020, 48, 1–9. [Google Scholar]
- Rayssiguier, Y.; Mazur, A.; Gueux, E.; Reid, I.M.; Roberts, C.J. Plasma lipoproteins and fatty liver in dairy cows. Res. Vet. Sci. 1988, 45, 389–393. [Google Scholar] [CrossRef]
- González, F.D.; Muiño, R.; Pereira, V.; Campos, R.; Benedito, J.L. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet. Sci. 2011, 12, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Skaar, T.C.; Grummer, R.R.; Dentine, M.R.; Stauffacher, R.H. Seasonal effects of prepartum and postpartum fat and niacin feeding on lactation performance and lipid metabolism. J. Dairy Sci. 1989, 72, 2028–2038. [Google Scholar] [CrossRef]
- Oikawa, S.; Mizunuma, Y.; Iwasaki, Y.; Tharwat, M. Changes of very low-density lipoprotein concentration in hepatic blood from cows with fasting-induced hepatic lipidosis. Can. J. Vet. Res. 2010, 74, 317–320. [Google Scholar]
- Van den Top, A.M.; Geelen, M.J.H.; Wensing, T.; Wentink, G.H.; van’t Klooster, A.T.; Beynen, A.C. Higher postpartum hepatic triacylglycerol concentrations in dairy cows with free rather than restricted access to feed during the dry period are associated with lower activities of hepatic glycerolphosphate acyltransferase. J. Nutr. 1996, 126, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez-Anon, M.; Bertics, S.; Luck, M.; Grummer, R.R. Peripartum liver triglyceride and plasma metabolites in dairy cows. J. Dairy Sci. 1994, 77, 1521–1528. [Google Scholar] [CrossRef]
- Murondoti, A.; Jorritsma, R.; Beynen, C.; Wensing, T.; Geelen, M.J.H. Unrestricted feed intake during the dry period impairs the postpartum oxidation and synthesis of fatty acids in the liver of dairy cows. J. Dairy Sci. 2004, 87, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Fiore, E.; Perillo, L.; Piccione, G.; Gianesella, M.; Bedin, S.; Armato, L.; Giudice, E.; Morgante, M. Effect of combined acetylmethionine, cyanocobalamin and α-lipoic acid on hepatic metabolism in high-yielding dairy cow. J. Dairy Res. 2016, 83, 438–441. [Google Scholar] [CrossRef]
- Sevinç, M.; Başoğlu, A.; Öztok, I.; SandikçI, M.; Birdane, F. The clinical-chemical parameters, serum lipoproteins and fatty infiltration of the liver in ketotic cows. Turk. J. Vet. Anim. Sci. 1998, 22, 443–447. [Google Scholar]
- Jorjong, S.; van Knegsel, A.T.M.; Verwaeren, J.; Val Lahoz, M.; Bruckmaier, R.M.; De Baets, B.; Kemp, B.; Fievez, V. Milk fatty acids as possible biomarkers to early diagnose elevated concentrations of blood plasma nonesterified fatty acids in dairy cows. J. Dairy Sci. 2014, 97, 7054–7064. [Google Scholar] [CrossRef] [Green Version]
- Soyeurt, H.; Dehareng, F.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation of 9-desaturase activity in dairy cattle. J. Dairy Sci. 2008, 91, 3211–3224. [Google Scholar] [CrossRef] [Green Version]
- Harvey, C.J.C.; Schofield, G.M.; Williden, M.; McQuillan, J.M. The effect of medium chain triglycerides on time to nutritional ketosis and symptoms of keto-induction in healthy adults: A randomised controlled clinical trial. J. Nutr. Metab. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Goff, J.P. Major advances in our understanding of nutritional influences on bovine health. J. Dairy Sci. 2006, 89, 1292–1301. [Google Scholar] [CrossRef] [Green Version]
- Hammon, D.S.; Evjen, I.M.; Dhiman, T.R.; Goff, J.P.; Walters, J.L. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 2006, 113, 21–29. [Google Scholar] [CrossRef]
Parameters | NEFA0 | NEFA1 | Correlation (p-Value) |
---|---|---|---|
NEFA (mEq/L) | 0.24 ± 0.12 | 0.87 ± 0.23 | 0.001 |
BHB (mmol/L) | 0.65 ± 0.28 | 1.21 ± 0.28 | 0.001 |
DIM | 28.25 ± 13.75 | 26.68 ± 15.49 | NS |
BCS | 2.78 ± 0.21 | 2.89 ± 0.15 | NS |
N parity | 2.68 ± 1.80 | 2.57 ± 1.40 | NS |
Milk (Kg/day) | 29.55 ± 7.87 | 30.24 ± 8.44 | NS |
Fatty Acids | FFA | CE | PL | TG | ||||
---|---|---|---|---|---|---|---|---|
NEFA 0 | NEFA 1 | NEFA 0 | NEFA 1 | NEFA 0 | NEFA 1 | NEFA 0 | NEFA 1 | |
C8 | 0.375 ± 0.093 | 0.709 ± 0.132 * | 1.431 ± 0.095 | 1.240 ± 0.13 | 0.019 ± 0.017 | 0.095 ± 0.027 * | 0.046 ± 0.015 | 0.079 ± 0.022 |
C10 | 0.143 ± 0.049 | 0.248 ± 0.069 | 0.803 ± 0.059 | 0.691 ± 0.081 | 0.093 ± 0.017 | 0.193 ± 0.027 ** | 0.075 ± 0.026 | 0.157 ± 0.039 * |
C12 | 0.643 ± 0.177 | 1.168 ± 0.251 | 2.934 ± 0.361 | 2.023 ± 0.496 | 0.479 ± 0.215 | 1.649 ± 0.340 ** | 0.737 ± 0.099 | 0.894 ± 0.144 |
C14 | 0.204 ± 0.05 | 0.517 ± 0.07 *** | 1.229 ± 0.183 | 0.974 ± 0.251 | 0.298 ± 0.102 | 0.798 ± 0.161 * | 0.275 ± 0.052 | 0.371 ± 0.076 |
C14:1 ω 5 | 0.051 ± 0.009 | 0.096 ± 0.012 ** | 0.745 ± 0.115 | 0.551 ± 0.158 | 0.191 ± 0.051 | 0.091 ± 0.080 | 0.059 ± 0.008 | 0.070 ± 0.012 |
C16 | 1.365 ± 0.257 | 2.908 ± 0.364 ** | 10.183 ± 0.966 | 9.476 ± 1.325 | 13.909 ± 1.019 | 14.692 ±1.611 | 1.508 ± 0.161 | 1.709 ± 0.234 |
C16:1ω7 | 0.056 ± 0.026 | 0.172 ± 0.037 * | 1.714 ± 0.228 | 2.343 ± 0.313 | 0.356 ± 0.038 | 0.402 ± 0.060 | 0.027 ± 0.010 | 0.054 ± 0.015 |
C18 | 1.176 ± 0.201 | 2.315 ± 0.285 ** | 1.628 ± 0.151 | 1.380 ± 0.208 | 16.247 ± 1.293 | 15.969 ± 2.044 | 1.532 ± 0.160 | 1.666 ± 0.233 |
C18:1 ω 9 | 0.456 ± 0.448 | 3.241 ± 0.634 *** | 5.489 ± 0.724 | 7.085 ± 0.994 | 9.427 ± 0.883 | 11.484 ± 1.397 | 0.290 ± 0.056 | 0.366 ± 0.081 |
C18:1 ω 7 | 0.045 ± 0.025 | 0.204 ± 0.036 *** | 0.671 ± 0.063 | 0.610 ± 0.087 | 1.306 ± 0.134 | 1.221 ± 0.211 | 0.045 ± 0.008 | 0.050 ± 0.011 |
C18:2 ω 6 | 0.302 ± 0.049 | 0.475 ± 0.069 * | 146.923 ± 16.167 | 103.919 ± 22.181 | 21.347 ± 1.636 | 19.148 ± 2.587 | 0.310 ± 0.045 | 0.360 ± 0.065 |
C18:3 ω 6 | 0.013 ± 0.003 | 0.018 ± 0.004 | 2.846 ± 0.501 | 1.61 ± 0.687 | 0.300 ± 0.041 | 0.282 ± 0.064 | 0.076 ± 0.019 | 0.089 ± 0.028 |
C18:3 ω 3 | 0.011 ± 0.004 | 0.031 ± 0.005 ** | 10.380 ± 1.07 | 8.784 ± 1.468 | 1.328 ± 0.137 | 1.226 ± 0.216 | 0.018 ± 0.004 | 0.009 ± 0.006 |
C18:4 ω 3 | 0.213 ± 0.031 | 0.221 ± 0.043 | 1.538 ± 0.276 | 1.201 ± 0.379 | 0.377 ± 0.101 | 0.258 ± 0.160 | 0.241 ± 0.039 | 0.302 ± 0.057 |
C20 | 0.017 ± 0.006 | 0.032 ± 0.009 | 0.098 ± 0.016 | 0.078 ± 0.022 | 0.103 ± 0.010 | 0.096 ± 0.016 | 0.035 ± 0.015 | 0.080 ± 0.021 * |
C20:1 ω 9 | 0.006 ± 0.003 | 0.014 ± 0.004 | 0.028 ± 0.015 | 0.041 ± 0.02 | 0.082 ± 0.010 | 0.086 ± 0.016 | 0.005 ± 0.002 | 0.006 ± 0.003 |
C20:1 ω 7 | 0.011 ± 0.004 | 0.024 ± 0.00 5* | 0.080 ± 0.020 | 0.075 ± 0.027 | 0.080 ± 0.011 | 0.111 ± 0.018 | 0.016 ± 0.004 | 0.021 ± 0.005 |
C20:2 ω 6 | 0.056 ± 0.025 | 0.095 ± 0.035 | 0.573 ± 0.866 | 2.866 ± 1.188 | 0.235 ± 0.036 | 0.209 ± 0.057 | 0.124 ± 0.042 | 0.214 ± 0.061 |
C20:3 ω 9 | 0.029 ± 0.011 | 0.015 ± 0.016 | 0.114 ± 0.342 | 1.144 ± 0.469 * | 0.070 ± 0.012 | 0.042 ± 0.020 | 0.099 ± 0.034 | 0.147 ± 0.050 |
C20:3 ω 6 | 0.008 ± 0.002 | 0.015 ± 0.002 * | 0.244 ± 0.058 | 0.292 ± 0.08 | 2.369 ± 0.261 | 2.247 ± 0.413 | 0.017 ± 0.003 | 0.015 ± 0.004 |
C20:4 ω 6 | 0.012 ± 0.005 | 0.012 ± 0.008 | 1.256 ± 0.303 | 1.595 ± 0.416 | 2.853 ± 0.262 | 3.486 ± 0.415 | 0.007 ± 0.002 | 0.012 ± 0.003 |
C20:3 ω 3 | 0.008 ± 0.002 | 0.009 ± 0.003 | 0.104 ± 0.033 | 0.032 ± 0.045 | 0.035 ± 0.004 | 0.022 ± 0.007 | 0.024 ± 0.007 | 0.021 ± 0.009 |
C20:4 ω 3 | 0.148 ± 0.024 | 0.173 ± 0.034 | 0.567 ± 0.103 | 0.484 ± 0.141 | 0.443 ± 0.077 | 0.223 ± 0.122 | 0.188 ± 0.033 | 0.262 ± 0.048 |
C20:5 ω 3 | 0.016 ± 0.006 | 0.026 ± 0.008 | 0.933 ± 0.133 | 0.931 ± 0.183 | 0.544 ± 0.058 | 0.653 ± 0.091 | 0.007 ± 0.002 | 0.008 ± 0.003 |
C22 | 0.011 ± 0.003 | 0.012 ± 0.004 | 0.155 ± 0.034 | 0.113 ± 0.047 | 0.723 ± 0.054 | 0.685 ± 0.085 | 0.019 ± 0.005 | 0.022 ± 0.008 |
C22:1 ω 9 | 0.006 ± 0.002 | 0.005 ± 0.002 | 0.042 ± 0.006 | 0.043 ± 0.008 | 0.008 ± 0.002 | 0.008 ± 0.004 | 0.017 ± 0.003 | 0.018 ± 0.004 |
C22:2 ω 6 | 0.009 ± 0.002 | 0.009 ± 0.003 | 0.059 ± 0.010 | 0.049 ± 0.014 | 0.114 ± 0.034 | 0.057 ± 0.054 | 0.008 ± 0.005 | 0.007 ± 0.007 |
C22:4 ω 6 | 0.055 ± 0.007 | 0.039 ± 0.010 | 0.216 ± 0.039 | 0.203 ± 0.053 | 0.551 ± 0.061 | 0.377 ± 0.096 | 0.052 ± 0.010 | 0.068 ± 0.014 |
C22:5 ω 3 | 0.012 ± 0.004 | 0.007 ± 0.005 | 1.600 ± 1.280 | 0.078 ± 1.756 | 1.872 ± 0.493 | 1.194 ± 0.780 | 0.006 ± 0.002 | 0.008 ± 0.003 |
C22:6 ω 3 | 0.020 ± 0.005 | 0.018 ± 0.007 | 0.094 ± 0.015 | 0.061 ± 0.02 | 0.273 ± 0.054 | 0.130 ± 0.086 | 0.02 ± 0.009 | 0.008 ± 0.013 |
C23 | 0.007 ± 0.001 | 0.006 ± 0.002 | 0.017 ± 0.005 | 0.017 ± 0.007 | 1.327 ± 0.119 | 1.153 ± 0.188 | 0.005 ± 0.002 | 0.008 ± 0.002 |
C24 | 0.018 ± 0.003 | 0.012 ± 0.005 | 0.171 ± 0.028 | 0.113 ± 0.038 | 0.948 ± 1.124 | 4.011 ± 1.778 | 0.008 ± 0.003 | 0.009 ± 0.004 |
C24:1 ω 9 | 0.034 ± 0.008 | 0.036 ± 0.012 | 0.106 ± 0.017 | 0.060 ± 0.023 | 0.439 ± 0.065 | 0.374 ± 0.103 | 0.014 ± 0.005 | 0.010 ± 0.008 |
C16 DMA | 0.354 ± 0.026 | 0.387 ± 0.037 | 5.860 ± 0.479 | 5.252 ± 0.658 | 0.386 ± 0.051 | 0.311 ± 0.081 | 0.883 ± 0.759 | 2.930 ± 1.103 |
mg FA/dL | 5.960 ± 2.852 | 13.369± 10.591 | 201.296± 41.663 | 155.86± 32.053 | 80.027 ± 31.778 | 84.013 ± 28.778 | 7.105± 3.003 | 56.073± 229.531 |
mg/dL | 5.960 ± 2.852 | 13.369 ± 10.591 | 471.808 ± 248.588 | 364.572 ± 184.57 | 110.367 ± 44.440 | 115.948 ± 51.196 | 7.484 ± 3.606 | 60.21 ± 209.531 |
Fatty Acids | MeanImp | MedianImp | MinImp | MaxImp | NormHits | Decision |
---|---|---|---|---|---|---|
C18:1 ω 9 (FFA) | 10.823 | 11.444 | 3.923 | 13.783 | 1.000 | Confirmed |
C18:1 ω 7 (FFA) | 6.800 | 7.029 | 3.208 | 9.252 | 0.959 | Confirmed |
C8:0 (PL) | 8.043 | 8.664 | 1.925 | 11.119 | 0.939 | Confirmed |
C18:3 ω 3 (FFA) | 4.786 | 4.834 | 1.936 | 6.759 | 0.848 | Confirmed |
C12:0 (PL) | 5.061 | 5.230 | −0.639 | 8.609 | 0.788 | Confirmed |
C14:0 (FFA) | 3.734 | 3.809 | 0.948 | 6.064 | 0.666 | Confirmed |
Fatty Acids | Cut-Off (mg/dL) | AUC | Sensitivity (Se) | 95% IC for Se | Specificity (Sp) | 95% IC for Sp | p-Values |
---|---|---|---|---|---|---|---|
C12:0 (PL) | >0.567 | 0.78 | 75.00 | 42.8–94.5 | 80 | 61.4–92.3 | <0.0001 |
C14:0 (FFA) | >0.167 | 0.77 | 88.89 | 65.3–98.6 | 52.78 | 35.5–69.6 | <0.0001 |
C8:0 (PL) | >0.035 | 0.73 | 58.33 | 27.7–84.8 | 93.33 | 77.9–99.2 | <0.0001 |
C18:1ω9 (FFA) | >1.370 | 0.72 | 61.11 | 35.7–82.7 | 94.44 | 81.3–99.3 | <0.0001 |
C18:1ω7 (FFA) | >0.082 | 0.70 | 55.56 | 30.8–78.5 | 86.11 | 70.5–95.3 | <0.0001 |
C18:3ω3 (FFA) | >0.032 | 0.68 | 44.44 | 21.5–69.2 | 94.44 | 81.3–99.3 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessari, R.; Berlanda, M.; Morgante, M.; Badon, T.; Gianesella, M.; Mazzotta, E.; Contiero, B.; Fiore, E. Changes of Plasma Fatty Acids in Four Lipid Classes to Understand Energy Metabolism at Different Levels of Non-Esterified Fatty Acid (NEFA) in Dairy Cows. Animals 2020, 10, 1410. https://doi.org/10.3390/ani10081410
Tessari R, Berlanda M, Morgante M, Badon T, Gianesella M, Mazzotta E, Contiero B, Fiore E. Changes of Plasma Fatty Acids in Four Lipid Classes to Understand Energy Metabolism at Different Levels of Non-Esterified Fatty Acid (NEFA) in Dairy Cows. Animals. 2020; 10(8):1410. https://doi.org/10.3390/ani10081410
Chicago/Turabian StyleTessari, Rossella, Michele Berlanda, Massimo Morgante, Tamara Badon, Matteo Gianesella, Elisa Mazzotta, Barbara Contiero, and Enrico Fiore. 2020. "Changes of Plasma Fatty Acids in Four Lipid Classes to Understand Energy Metabolism at Different Levels of Non-Esterified Fatty Acid (NEFA) in Dairy Cows" Animals 10, no. 8: 1410. https://doi.org/10.3390/ani10081410
APA StyleTessari, R., Berlanda, M., Morgante, M., Badon, T., Gianesella, M., Mazzotta, E., Contiero, B., & Fiore, E. (2020). Changes of Plasma Fatty Acids in Four Lipid Classes to Understand Energy Metabolism at Different Levels of Non-Esterified Fatty Acid (NEFA) in Dairy Cows. Animals, 10(8), 1410. https://doi.org/10.3390/ani10081410