Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty Acids of Fattening Yaks (Bos grunniens)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animals and Design
2.3. Sample Collection
2.4. Serum Biochemical and Hormonal Indictors
2.5. Ruminal Fermentation Parameters
2.6. DNA Extraction and 16S rRNA Gene Pyrosequencing
2.7. Sequencing Data Processing
2.8. Quantitative Real-Time PCR
2.9. Statistical Analyses
3. Results
3.1. Effects of Dietary Energy Levels on the Rumen Fermentation of Yaks
3.2. Effects of Dietary Energy Levels on the Rumen Bacterial Community Composition of Yaks
3.3. Quantitative Real-Time PCR Analysis of the Relative Abundances of Amylolytic and Fibrolytic Bacteria at the Species Level
3.4. Effects of Dietary Energy Levels on the Serum Biochemical and Hormonal Indicators of Yaks
3.5. Association Analysis between Ruminal Bacterial Genera and Intramuscular Fat Fatty Acids of Yaks
4. Discussion
4.1. Effects of Dietary Energy Levels on the Rumen Fermentation and Bacterial Community Composition of Yaks
4.2. Effects of Dietary Energy Levels on the Serum Energy Metabolite and Hormone Concentrations of Yaks
4.3. Association Analysis between Ruminal Bacterial Genera and Intramuscular Fat Fatty Acids of Yaks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Xu, D.; Wang, L.; Hao, J.; Wang, J.; Zhou, X.; Wang, W.; Qiu, Q.; Huang, X.; Zhou, J.; et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr. Biol. 2016, 26, 1873–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Li, Y.; Wang, L.; Wang, J.; Xu, Q.; Yan, T.; Xue, B. Evaluation of composition and individual variability of rumen microbiota in yaks by 16S rRNA high-throughput sequencing technology. Anaerobe 2015, 34, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, J.; Cheng, X.; Xi, D.; Yang, S.; Deng, W.; Mao, H. Phylogenetic analysis of 16S rRNA gene sequences reveals rumen bacterial diversity in Yaks (Bos grunniens). Mol. Biol. Rep. 2010, 37, 553–562. [Google Scholar] [CrossRef]
- An, D.; Dong, X.; Dong, Z. Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 2005, 11, 207–215. [Google Scholar] [CrossRef]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Jami, E.; White, B.A.; Mizrahi, I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE 2014, 9, e85423. [Google Scholar] [CrossRef]
- Abbas, W.; Knoell, A.; Tom, W.; Anderson, C.; Paz, H.; Fernando, S. 458 Impact of Rumen Bacteria on Marbling in Wagyu Cattle. J. Anim. Sci. 2018, 96, 245–246. [Google Scholar] [CrossRef] [Green Version]
- Petri, R.M.; Mapiye, C.; Dugan, M.E.; McAllister, T.A. Subcutaneous adipose fatty acid profiles and related rumen bacterial populations of steers fed red clover or grass hay diets containing flax or sunflower-seed. PLoS ONE 2014, 9, e104167. [Google Scholar] [CrossRef]
- Kang, K.; Ma, J.; Wang, H.; Wang, Z.; Peng, Q.; Hu, R.; Zou, H.; Bao, S.; Zhang, W.; Sun, B. High-energy diet improves growth performance, meat quality and gene expression related to intramuscular fat deposition in finishing yaks raised by barn feeding. Vet. Med. Sci. 2020. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, G.Y.; Song, E.L.; Wan, F.C. The effect of feeding soybeans with different particle size on the content of conjugated linoleic acid and other fatty acids of longissimus dorsi muscle, backfat and liver of beef cattle. J. Anim. Feed Sci. 2009, 18, 388–398. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, C.S.; Duncan, S.H. The effect of avoparcin on cellulolytic bacteria of the ovine rumen. Microbiology 1985, 131, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Xia, X.; Guo, W.; Liu, H. Dynamics of the bacterial and archaeal communities in the Northern South China Sea revealed by 454 pyrosequencing of the 16S rRNA gene. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2015, 117, 97–107. [Google Scholar] [CrossRef]
- Liu, B.; Wang, W.; Zhu, X.; Sun, X.; Xiao, J.; Li, D.; Cui, Y.; Wang, C.; Shi, Y. Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction with SCFAs in Piglets. Front. Microbiol. 2018, 9, 2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, J.; Wu, Y.; Liu, J. Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid-and solid-associated ruminal microbes in vitro. Anim. Feed Sci. Technol. 2008, 141, 1–14. [Google Scholar] [CrossRef]
- Bauman, D.E.; Harvatine, K.J.; Lock, A.L. Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu. Rev. Nutr. 2011, 31, 299–319. [Google Scholar] [CrossRef]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.N.V.; Jewell, K.A.; Freitas, F.S.; Benjamin, L.A.; Tótola, M.R.; Borges, A.C.; Moraes, C.A.; Suen, G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet. Microbiol. 2013, 164, 307–314. [Google Scholar] [CrossRef]
- Singh, K.M.; Ahir, V.B.; Tripathi, A.K.; Ramani, U.V.; Sajnani, M.; Koringa, P.G.; Jakhesara, S.; Pandya, P.R.; Rank, D.N.; Murty, D.S.; et al. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: A preliminary study. Mol. Biol. Rep. 2012, 39, 4841–4848. [Google Scholar] [CrossRef]
- Han, X.; Yang, Y.; Yan, H.; Wang, X.; Qu, L.; Chen, Y. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing. PLoS ONE 2015, 10, e0117811. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bian, G.; Zhu, W.; Mao, S. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Front. Microbiol. 2015, 6, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekele, A.Z.; Koike, S.; Kobayashi, Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol. Lett. 2010, 305, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Van Gylswyk, N. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Evol. Microbiol. 1995, 45, 297–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea, K.; Perz, K.; Olivo, S.K.; Williams, A.; Lachman, M.; Ishaq, S.L.; Thomson, J.; Yeoman, C.J. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. J. Anim. Sci. 2017, 95, 2585–2592. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Fang, L.; Meng, Q.; Li, S.; Chai, S.; Liu, S.; Schonewille, J.T. Assessment of ruminal bacterial and archaeal community structure in Yak (Bos grunniens). Front. Microbiol. 2017, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Rey, F.E.; Faith, J.J.; Bain, J.; Muehlbauer, M.J.; Stevens, R.D.; Newgard, C.B.; Gordon, J.I. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 2010, 285, 22082–22090. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Sanabria, E.; Goonewardene, L.A.; Wang, Z.; Durunna, O.N.; Moore, S.S. Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Appl. Environ. Microbiol. 2012, 78, 1203–1214. [Google Scholar] [CrossRef] [Green Version]
- Grilli, D.; Cerón, M.; Paez, S.; Egea, V.; Schnittger, L.; Cravero, S.; Escudero, M.S.; Allegretti, L.; Arenas, G. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet. Folia Microbiol. (Praha) 2013, 58, 367–373. [Google Scholar] [CrossRef]
- Fernando, S.C.; Purvis, H.; Najar, F.; Sukharnikov, L.; Krehbiel, C.; Nagaraja, T.; Roe, B.; DeSilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, K.; Aminov, R.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 2001, 67, 2766–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelikani, P.; Ambrose, D.; Keisler, D.; Kennelly, J. Effects of dietary energy and protein density on plasma concentrations of leptin and metabolic hormones in dairy heifers. J. Dairy. Sci. 2009, 92, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Cao, Y.; Cai, C.; Li, S.; Yu, C.; Yao, J. Regulation of nutritional metabolism in transition dairy cows: Energy homeostasis and health in response to post-ruminal choline and methionine. PLoS ONE 2016, 11, e0160659. [Google Scholar] [CrossRef] [Green Version]
- Nkrumah, J.; Li, C.; Yu, J.; Hansen, C.; Keisler, D.; Moore, S. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. J. Anim. Sci. 2005, 83, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Miyamoto, N.; Shibata, K.; Valasek, M.A.; Motoike, T.; Kedzierski, R.M.; Yanagisawa, M. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. USA 2004, 101, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, C.; Borai, A. Insulin-like growth factor-II: Its role in metabolic and endocrine disease. Clin. Endocrinol. (Oxf.) 2014, 80, 773–781. [Google Scholar] [CrossRef]
- Gillis, M.H.; Duckett, S.K.; Sackmann, J.R. Effects of supplemental rumen-protected conjugated linoleic acid or corn oil on fatty acid composition of adipose tissues in beef cattle. J. Anim. Sci. 2004, 82, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Purushe, J.; Fouts, D.E.; Morrison, M.; White, B.A.; Mackie, R.I.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microb. Ecol. 2010, 60, 721–729. [Google Scholar] [CrossRef]
Items | Treatments a | ||
---|---|---|---|
LE | ME | HE | |
Ingredients | |||
Corn | 2.20 | 15.84 | 22.75 |
Wheat bran | 22.03 | 6.62 | 0.40 |
Soybean meal | 2.95 | 3.38 | 3.37 |
Rapeseed meal | 1.25 | 2.25 | 1.10 |
Calcium hydrophosphate | 0.00 | 0.59 | 1.20 |
Calcium carbonate | 0.64 | 0.39 | 0.25 |
Sodium chloride | 0.30 | 0.30 | 0.30 |
Sodium bicarbonate | 0.30 | 0.30 | 0.30 |
Choline chloride | 0.03 | 0.03 | 0.03 |
Premix (trace minerals and vitamins) b | 0.30 | 0.30 | 0.30 |
Oaten hay | 60.00 | 47.50 | 30.00 |
Highland barley distiller grains | 10.00 | 22.50 | 40.00 |
In total | 100.00 | 100.00 | 100.00 |
Nutrition levels | |||
NEm (MJ/kg) c | 5.72 | 6.21 | 6.63 |
NEg (MJ/kg) c | 2.87 | 3.46 | 3.98 |
NEmf (MJ/kg) c | 3.72 | 4.52 | 5.32 |
Crude protein, CP (%) | 12.57 | 12.57 | 12.57 |
Ether extract, EE (%) | 4.81 | 5.56 | 6.43 |
Crude fiber, CF (%) | 21.35 | 17.92 | 13.62 |
Neutral detergent fiber, NDF (%) | 47.64 | 43.43 | 41.19 |
Acid detergent fiber, ADF (%) | 26.27 | 25.34 | 24.58 |
Calcium (%) | 0.60 | 0.59 | 0.60 |
Phosphorus (%) | 0.40 | 0.39 | 0.40 |
Items | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
LE | ME | HE | |||
pH | 6.75 | 6.70 | 6.67 | 0.031 | 0.641 |
Acetate (mmol/L) | 47.23 | 45.94 | 44.74 | 0.639 | 0.057 |
Propionate (mmol/L) | 9.48 c | 12.00 b | 14.19 a | 0.314 | 0.019 |
Butyrate (mmol/L) | 2.74 | 2.58 | 2.65 | 0.230 | 0.66 |
Acetate/Propionate | 5.01 a | 3.83 b | 3.18 c | 0.220 | 0.002 |
Ammonia (mg/dL) | 11.32 a | 10.46 b | 9.33 c | 0.205 | 0.000 |
Items | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
LE | ME | HE | |||
R. albus (×10−2) | 0.28 | 0.24 | 0.22 | 0.010 | 0.067 |
R. flavefaciens (×10−3) | 0.52 | 0.51 | 0.48 | 0.011 | 0.230 |
F. succinogenes (×10−2) | 0.92 | 0.88 | 0.87 | 0.014 | 0.329 |
B. fibrisolven (×10−2) | 0.68 | 0.64 | 0.61 | 0.014 | 0.102 |
S. bovis (×10−4) | 0.29 c | 0.49 b | 0.90 a | 0.063 | 0.000 |
P. ruminicola (×10−2) | 0.17 c | 0.32 b | 0.53 a | 0.037 | 0.000 |
R. amylophilus (×10−3) | 0.71 c | 0.89 b | 1.09 a | 0.039 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Zou, H.; Wang, H.; Wang, Z.; Wang, X.; Ma, J.; Shah, A.M.; Peng, Q.; Xue, B.; Wang, L.; et al. Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty Acids of Fattening Yaks (Bos grunniens). Animals 2020, 10, 1474. https://doi.org/10.3390/ani10091474
Hu R, Zou H, Wang H, Wang Z, Wang X, Ma J, Shah AM, Peng Q, Xue B, Wang L, et al. Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty Acids of Fattening Yaks (Bos grunniens). Animals. 2020; 10(9):1474. https://doi.org/10.3390/ani10091474
Chicago/Turabian StyleHu, Rui, Huawei Zou, Hongze Wang, Zhisheng Wang, Xueying Wang, Jian Ma, Ali Mujtaba Shah, Quanhui Peng, Bai Xue, Lizhi Wang, and et al. 2020. "Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty Acids of Fattening Yaks (Bos grunniens)" Animals 10, no. 9: 1474. https://doi.org/10.3390/ani10091474
APA StyleHu, R., Zou, H., Wang, H., Wang, Z., Wang, X., Ma, J., Shah, A. M., Peng, Q., Xue, B., Wang, L., Zhao, S., & Kong, X. (2020). Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty Acids of Fattening Yaks (Bos grunniens). Animals, 10(9), 1474. https://doi.org/10.3390/ani10091474