Prevalence of Bovine Tuberculosis in Slaughtered Cattle in Sicily, Southern Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Post-Mortem Examination
2.3. Histopathological Examination
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olea-Popelka, F.; Muwonge, A.; Perera, A.; Dean, A.S.; Mumford, E.; Erlacher-Vindel, E.; Forcella, S.; Silk, B.J.; Ditiu, L.; El Idrissi, A. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis—A call for action. Lancet Infect. Dis. 2017, 17, e21–e25. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Lago, L.; Navarro, Y.; García-de-Viedma, D. Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: A review. Res. Vet. Sci. 2014, 97, S94–S100. [Google Scholar] [CrossRef] [PubMed]
- Müller, B.; Dürr, S.; Alonso, S.; Hattendorf, J.; Laisse, C.J.M.; Parsons, S.D.C.; Van Helden, P.D.; Zinsstag, J. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg. Infect. Dis. 2013, 19, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO), Food and Agriculture Organisation of the United Nations (FAO), World Organisation for Animal Health (OIE), IUAT and International Union Against Tuberculosis and Lung Disease (The Union). Road map for zoonotic tuberculosis. In Proceedings of the 48th Union World Conference on Lung Health, Guadalajara, Mexico, 11–14 October 2017; pp. 11–14. [Google Scholar]
- Thoen, C.O.; LoBue, P.A.; de Kantor, I. Why has zoonotic tuberculosis not received much attention? Int. J. Tuberc. Lung Dis. 2010, 14, 1073–1074. [Google Scholar] [PubMed]
- Drobniewski, F.; Strutt, M.; Smith, G.; Magee, J.; Flanagan, P. Audit of scope and culture techniques applied to samples for the diagnosis of Mycobacterium bovis by hospital laboratories in England and Wales. Epidemiol. Infect. 2003, 130, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, A.; Cousins, D.; Mateos, A.; Domínguez, L. Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1785–1789. [Google Scholar]
- Thoen, C.; LoBue, P.; De Kantor, I. The importance of Mycobacterium bovis as a zoonosis. Vet. Microbiol. 2006, 112, 339–345. [Google Scholar] [CrossRef]
- Milne, G.; Allen, A.; Graham, J.; Lahuerta-Marin, A.; McCormick, C.; Presho, E.; Reid, N.; Skuce, R.; Byrne, A.W. Bovine tuberculosis breakdown duration in cattle herds: An investigation of herd, host, pathogen and wildlife risk factors. PeerJ 2020, 8, e8319. [Google Scholar] [CrossRef]
- Corner, L.A.; Gormley, E. Mycobacterial infections in multiple species: Implications for diagnosis and control. Vet. J. (London, Engl. 1997) 2012, 191, 141. [Google Scholar] [CrossRef]
- Di Marco, V.; Mazzone, P.; Capucchio, M.T.; Boniotti, M.B.; Aronica, V.; Russo, M.; Fiasconaro, M.; Cifani, N.; Corneli, S.; Biasibetti, E. Epidemiological significance of the domestic black pig (Sus scrofa) in maintenance of bovine tuberculosis in Sicily. J. Clin. Microbiol. 2012, 50, 1209–1218. [Google Scholar] [CrossRef] [Green Version]
- Balseiro, A.; Oleaga, A.; Orusa, R.; Robetto, S.; Domenis, L.; Zoppi, S.; Dondo, A.; Goria, M.; Gortázar, C.; Marín, J.F.G. Tuberculosis in roe deer from Spain and Italy. Vet. Rec. 2009, 164, 468–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranaz, A.; De Juan, L.; Montero, N.; Sánchez, C.; Galka, M.; Delso, C.; Alvarez, J.; Romero, B.; Bezos, J.; Vela, A.I. Bovine tuberculosis (Mycobacterium bovis) in wildlife in Spain. J. Clin. Microbiol. 2004, 42, 2602–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sa’idu, A.S.; Okolocha, E.C.; Dzikwi, A.A.; Gamawa, A.A.; Ibrahim, S.; Kwaga, J.K.P.; Usman, A.; Maigari, S.A. Public health implications and risk factors assessment of Mycobacterium bovis infections among abattoir personnel in Bauchi state, Nigeria. J. Vet. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Torres-Gonzalez, P.; Soberanis-Ramos, O.; Martinez-Gamboa, A.; Chavez-Mazari, B.; Barrios-Herrera, M.T.; Torres-Rojas, M.; Cruz-Hervert, L.P.; Garcia-Garcia, L.; Singh, M.; Gonzalez-Aguirre, A. Prevalence of latent and active tuberculosis among dairy farm workers exposed to cattle infected by Mycobacterium bovis. PLoS Negl. Trop. Dis. 2013, 7, e2177. [Google Scholar] [CrossRef] [Green Version]
- Napp, S.; Ciaravino, G.; de Val, B.P.; Casal, J.; Saéz, J.L.; Alba, A. Evaluation of the effectiveness of the surveillance system for tuberculosis in cattle in Spain. Prev. Vet. Med. 2019, 173, 104805. [Google Scholar] [CrossRef]
- Alvarez, J.; Perez, A.M.; Bezos, J.; Casal, C.; Romero, B.; Rodriguez-Campos, S.; Saez-Llorente, J.L.; Diaz, R.; Carpintero, J.; de Juan, L. Eradication of bovine tuberculosis at a herd-level in Madrid, Spain: Study of within-herd transmission dynamics over a 12 year period. BMC Vet. Res. 2012, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Good, M.; Duignan, A. Perspectives on the history of bovine TB and the role of tuberculin in bovine TB eradication. Vet. Med. Int. 2011. [Google Scholar] [CrossRef] [Green Version]
- De la Rua-Domenech, R.; Goodchild, A.T.; Vordermeier, H.M.; Hewinson, R.G.; Christiansen, K.H.; Clifton-Hadley, R.S. Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 2006, 81, 190–210. [Google Scholar] [CrossRef]
- Quinn, P.J.; Monaghan, M.L.; Doherty, M.L.; Collins, J.D.; Kazda, J.F. The tuberculin test. Vet. Microbiol. 1994, 40, 111–124. [Google Scholar]
- Domingo, M.; Vidal, E.; Marco, A. Pathology of bovine tuberculosis. Res. Vet. Sci. 2014, 97, S20–S29. [Google Scholar] [CrossRef]
- Serrano, M.; Sevilla, I.A.; Fuertes, M.; Geijo, M.; Risalde, M.Á.; Ruiz-Fons, J.F.; Gortazar, C.; Juste, R.A.; Domínguez, L.; Elguezabal, N. Different lesion distribution in calves orally or intratracheally challenged with Mycobacterium bovis: Implications for diagnosis. Vet. Res. 2018, 49, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Saenz, A.; Napp, S.; Lopez, S.; Casal, J.; Allepuz, A. Estimation of the individual slaughterhouse surveillance sensitivity for bovine tuberculosis in Catalonia (North-Eastern Spain). Prev. Vet. Med. 2015, 121, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Linaza, A.V.; Gordon, A.W.; Stringer, L.A.; Menzies, F.D. Efficiency of slaughterhouse surveillance for the detection of bovine tuberculosis in cattle in Northern Ireland. Epidemiol. Infect. 2017, 145, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, C.; Freuling, C.; Moser, I.; Geue, L.; Köhler, H.; Conraths, F.J.; Hotzel, H.; Liebler-Tenorio, E.M.; Kramer, M. Bovine tuberculosis: Making a case for effective surveillance. Epidemiol. Infect. 2011, 139, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, A.V.; Downs, S.H.; Upton, P.; Wood, J.L.N.; De La Rua-Domenech, R. Specificity of the comparative skin test for bovine tuberculosis in Great Britain. Vet. Rec. 2015, 177, 258. [Google Scholar] [CrossRef] [Green Version]
- Karolemeas, K.; de la Rua-Domenech, R.; Cooper, R.; Goodchild, A.V.; Clifton-Hadley, R.S.; Conlan, A.J.K.; Mitchell, A.P.; Hewinson, R.G.; Donnelly, C.A.; Wood, J.L.N. Estimation of the relative sensitivity of the comparative tuberculin skin test in tuberculous cattle herds subjected to depopulation. PLoS ONE 2012, 7, e43217. [Google Scholar] [CrossRef]
- Byrne, A.W.; Guelbenzu-Gonzalo, M.; Strain, S.A.J.; McBride, S.; Graham, J.; Lahuerta-Marin, A.; Harwood, R.; Graham, D.A.; McDowell, S. Assessment of concurrent infection with bovine viral diarrhoea virus (BVDV) and Mycobacterium bovis: A herd-level risk factor analysis from Northern Ireland. Prev. Vet. Med. 2017, 141, 38–47. [Google Scholar] [CrossRef]
- Aranaz, A.; Bezos, J.; Álvarez, J.; Romero, B.; Lozano, F.; Paramio, J.L.; López-Sánchez, J.; Mateos, A.; Domínguez, L. Assessment of diagnostic tools for eradication of bovine tuberculosis in cattle co-infected with Mycobacterium bovis and M. avium subsp. paratuberculosis. Vet. Res. 2006, 37, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Aagaard, C.; Govaerts, M.; Meikle, V.; Gutiérrez-Pabello, J.A.; McNair, J.; Andersen, P.; Suárez-Güemes, F.; Pollock, J.; Espitia, C.; Cataldi, A. Detection of bovine tuberculosis in herds with different disease prevalence and influence of paratuberculosis infection on PPDB and ESAT-6/CFP10 specificity. Prev. Vet. Med. 2010, 96, 161–169. [Google Scholar] [CrossRef]
- Claridge, J.; Diggle, P.; McCann, C.M.; Mulcahy, G.; Flynn, R.; McNair, J.; Strain, S.; Welsh, M.; Baylis, M.; Williams, D.J.L. Fasciola hepatica is associated with the failure to detect bovine tuberculosis in dairy cattle. Nat. Commun. 2012, 3, 1–8. [Google Scholar] [CrossRef]
- Flynn, R.J.; Mulcahy, G.; Welsh, M.; Cassidy, J.P.; Corbett, D.; Milligan, C.; Andersen, P.; Strain, S.; McNair, J. Co-infection of cattle with Fasciola hepatica and Mycobacterium bovis—Immunological consequences. Transbound. Emerg. Dis. 2009, 56, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Botti, I.; Pacciarini, M.L.; Boniotti, M.B.; Roncarati, G.; Dal Monte, P. Five-year surveillance of human tuberculosis caused by Mycobacterium bovis in Bologna, Italy: An underestimated problem. Epidemiol. Infect. 2017, 145, 3035–3039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministero della Salute. Cattle/Buffalo Tuberculosis—National Control Plans. Available online: http://www.salute.gov.it/relazioneAnnuale2018/dettaglioRA2018.jsp?cap=capitolo2&sez=ra18-2-sanimale&id=2061 (accessed on 20 July 2020).
- Istituto Zooprofilattico della Sicilia. Available online: http://www.izs.it/IZS/Engine/RAServeFile.php/f/Formazione_corsi_-_convegni/2016/Workshop_Indagini_Epidemiologiche_Roma/A._D_Orazi_Brucellosi_e_Tubercolosi_e_LEB_in_Sicilia_criticita_e_proposte.pdf (accessed on 20 July 2020).
- Dejene, S.W.; Heitkönig, I.M.A.; Prins, H.H.T.; Lemma, F.A.; Mekonnen, D.A.; Alemu, Z.E.; Kelkay, T.Z.; de Boer, W.F. Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia. PLoS ONE 2016, 11, e0159083. [Google Scholar] [CrossRef] [PubMed]
- Amato, B.; Di Marco Lo Presti, V.; Gerace, E.; Capucchio, M.T.; Vitale, M.; Zanghì, P.; Pacciarini, M.L.; Marianelli, C.; Boniotti, M.B. Molecular epidemiology of Mycobacterium tuberculosis complex strains isolated from livestock and wild animals in Italy suggests the need for a different eradication strategy for bovine tuberculosis. Transbound. Emerg. Dis. 2018, 65, e416–e424. [Google Scholar] [CrossRef] [PubMed]
- Amato, B.; Mignacca, S.A.; Pacciarini, M.L.; Vitale, M.; Antoci, S.; Cucinotta, S.; Puleio, R.; Biasibetti, E.; Fiasconaro, M.; Capucchio, M.T. An outbreak of bovine tuberculosis in a fallow deer herd (Dama dama) in Sicily. Res. Vet. Sci. 2016, 106, 116–120. [Google Scholar] [CrossRef]
- Abbate, J.M.; Arfuso, F.; Napoli, E.; Gaglio, G.; Giannetto, S.; Latrofa, M.S.; Otranto, D.; Brianti, E. Leishmania infantum in wild animals in endemic areas of southern Italy. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101374. [Google Scholar] [CrossRef]
- Iaria, C.; Migliore, S.; Macri, D.; Bivona, M.; Capparucci, F.; Gaglio, G.; Marino, F. Evidence of Centrocestus formosanus (Nishigori, 1924) in Zebrafish (Danio rerio). Zebrafish 2019, 16, 6. [Google Scholar] [CrossRef]
- Gaglio, G.; Reina, V.; Caffara, M.; Gjurcevic, E.; Iaria, C.; Marino, F. Risk of introduction of Clinostomum complanatum (Digenea: Clinostomidae) to Sicily through use of Cobitis bilineata (Canestrini, 1865) as live baits. Bull. Eur. Assoc. Fish Pathol. 2016, 36, 105–110. [Google Scholar]
- Brooks-Pollock, E.; Conlan, A.J.K.; Mitchell, A.P.; Blackwell, R.; McKinley, T.J.; Wood, J.L.N. Age-dependent patterns of bovine tuberculosis in cattle. Vet. Res. 2013, 44, 97. [Google Scholar] [CrossRef] [Green Version]
- Demelash, B.; Inangolet, F.; Oloya, J.; Asseged, B.; Badaso, M.; Yilkal, A.; Skjerve, E. Prevalence of Bovine tuberculosis in Ethiopian slaughter cattle based on post-mortem examination. Trop. Anim. Health Prod. 2009, 41, 755–765. [Google Scholar] [CrossRef]
- Jajere, S.M.; Atsanda, N.N.; Bitrus, A.A.; Hamisu, T.M.; Goni, M.D. A retrospective study of bovine tuberculosis at the municipal abattoir of Bauchi State, Northeastern Nigeria. Vet. World 2018, 11, 598. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.P.; Bryson, D.G.; Pollock, J.M.; Evans, R.T.; Forster, F.; Neill, S.D. Early lesion formation in cattle experimentally infected with Mycobacterium bovis. J. Comp. Pathol. 1998, 119, 27–44. [Google Scholar] [CrossRef]
- Palmer, M.V.; Whipple, D.L.; Rhyan, J.C.; Bolin, C.A.; Saari, D.A. Granuloma development in cattle after intratonsilar inoculation with Mycobacterium bovis. Am. J. Vet. Res. 1999, 60, 310. [Google Scholar] [PubMed]
- Abernethy, D.A.; Upton, P.; Higgins, I.M.; McGrath, G.; Goodchild, A.V.; Rolfe, S.J.; Broughan, J.M.; Downs, S.H.; Clifton-Hadley, R.; Menzies, F.D. Bovine tuberculosis trends in the UK and the Republic of Ireland, 1995–2010. Vet. Rec. 2013, 172, 312. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.S.; Jenkins, D.J.; Brookes, V.J.; Barnes, T.S. An eight-year retrospective study of hydatid disease (Echinococcus granulosus sensu stricto) in beef cattle slaughtered at an Australian abattoir. Prev. Vet. Med. 2019, 173, 104806. [Google Scholar] [CrossRef]
- Brundu, D.; Aloi, D.; Rolesu, S.; Piseddu, T.; Masala, G. Cystic echinococcosis in slaughtered cattle in Sardinia: A retrospective epidemiological study and spatial analysis. Geospat. Health 2012, 6, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Lanteri, G.; Abbate, J.M.; Iaria, C.; Macrì, D.; Ferrantelli, V.; Marino, F. Acorn-related acquired pseudomelanosis in Calabrian black pigs. BMC Vet. Res. 2019, 15, 186. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, C.; Morignat, E.; Maugey, X.; Vinard, J.-L.; Hendrikx, P.; Ducrot, C.; Calavas, D.; Gay, E. Defining syndromes using cattle meat inspection data for syndromic surveillance purposes: A statistical approach with the 2005–2010 data from ten French slaughterhouses. BMC Vet. Res. 2013, 9, 88. [Google Scholar] [CrossRef] [Green Version]
Age Classes | Anatomical Localization | Prevalence (%) Triennium 2010–2012 | Prevalence (%) Triennium 2017–2019 | p-Value |
---|---|---|---|---|
<12 Months | Thoracic | 0 | 7.1 | >0.05 |
Generalized | 20 | 14.3 | >0.05 | |
Hepatic | 80 ab | 78.6 ab | <0.0001 | |
12–36 Months | Thoracic | 97.4 cb | 99.7 cb | <0.0001 |
Generalized | 0.4 | 0.1 | >0.05 | |
Hepatic | 2.2 | 0.2 | >0.05 | |
36–60 Months | Thoracic | 100 cd | 100 cd | <0.0001 |
Generalized | 0 | 0 | - | |
Hepatic | 0 | 0 | - | |
60–84 Months | Thoracic | 100 cd | 100 cd | <0.0001 |
Generalized | 0 | 0 | - | |
Hepatic | 0 | 0 | - | |
>84 Months | Thoracic | 100 cd | 100 cd | <0.0001 |
Generalized | 0 | 0 | - | |
Hepatic | 0 | 0 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbate, J.M.; Arfuso, F.; Iaria, C.; Arestia, G.; Lanteri, G. Prevalence of Bovine Tuberculosis in Slaughtered Cattle in Sicily, Southern Italy. Animals 2020, 10, 1473. https://doi.org/10.3390/ani10091473
Abbate JM, Arfuso F, Iaria C, Arestia G, Lanteri G. Prevalence of Bovine Tuberculosis in Slaughtered Cattle in Sicily, Southern Italy. Animals. 2020; 10(9):1473. https://doi.org/10.3390/ani10091473
Chicago/Turabian StyleAbbate, Jessica M., Francesca Arfuso, Carmelo Iaria, Giuseppe Arestia, and Giovanni Lanteri. 2020. "Prevalence of Bovine Tuberculosis in Slaughtered Cattle in Sicily, Southern Italy" Animals 10, no. 9: 1473. https://doi.org/10.3390/ani10091473
APA StyleAbbate, J. M., Arfuso, F., Iaria, C., Arestia, G., & Lanteri, G. (2020). Prevalence of Bovine Tuberculosis in Slaughtered Cattle in Sicily, Southern Italy. Animals, 10(9), 1473. https://doi.org/10.3390/ani10091473