Characterization of Subcutaneous Fat of Toscano Dry-Cured Ham and Identification of Processing Stage by Multivariate Analysis Approach Based on Volatile Profile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Physical and Chemical Parameters
2.3. Volatile Compound Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Parameters
3.2. Evolution of Volatile Compounds from Raw to Cured Ham
3.3. Prediction of the Maturing Time by a Multivariate Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez, X.; Monin, G.; Talmant, A.; Mourot, J.; Lebret, B. Influence of intramuscular fat content on the quality of pig meat-2. Consumer acceptability of m. longissimus lumborum. Meat Sci. 1999, 53, 67–72. [Google Scholar] [CrossRef]
- Aquilani, C.; Sirtori, F.; Franci, O.; Acciaioli, A.; Bozzi, R.; Pezzati, A.; Pugliese, C. Effects of Protein Restriction on Performances and Meat Quality of Cinta Senese Pig Reared in an Organic System. Animals 2019, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Cardona, M.; Gorriz, A.; Barat, J.M.; Fernández-Segovia, I. Perception of fat and other quality parameters in minced and burger meat from Spanish consumer studies. Meat Sci. 2020, 166, 108138. [Google Scholar] [CrossRef]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef]
- Flores, M.; Olivares, A. Flavor. In Handbook of Fermented Meat and Poultry, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 217–225. ISBN 9781118522653. [Google Scholar]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef]
- Dall’Olio, S.; Aboagye, G.; Nanni Costa, L.; Gallo, M.; Fontanesi, L. Effects of 17 performance, carcass and raw ham quality parameters on ham weight loss at first salting in heavy pigs, a meat quality indicator for the production of high quality dry-cured hams. Meat Sci. 2020, 162, 108012. [Google Scholar] [CrossRef]
- Bosi, P.; Russo, V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004, 3, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Prevolnik, M.; Andronikov, D.; Žlender, B.; Font-i-Furnols, M.; Novič, M.; Škorjanc, D.; Čandek-Potokar, M. Classification of dry-cured hams according to the maturation time using near infrared spectra and artificial neural networks. Meat Sci. 2014, 96, 14–20. [Google Scholar] [CrossRef]
- Hersleth, M.; Lengard, V.; Verbeke, W.; Guerrero, L.; Næs, T. Consumers’ acceptance of innovations in dry-cured ham: Impact of reduced salt content, prolonged aging time and new origin. Food Qual. Prefer. 2011, 22, 31–41. [Google Scholar] [CrossRef]
- Sirtori, F.; Dimauro, C.; Bozzi, R.; Aquilani, C.; Franci, O.; Calamai, L.; Pezzati, A.; Pugliese, C. Evolution of volatile compounds and physical, chemical and sensory characteristics of Toscano PDO ham from fresh to dry-cured product. Eur. Food Res. Technol. 2020, 246, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Association of Officia Analytical Chemist. Official Methods of Analysis (AOAC), 19th ed.; Association of Officia Analytical Chemist: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Sirtori, F.; Crovetti, A.; Acciaioli, A.; Bonelli, A.; Pugliese, C.; Bozzi, R.; Campodoni, G.; Franci, O. Effect of replacing a soy diet with Vicia faba and Pisum sativum on performance, meat and fat traits of Cinta Senese pigs. Ital. J. Anim. Sci. 2015, 14, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, B.C.; Sirtori, F.; Ruiz, J.; Martin, D.; Franci, O. Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of Cinta Senese dry-cured ham. Grasas Aceites 2009, 60, 271–276. [Google Scholar] [CrossRef] [Green Version]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology, The Gold Book, 2nd ed.; Wiley: Blackwell, UK, 1997; ISBN 0865426848. [Google Scholar]
- SAS Institute Inc. SAS/STAT® 9.3 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L.L. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Dimauro, C.; Cellesi, M.; Pintus, M.A.; MacCiotta, N.P.P. The impact of the rank of marker variance-covariance matrix in principal component evaluation for genomic selection applications. J. Anim. Breed. Genet. 2011, 128, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Luna, G.; Aparicio, R.; García-González, D.L. A tentative characterization of white dry-cured hams from Teruel (Spain) by SPME-GC. Food Chem. 2006, 97, 621–630. [Google Scholar] [CrossRef]
- Ruiz, J.; García, C.; Muriel, E.; Andrés, A.I.; Ventanas, J. Influence of sensory characteristics on the acceptability of dry-cured ham. Meat Sci. 2002, 61, 347–354. [Google Scholar] [CrossRef]
- Tomažin, U.; Škrlep, M.; Prevolnik Povše, M.; Batorek Lukač, N.; Karolyi, D.; Červek, M.; Čandek-Potokar, M. The effect of salting time and sex on chemical and textural properties of dry cured ham. Meat Sci. 2020, 161, 107990. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; García, C. Instrumental colour of Iberian ham subcutaneous fat and lean (biceps femoris): Influence of crossbreeding and rearing system. Meat Sci. 2005, 71, 284–290. [Google Scholar] [CrossRef]
- Timón, M.L.; Ventanas, J.; Carrapiso, A.I.; Jurado, A.; García, C. Subcutaneous and intermuscular fat characterisation of dry-cured Iberian hams. Meat Sci. 2001, 58, 85–91. [Google Scholar] [CrossRef]
- Larrea, V.; Pérez-Munuera, I.; Hernando, I.; Quiles, A.; Lluch, M.A. Chemical and structural changes in lipids during the ripening of Teruel dry-cured ham. Food Chem. 2007, 102, 494–503. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Vicario, I.M.; Constante, E.G.; León-Camacho, M. Changes in the fatty acid and triacylglycerol profiles in the subcutaneous fat of Iberian ham during the dry-curing process. J. Agric. Food Chem. 2008, 56, 7131–7137. [Google Scholar] [CrossRef] [PubMed]
- Martín, L.; Córdoba, J.J.; Ventanas, J.; Antequera, T. Changes in intramuscular lipids during ripening of Iberian dry-cured ham. Meat Sci. 1999, 51, 129–134. [Google Scholar] [CrossRef]
- Gandemer, G. Lipids in muscles and adipose tissues, changes during processing and sensory properties of meat products. Meat Sci. 2002, 62, 309–321. [Google Scholar] [CrossRef]
- Sánchez-Peña, C.M.; Luna, G.; García-González, D.L.; Aparicio, R. Characterization of French and Spanish dry-cured hams: Influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC. Meat Sci. 2005, 69, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Belitz, H.; Grosch, W.; Schieberle, P. Aroma Compounds BT—Food Chemistry; Belitz, H.D., Grosch, W., Schieberle, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 342–408. ISBN 978-3-662-07279-0. [Google Scholar]
- Andrés, A.I.; Cava, R.; Ruiz, J. Monitoring volatile compounds during dry-cured ham ripening by solid-phase microextraction coupled to a new direct-extraction device. J. Chromatogr. A 2002, 963, 83–88. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; ISBN 9781420090772. [Google Scholar]
- García-González, D.L.; Tena, N.; Aparicio, R. Contributing to interpret sensory attributes qualifying Iberian hams from the volatile profile. Grasas Aceites 2009, 60, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Chemical changes in volatile aldehydes and ketones from subcutaneous fat during ripening of Iberian dry-cured ham. Prediction of the curing time. Food Res. Int. 2014, 55, 381–390. [Google Scholar] [CrossRef]
- Hinrichsen, L.L.; Andersen, H.J. Volatile Compounds and Chemical Changes in Cured Pork: Role of Three Halotolerant Bacteria. J. Agric. Food Chem. 1994, 42, 1537–1542. [Google Scholar] [CrossRef]
- Ventans, J.; Córdoba, J.J.; Antequera, T.; Garcia, C.; López-Bote, C.; Asensio, M.A. Hydrolysis and Maillard Reactions During Ripening of Iberian Ham. J. Food Sci. 1992, 57, 813–815. [Google Scholar] [CrossRef]
- Smit, B.A.; Engels, W.J.M.; Smit, G. Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Appl. Microbiol. Biotechnol. 2009, 81, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Andres, A.I.; Cava, R.; Ventanas, S.; Muriel, E.; Ruiz, J. Effect of salt content and processing conditions on volatile compounds formation throughout the ripening of Iberian ham. Eur. Food Res. Technol. 2007, 225, 677–684. [Google Scholar] [CrossRef]
- García-González, D.L.; Aparicio, R.; Aparicio-Ruiz, R. Volatile and amino acid profiling of dry cured hams from different swine breeds and processing methods. Molecules 2013, 18, 3927–3947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narváez-Rivas, M.; Gallardo, E.; Ríos, J.J.; León-Camacho, M. A tentative characterization of volatile compounds from Iberian dry-cured ham according to different anatomical locations. A detailed study. Grasas Aceites 2010, 61, 369–377. [Google Scholar]
- Gibka, J.; Gliński, M. Synthesis and olfactory properties of 2-alkylalkanals, analogues of 2-methylundecanal. Flavour Fragr. J. 2006, 21, 480–483. [Google Scholar] [CrossRef]
- Xie, Y.J.; He, Z.F.; Zhang, E.; Li, H.J. Technical note: Characterization of key volatile odorants in rabbit meat using gas chromatography mass spectrometry with simultaneous distillation extraction. World Rabbit Sci. 2016, 24, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Gaines, A.; Ludovice, M.; Xu, J.; Zanghi, M.; Meinersmann, R.J.; Berrang, M.; Daley, W.; Britton, D. The dialogue between protozoa and bacteria in a microfluidic device. PLoS ONE 2019, 14, e0222484. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of branched-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing branched-chain alcohols and acetals containing branched-chain aldehydes (chemical group 2) when used as flavourings for all animal species. EFSA J. 2012, 10, 2927. [Google Scholar]
- Petričević, S.; Marušić Radovčić, N.; Lukić, K.; Listeš, E.; Medić, H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2018, 137, 217–227. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Analysis of volatile compounds from Iberian hams: A review. Grasas Aceites 2012, 63, 432–454. [Google Scholar]
- Flores, M.; Grimm, C.C.; Toldrá, F.; Spanier, A.M. Correlations of Sensory and Volatile Compounds of Spanish “Serrano” Dry-Cured Ham as a Function of Two Processing Times. J. Agric. Food Chem. 1997, 45, 2178–2186. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Study of volatile alcohols and esters from the subcutaneous fat during ripening of Iberian dry-cured ham. A tool for predicting the dry-curing time. Grasas Aceites 2016, 67, e166. [Google Scholar] [CrossRef] [Green Version]
- Cordero, M.R.; Zumalacárregui, J.M. Characterization of Micrococcaceae isolated from salt used for Spanish dry-cured ham. Lett. Appl. Microbiol. 2000, 31, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, R.; Cava, R. Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes. J. Agric. Food Chem. 2007, 55, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Evolution of volatile hydrocarbons from subcutaneous fat during ripening of Iberian dry-cured ham. A tool to differentiate between ripening periods of the process. Food Res. Int. 2015, 67, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Petrón, M.J.; Tejeda, J.F.; Muriel, E.; Ventanas, J.; Antequera, T. Study of the branched hydrocarbon fraction of intramuscular lipids from Iberian dry-cured ham. Meat Sci. 2005, 69, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, F.J.; Zamora, R. Conversion of phenylalanine into styrene by 2,4-decadienal in model systems. J. Agric. Food Chem. 2007, 55, 4902–4906. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
- Pugliese, C.; Sirtori, F.; Škrlep, M.; Piasentier, E.; Calamai, L.; Franci, O.; Čandek-Potokar, M. The effect of ripening time on the chemical, textural, volatile and sensorial traits of Bicep femoris and Semimembranosus muscles of the Slovenian dry-cured ham Kraški pršut. Meat Sci. 2015, 100, 58–68. [Google Scholar] [CrossRef]
- García-González, D.L.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef]
- Park, S.Y.; Yoo, S.S.; Uh, J.H.; Eun, J.B.; Lee, H.C.; Kim, Y.J.; Chin, K.B. Evaluation of Lipid Oxidation and Oxidative Products as Affected by Pork Meat Cut, Packaging Method, and Storage Time during Frozen Storage. J. Food Sci. 2007, 72, C114–C119. [Google Scholar] [CrossRef]
- Jesús Andrade, M.; Córdoba, J.J.; Sánchez, B.; Casado, E.M.; Rodríguez, M. Evaluation and selection of yeasts isolated from dry-cured Iberian ham by their volatile compound production. Food Chem. 2009, 113, 457–463. [Google Scholar] [CrossRef]
- Jurado, Á.; Carrapiso, A.I.; Ventanasa, J.; García, C. Changes in SPME-extracted volatile compounds from Iberian ham during ripening. Grasas Aceites 2009, 60, 262–270. [Google Scholar] [CrossRef]
- Barbieri, G.; Bolzoni, L.; Parolari, G.; Virgili, R.; Buttini, R.; Careri, M.; Mangia, A. Flavor compounds of dry-cured ham. J. Agric. Food Chem. 1992, 40, 2389–2394. [Google Scholar] [CrossRef]
- Flores, J. Mediterranean vs northern European meat products. Processing technologies and main differences. Food Chem. 1997, 59, 505–510. [Google Scholar] [CrossRef]
- Théron, L.; Tournayre, P.; Kondjoyan, N.; Abouelkaram, S.; Santé-Lhoutellier, V.; Berdagué, J.L. Analysis of the volatile profile and identification of odour-active compounds in Bayonne ham. Meat Sci. 2010, 85, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, T.; Ruiz, J.; Martín, D.; Grau, R.; Antequera, T. Influence of pre-cure freezing on the profile of volatile compounds during the processing of Iberian hams. J. Sci. Food Agric. 2010, 90, 882–890. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas-Cañedo, A.; Ávila, M.; Garde, S.; Nuñez, M.; Picon, A. Influence of physicochemical characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham. Meat Sci. 2017, 131, 40–47. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Noseda, B.; García, C.; Reina, R.; Sánchez del Pulgar, J.; Devlieghere, F. SIFT-MS analysis of Iberian hams from pigs reared under different conditions. Meat Sci. 2015, 104, 8–13. [Google Scholar] [CrossRef]
- Pugliese, C.; Sirtori, F.; Calamai, L.; Franci, O. The evolution of volatile compounds profile of “Toscano” dry-cured ham during ripening as revealed by SPME-GC-MS approach. J. Mass Spectrom. 2010, 45, 1056–1064. [Google Scholar] [CrossRef]
- Ruiz, J.; Cava, R.; Ventanas, J.; Jensen, M.T. Headspace Solid Phase Microextraction for the Analysis of Volatiles in a Meat Product: Dry-Cured Iberian Ham. J. Agric. Food Chem. 1998, 46, 4688–4694. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Huang, A. Multivariate analysis approach for assessing coated dry-cured ham flavor quality during long-term storage. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Boscaino, F.; Nazzaro, F.; Fratianni, F.; Aponte, M. Lactic acid bacteria biota and aroma profile of Italian traditional sourdoughs from the irpinian area in Italy. Front. Microbiol. 2019, 10, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.; Liu, X.; Xu, Q.; Song, H.; Li, P.; Yao, J. Aroma-active components of yeast extract pastes with a basic and characteristic meaty flavour. J. Sci. Food Agric. 2014, 94, 882–889. [Google Scholar] [CrossRef] [PubMed]
Seasoning | RMSE 1 | p | |||
---|---|---|---|---|---|
S14 (n = 10) | S16 (n = 10) | S18 (n = 10) | |||
Instrumental color | |||||
L* | 76.125 b | 77.948 a,b | 79.068 a | 1.923 | 0.0178 |
a* | 2.804 a,b | 3.763 a | 2.238 b | 1.086 | 0.0302 |
B* | 3.964 | 3.192 | 4.158 | 0.912 | 0.0869 |
Seasoning | RMSE 1 | p | ||||
---|---|---|---|---|---|---|
R0 (n = 30) | S14 (n = 10) | S16 (n = 10) | S18 (n = 10) | |||
Moisture (%) | 16.955 a | 2.941 b | 3.161 b | 2.744 b | 7.288 | <0.0001 |
Total lipids | 68.423 b | 76.718 a | 76.246 a | 78.091 a | 4.774 | <0.0001 |
C12:0 | 0.051 | 0.0386 | 0.025 | 0.027 | 0.029 | 0.0343 |
C14:0 | 0.420 a,b | 0.434 a,b | 0.409 b | 0.459 a | 0.040 | 0.0366 |
C14:1-n5 | 0.005 a,b | 0.005 a,b | 0.004 b | 0.005 a | 0.001 | 0.0055 |
C15:0 | 0.011 | 0.011 | 0.010 | 0.013 | 0.002 | 0.1094 |
C16:0 | 5.599 b | 6.103 a | 5.942 a,b | 6.460 a | 0.462 | <0.0001 |
C16:1 | 0.893 | 0.928 | 0.902 | 0.990 | 0.102 | 0.0992 |
C17:0 | 0.064 | 0.066 | 0.068 | 0.078 | 0.014 | 0.1070 |
C17:1 | 0.067 | 0.067 | 0.067 | 0.079 | 0.015 | 0.1955 |
C18:0 | 2.326 b | 2.628 a | 2.624 a | 2.745 a | 0.235 | <0.0001 |
C18:1 | 11.289 b | 12.578 a | 12.253 a | 12.959 a | 0.041 | <0.0001 |
C18:2-n6cis | 2.962 | 3.210 | 3.167 | 2.966 | 0.404 | 0.2549 |
C18:3-n3 | 0.203 | 0.217 | 0.215 | 0.206 | 0.022 | 0.2212 |
C20:0 | 0.047 | 0.051 | 0.0471 | 0.052 | 0.007 | 0.1340 |
C20:1 | 0.270 | 0.296 | 0.276 | 0.295 | 0.036 | 0.2295 |
C20:2-n6 | 0.157 b | 0.187 a | 0.181 a,b | 0.164 a,b | 0.028 | 0.0126 |
C20:3-n6 | 0.027 | 0.025 | 0.023 | 0.022 | 0.006 | 0.0697 |
C20:4-n6 | 0.062 a | 0.059 a,b | 0.058 a,b | 0.050 b | 0.010273 | 0.0235 |
C20:3-n3 | 0.090 b | 0.104 a | 0.102 a,b | 0.103 a,b | 0.014215 | 0.0111 |
C22:4-n6 | 0.087 | 0.105 | 0.106 | 0.103 | 0.022764 | 0.0714 |
C22:5-n3 | 0.081 | 0.097 | 0.097 | 0.096 | 0.020967 | 0.0624 |
C20:5-n3 | 0.000 | 0.009 | 0.000 | 0.009 | 0.015231 | 0.2337 |
SFA | 8.521 b | 9.333 a | 9.126 a,b | 9.834 a | 0.694 | <0.0001 |
MUFA | 12.524 b | 13.873 a | 13.503 a | 14.329 a | 0.994 | <0.0001 |
PUFA | 3.671 | 4.013 | 3.945 | 3.720 | 0.479 | 0.1671 |
PUFA-n6 | 3.297 | 3.587 | 3.531 | 3.305 | 0.439 | 0.2058 |
PUFA-n3 | 0.320 | 0.355 | 0.340 | 0.340 | 0.039 | 0.0725 |
Volatile Compound | KI a | ID b | RMSE c | Time | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R0 | R1 | R3 | R6 | S12 | S14 | S16 | S18 | |||||
Aldehydes | ||||||||||||
2-methylbutanal | 880 | MS/KI | 0.05 | 0.02 c | 0.01 c | 0.03 c | 0.11 b | 0.16 ab | 0.13 ab | 0.19 a | 0.11 b | <0.0001 |
3-methylbutanal | 884 | MS/KI | 0.05 | 0.01 e | 0.02 e | 0.05 d e | 0.12 bcd | 0.19 ab | 0.14 abc | 0.21 a | 0.09 cde | <0.0001 |
Pentanal | 974 | MS/KI | 2.28 | 0.15 c | 1.40 bc | 2.12 bc | 1.42 bc | 8.27 a | 2.50 bc | 3.78 b | 1.07 bc | <0.0001 |
Hexanal | 1081 | MS/KI | 3.23 | 0.17 c | 1.90 c | 3.05 bc | 4.03 bc | 8.59 a | 7.42 ab | 11.72 a | 2.24 c | <0.0001 |
Heptanal | 1183 | MS/KI | 0.26 | 0.01 d | 0.18 d | 0.30 d | 0.28 d | 1.04 ab | 0.70 bc | 1.22 a | 0.31 cd | <0.0001 |
Octanal | 1287 | MS/KI | 0.73 | 0.04 b | 0.08 b | 0.13 b | 0.22 b | 0.53 b | 2.22 a | 2.00 a | 0.08 b | <0.0001 |
2-Heptenal | 1318 | MS/KI | 2.92 | 0.07 c | 0.33 c | 1.37 c | 3.94 bc | 7.32 ab | 8.06 ab | 10.80 a | 3.70 bc | <0.0001 |
Nonanal | 1392 | MS/KI | 0.54 | 0.05 c | 0.18 c | 0.34 c | 0.72 bc | 1.29 b | 1.38 ab | 2.11 a | 0.41 c | <0.0001 |
2,4 hexadienal | 1402 | MS/KI | 0.69 | 0.04c | 0.01 c | 0.18 c | 0.69 bc | 1.26 ab | 1.61 ab | 2.11 a | 0.59 bc | <0.0001 |
2-octenal | 1442 | MS/KI | 0.70 | 0.02 c | 0.05 c | 0.27 c | 1.53 ab | 1.39 b | 1.46 ab | 2.45 a | 0.59 bc | <0.0001 |
2,4 heptadienal | 1493 | MS/KI | 2.38 | 0.16 d | 0.24 d | 0.28 cd | 1.29 cd | 3.41 bc | 5.82 ab | 8.22 a | 1.82 cd | <0.0001 |
Decanal | 1498 | MS/KI | 0.13 | 0.01 b | 0.02 b | 0.02 b | 0.09 ab | 0.04 b | 0.03 b | 0.23 a | 0.03 b | 0.008 |
2,4-Heptadienal (E,E)- | 1501 | MS/KI | 2.80 | 0.15 c | 0.11 c | 0.58 c | 2.19 bc | 5.54 b | 6.25 b | 10.70 a | 2.43 bc | <0.0001 |
Benzaldehyde | 1515 | MS/KI | 0.68 | 0.01 d | 0.14 cd | 0.28 cd | 0.85 bcd | 1.03 bc | 1.56 d | 2.82 a | 0.66 bcd | <0.0001 |
2-nonenal | 1532 | MS/KI | 0.97 | 0.00 c | 0.06 c | 0.30 bc | 1.36 bc | 1.38 bc | 1.62 b | 3.43 a | 0.70 bc | <0.0001 |
2-methylundecanal | 1644 | MS/KI | 18.86 | 11.68 b | 15.30 b | 13.64 b | 23.42 b | 29.19 ab | 32.14 ab | 51.96 a | 9.25 b | <0.0001 |
2-Dodecenal | 1844 | MS/KI | 0.93 | 0.03 d | 0.00 cd | 0.22 cd | 0.90 bcd | 1.72 b | 1.39 bc | 3.51 a | 0.62 bcd | <0.0001 |
Benzeneacetaldehyde | 1646 | MS/KI | 1.72 | 0.01 d | 0.07 d | 0.20 d | 1.95 bcd | 1.44 cd | 4.02 ab | 6.07 a | 3.85 abc | <0.0001 |
trans, trans-nona-2,4-dienal | 1704 | MS/KI | 2.52 | 0.12 c | 0.04 c | 0.51 c | 2.74 bc | 4.05 b | 4.80 b | 9.13 a | 1.36 bc | <0.0001 |
2-undecenal | 1717 | MS/KI | 1.00 | 0.04 c | 0.04 c | 0.18 c | 0.74 bc | 1.72 b | 1.40 a | 3.73 bc | 0.51 bc | <0.0001 |
2,4 decadienal | 1797 | MS/KI | 3.49 | 0.17 b | 0.23 b | 0.24 b | 1.48 b | 2.21 b | 4.67 b | 10.50 a | 0.93 b | <0.0001 |
2,6-dimethylbenzaldehyde | 1640 | MS/KI | 4.20 | 2.98 d | 5.55 bcd | 4.46 cd | 10.29 abc | 11.81 ab | 8.13 abcd | 13.59 a | 2.39 d | <0.0001 |
2,4-dimethylbenzaldehyde | 1742 | MS/KI | 4.21 | 2.98 c | 5.55 bc | 4.47 c | 10.43 ab | 11.81 ab | 8.13 abc | 13.60 a | 2.39 c | <0.0001 |
Tetradecanal | 1910 | MS/KI | 0.17 | 0.12 | 0.13 | 0.17 | 0.27 | 0.11 | 0.08 | 0.05 | 0.14 | 0.207 |
Pentadecanal | 2042 | MS/KI | 0.15 | 0.25 ab | 0.38 a | 0.23 ab | 0.13 d | 0.23 ab | 0.04 b | 0.07 b | 0.03 b | <0.0001 |
Octadecanal | 2400 | MS/KI | 0.04 | 0.02 e | 0.04 de | 0.04 de | 0.10 cd | 0.21 a | 0.13 bc | 0.18 ab | 0.15 bc | <0.0001 |
Butanal | 867 | MS/KI | 0.13 | 0.04 c | 0.18 bc | 0.21 bc | 0.27 ab | 0.40 a | 0.14 bc | 0.18 bc | 0.07 c | <0.0001 |
Esters | ||||||||||||
Formic Acid, ethyl ester | 825 | MS/KI | 2.90 | 1.99 c | 6.57 b | 5.02 bc | 3.11 bc | 11.75 a | 3.54 bc | 4.54 bc | 2.84 bc | <0.0001 |
Acetic acid ethenyl ester | MS | 0.30 | 0.12 d | 0.13 d | 0.26 cd | 0.32 bcd | 1.07 a | 0.34 bcd | 0.69 ab | 0.62 bc | <0.0001 | |
Butanoic acid, ethyl ester | 1037 | MS/KI | 0.39 | 0.09 b | 0.48 b | 0.50 b | 0.14 b | 1.17 a | 0.52 b | 0.62 b | 1.48 a | <0.0001 |
Butanoic acid, 3-methyl-, ethyl ester | 1066 | MS/KI | 0.20 | 0.02 b | 0.03 b | 0.06 b | 0.03 b | 0.14 ab | 0.08 b | 0.10 ab | 0.40 a | 0.009 |
Pentanoic acid, ethyl ester | 1142 | MS/KI | 0.12 | 0.01 d | 0.04 d | 0.06 d | 0.07 cd | 0.49 a | 0.33 ab | 0.41 ab | 0.24 bc | <0.0001 |
Heptanoic acid, ethyl ester | 1332 | MS/KI | 0.53 | 0.19 c | 0.42 c | 0.37 c | 0.62 bc | 2.18 a | 0.94 bc | 1.26 b | 0.28 c | <0.0001 |
Octanoic acid, ethyl ester | 1441 | MS/KI | 2.85 | 1.28 d | 1.97 d | 2.63 d | 2.16 d | 11.78 a | 4.27 cd | 7.43 bc | 10.09 ab | <0.0001 |
Nonanoic acid, ethyl ester | 1541 | MS/KI | 0.13 | 0.29 ab | 0.19 abc | 0.15 abc | 0.05 c | 0.33 a | 0.13 bc | 0.25 ab | 0.10 bc | 0.0002 |
Decanoic acid, methyl ester | 1581 | MS/KI | 0.16 | 0.03 c | 0.03 c | 0.03 c | 0.13 bc | 0.43 a | 0.33 ab | 0.42 a | 0.42 a | <0.0001 |
Decanoic acid, ethyl ester | 1643 | MS/KI | 2.09 | 0.71 b | 0.44 b | 0.68 b | 0.70 b | 6.31 a | 3.32 ab | 1.11 b | 2.49 b | <0.0001 |
Benzoic acid, ethyl ester | 1645 | MS/KI | 0.04 | 0.04 cd | 0.05 cd | 0.03 d | 0.08 bcd | 0.13 ab | 0.10 abc | 0.15 a | 0.06 cd | <0.0001 |
Phthalic acid, butyl 1-cyclopentylethyl ester | MS | 2.48 | 2.46 a | 2.27 a | 2.06 a | 1.16 b | 1.15 b | 0.21 c | 0.38 c | 0.51 | <0.05 | |
Hexadecanoic acid, ethyl ester | 2243 | MS/KI | 0.81 | 0.27 c | 0.11 c | 0.31 c | 0.52 c | 3.29 a | 1.16 bc | 2.73 a | 2.20 ab | <0.0001 |
Undecanoic acid, methyl ester | MS | 4.14 | 1.00 b | 1.16 b | 1.79 b | 5.10 ab | 5.67 ab | 5.78 ab | 7.72 a | 3.36 ab | 0.005 | |
Heptanoic acid, ethyl ester | 1331 | MS/KI | 0.53 | 0.19 c | 0.42 c | 0.37 c | 0.62 bc | 2.18 a | 0.93 bc | 1.27 b | 0.28 c | <0.0001 |
Octanoic acid, methyl ester | 1437 | MS/KI | 0.21 | 0.02 c | 0.03 c | 0.06 c | 0.18 bc | 0.44 ab | 0.38 ab | 0.42 ab | 0.63 a | <0.0001 |
Succinic acid, 3,3-dimethylbut-2-yl isobutyl ester | MS | 3.50 | 0.53 b | 0.70 b | 1.30 b | 2.81 b | 3.03 ab | 5.14 ab | 7.84 a | 1.18 b | 0.0002 | |
4-Decenoic acid, ethyl ester, (Z)- | 1699 | MS/KI | 0.21 | 0.06 b | 0.07 b | 0.11 b | 0.19 b | 0.79 a | 0.34 b | 0.79 a | 0.80 a | <0.0001 |
Dodecanoic acid, ethyl ester | MS | 0.54 | 0.05 c | 0.03 c | 0.05 c | 0.23 bc | 0.62 abc | 0.50 abc | 1.16 a | 1.03 ab | <0.0001 | |
Hydrocarbons | ||||||||||||
Hexane | 600 | MS/KI | 0.26 | 0.11 d | 0.20 cd | 0.27 bcd | 0.20 cd | 0.83 a | 0.49 abcd | 0.60 ab | 0.51 abc | <0.0001 |
2,2,3,3-tetramethylbutane | MS | 0.84 | 0.23 b | 0.47 b | 0.46 b | 1.00 ab | 1.74 a | 1.07 ab | 1.09 ab | 0.95 ab | 0.086 | |
1-butoxy-2-ethyl-1-hexene | MS | 14.77 | 8.08 bc | 30.00 ab | 20.61 abc | 8.54 bc | 36.31 a | 7.52 bc | 9.72 bc | 4.80 c | <0.0001 | |
Decane | 1000 | MS/KI | 12.41 | 0.26 b | 3.10 b | 1.11 b | 27.69 a | 14.05 ab | 7.37 b | 7.29 b | -0.41 b | <0.0001 |
2,3-dimethylpentane | 668 | MS/KI | 3.47 | 0.21 c | 2.18 c | 3.39 bc | 4.41 bc | 9.45 a | 8.29 ab | 13.16 a | 2.48 c | <0.0001 |
1,1-diethoxyhexane | 1235 | MS/KI | 1.44 | 1.90 bc | 2.87 abc | 3.23 ab | 4.76 a | 2.46 bc | 1.22 bc | 1.65 bc | 0.83 c | <0.0001 |
Tridecane | 1300 | MS/KI | 0.22 | 0.00 b | 0.04 ab | 0.01 b | 0.37 a | 0.03 b | 0.02 b | 0.05 ab | 0.00 b | 0.007 |
Styrene | 1254 | MS/KI | 0.05 | 0.01 e | 0.05 de | 0.03 de | 0.21 a | 0.15 ab | 0.10 bcd | 0.12 bc | 0.05 cde | <0.0001 |
2,4,4-trimethylhexane, | MS | 13.19 | 0.54 b | −0.79 b | 0.07 b | 0.24 b | 0.39 b | 44.87 a | 53.18 a | −0.67 b | <0.0001 | |
Pentadecane | 1500 | MS/KI | 0.08 | 0.01 b | 0.13 ab | 0.10 ab | 0.14 a | 0.04 ab | 0.02 b | 0.04 ab | 0.01 b | <0.0001 |
4-methyl-3-nonen-5-yne | MS | 1.42 | 0.11 | 0.20 | 0.23 | 1.64 | 0.26 | 0.26 | 0.07 | 0.31 | 0.274 | |
1-Oxa-3,4-diazacyclopentadiene | MS | 0.37 | 0.01 c | 0.12 bc | 0.21 bc | 0.15 bc | 0.88 a | 0.56 ab | 0.76 a | 0.59 ab | <0.0001 | |
3-ethyl-2-methyl-1,3-hexadiene | 1421 | MS/KI | 0.11 | 0.00 d | 0.01 d | 0.04 d | 0.22 bc | 0.16 bcd | 0.25 ab | 0.39 a | 0.06 cd | <0.0001 |
Ketones | ||||||||||||
4-methyl-2-hexanone | 0.10 | 0.01 c | 0.05 c | 0.07 c | 0.31 b | 0.41 ab | 0.35 ab | 0.49 a | 0.06 c | <0.0001 | ||
1-octen-3-one | 1290 | MS/KI | 0.28 | 0.00 d | 0.06 d | 0.12 cd | 0.18 cd | 0.51 bc | 0.73 ab | 1.00 a | 0.30 cd | <0.0001 |
2,3-Octanedione | 1323 | MS/KI | 0.04 | 0.06 ab | 0.10 a | 0.07 ab | 0.07 ab | 0.07 ab | 0.10 a | 0.02 b | 0.01 b | <0.0001 |
6-methyl-5-hepten-2-one | 1342 | MS/KI | 0.02 | 0.00 c | 0.00 bc | 0.00 c | 0.02 bc | 0.03 b | 0.08 a | 0.09 a | 0.07 a | <0.0001 |
3-octen-2-one | 1388 | MS/KI | 0.71 | 0.05 d | 0.06 d | 0.09 d | 0.67 cd | 1.48 abc | 1.75 ab | 2.14 a | 0.67 bcd | <0.0001 |
6-methoxy-2-hexanone, | MS | 0.12 | 0.14 bc | 0.26 abc | 0.21 bc | 0.41 a | 0.29 ab | 0.24 bc | 0.29 ab | 0.09 c | 0.0007 | |
2-decanone | 1493 | MS/KI | 0.04 | 0.02 c | 0.04 ab | 0.03 ab | 0.08 a | 0.07 ab | 0.05 ab | 0.07 ab | 0.02 c | 0.0008 |
3,5-octadien-2-one | 1516 | MS/KI | 1.49 | 0.08 c | 0.15 c | 0.15 c | 1.20 bc | 3.84 a | 2.99 ab | 4.42 a | 1.50 bc | <0.0001 |
4-hexen-2-one | MS | 17.91 | 20.63 c | 38.08 abc | 31.11 bc | 59.45 a | 48.16 ab | 37.01 abc | 47.65 ab | 14.26 c | <0.0001 | |
2-Undecanone | 1592 | MS/KI | 3.37 | 3.29 bc | 6.15 abc | 5.30 abc | 8.76 a | 6.40 ab | 6.42 ab | 2.35 bc | 1.07 c | <0.0001 |
Acetophenone | 1600 | MS/KI | 0.09 | 0.01 c | 0.03 c | 0.05 c | 0.40 a | 0.26 b | 0.30 ab | 0.32 ab | 0.07 c | <0.0001 |
2-pentadecanone | 2011 | MS/KI | 0.41 | 0.70 a | 0.74 a | 0.52 ab | 0.55 ab | 0.40 b | 0.12 d | 0.21 c | 0.24 c | 0.019 |
Alcohols | ||||||||||||
1-hexanol | 1362 | MS/KI | 0.48 | 0.01 b | 0.02 b | 0.09 b | 0.88 a | 0.57 ab | 0.56 ab | 1.17 a | 0.16 b | <0.0001 |
2-butoxyethanol | 1403 | MS/KI | 1.08 | 0.03 c | 0.28 bc | 0.39 bc | 0.50 bc | 1.73 ab | 2.57 a | 2.96 a | 0.25 bc | <0.0001 |
1-octen-3-ol | 1459 | MS/KI | 2.29 | 0.02 d | 0.39 d | 1.31 d | 5.84 ab | 4.64 bc | 6.79 ab | 8.12 a | 2.28 cd | <0.0001 |
1-heptanol | 1467 | MS/KI | 0.34 | 0.01 e | 0.03 de | 0.14 de | 0.51 bcd | 0.82 ab | 0.73 bc | 1.23 a | 0.24 cde | <0.0001 |
1-octanol | 1565 | MS/KI | 0.36 | 0.00 d | 0.04 d | 0.13 cd | 0.59 bc | 0.77 ab | 0.74 ab | 1.26 a | 0.24 bcd | <0.0001 |
2-undecanol | 1706 | MS/KI | 0.28 | 0.01 d | 0.05 cd | 0.08 cd | 0.15 cd | 0.45 bc | 0.62 ab | 0.92 a | 0.18 cd | <0.0001 |
2-methyl-1-decanol | 1803 | MS/KI | 0.27 | 0.01 b | 0.02 b | 0.03 b | 0.12 b | 0.21 b | 0.29 ab | 0.62 a | 0.06 b | <0.0001 |
1-(2-butoxyethoxy)ethanol | 1800 | MS/KI | 0.22 | 0.04 d | 0.14 cd | 0.14 cd | 0.40 bc | 0.26 bcd | 0.55 ab | 0.83 a | 0.09 cd | <0.0001 |
Benzenemethanol | 1865 | MS/KI | 0.08 | 0.26 a | 0.27 a | 0.19 ab | 0.12 bc | 0.12 bc | 0.04 c | 0.07 c | 0.07 bc | <0.0001 |
Phenyl ethyl alcohol | 1925 | MS/KI | 0.71 | 0.06 | 0.21 | 0.72 | 0.17 | 0.22 | 0.03 | 0.08 | 0.03 | 0.436 |
Phenol | 2000 | MS/KI | 0.37 | 1.60 a | 1.05 ab | 0.76 bc | 0.43 cd | 0.27 cd | 0.07 d | 0.11 d | 0.09 d | <0.0001 |
2-octen-1-ol | MS | 5.12 | 3.08 b | 4.14 b | 3.70 b | 6.21 b | 7.94 ab | 8.70 ab | 14.11 a | 2.51 b | <0.0001 | |
Acids | ||||||||||||
2-methyl-anhydride pentanoic acid | MS | 1.81 | 0.17 c | 0.35 bc | 0.72 bc | 0.94 bc | 1.61 bc | 3.11 bc | 4.50 a | 0.69 bc | <0.0001 | |
Pentadecanoic acid | 2822 | MS/KI | 2.63 | 0.44 b | 0.87 b | 0.61 b | 1.76 b | 6.71 a | 1.94 b | 3.05 ab | 3.30 ab | <0.0001 |
Heptanoic acid | 1971 | MS/KI | 1.36 | 0.70 | 1.35 | 1.22 | 1.30 | 2.26 | 0.30 | 0.50 | 0.40 | 0.046 |
Octanoic Acid | 2048 | MS/KI | 6.77 | 3.65 b | 9.48 ab | 10.36 ab | 9.37 ab | 13.78 a | 4.85 ab | 7.35 ab | 8.98 ab | 0.06 |
Nonanoic acid | 2128 | MS/KI | 5.24 | 5.00 | 8.44 | 5.14 | 4.92 | 2.95 | 0.61 | 1.24 | 0.90 | 0.044 |
decanoic acid | 2296 | MS/KI | 6.63 | 0.96 c | 1.90 c | 5.35 c | 17.56 b | 45.63 a | 36.17 a | 45.62 a | 37.22 a | <0.0001 |
9-Decenoic acid | 1348 | MS/KI | 0.95 | 0.08 d | 0.18 d | 0.67 d | 2.57 c | 5.37 a | 3.95 bc | 5.54 a | 4.41 ab | <0.0001 |
n-Hexadecanoic acid | 2910 | MS/KI | 8.30 | 0.80 c | 0.92 c | 0.75 c | 10.69 bc | 28.76 a | 24.46 a | 32.55 a | 21.08 ab | <0.0001 |
Dodecanoic acid | 2517 | MS/KI | 1.59 | 0.42 d | 0.33 d | 0.83 d | 3.73 c | 10.60 ab | 8.87 b | 11.32 a | 8.27 b | <0.0001 |
Ohers | ||||||||||||
1,5-Diphenyl-3-methylthio-1,2,4-triazole | MS | 0.03 | 0.02 c | 0.09 a | 0.04 bc | 0.05 bc | 0.05 bc | 0.08 ab | 0.08 ab | 0.02 c | <0.0001 | |
2-pentylfuran | 1244 | MS/KI | 1.10 | 1.26 bc | 3.16 a | 2.55 ab | 2.09 abc | 2.94 a | 0.90 c | 1.26 bc | 0.72 c | <0.0001 |
2(3H)dihydro-5-penthylfuranone | MS | 2.13 | 0.73 bc | 1.35 abc | 0.86 bc | 3.78 ab | 4.49 a | 0.57 c | 1.71 abc | 0.42 c | 0.0002 |
Subcutaneous Fat Samples | |||
---|---|---|---|
Chemical Family | Can1 | Sensory Descriptors a | |
1,1-diethoxyhexane | Hydrocarbon | −0.82 | Cognac, pear, floral, hyacinth, apple, fruity 1 |
3-methyl-ethyl ester butanoic acid | Ester | 0.03 | Strong, fruity, vinous, apple-like |
2,4-dimethylbenzaldehyde | Aldehyde | 0.13 | Mild, sweet, bitter-almond |
Butanoic acid, ethyl ester | Ester | 0.45 | Fruity odor with pineapple undertone and sweet |
Dodecanoic acid | Acid | 2.42 | Fatty, creamy, cheese-like, waxy |
Subcutaneous Fat Samples | |||||
---|---|---|---|---|---|
Chemical Family | Can1 | Can2 | Can3 | Sensory Descriptors a | |
1,1-diethoxyhexane | Hydrocarbon | −0.75 | −0.44 | −0.03 | Cognac, pear, floral, hyacinth, apple, fruity 1 |
Pentanoic acid, ethyl ester | Ester | 0.48 | 0.12 | 0.74 | Fruity, apple-like |
4-methyl-2-hexanone | Ketone | 2.17 | 0.93 | 0.64 | Fruity 2 |
2,4,4-trimethylhexane | Hydrocarbon | 0.37 | −1.13 | 0.69 | - |
2,3-octanedione | Ketone | −3.26 | 0.20 | 0.55 | Green, spicy, cilantro, fatty, leafy, cortex, herbal, warmerd-over |
Formic Acid, ethyl ester | Ester | −0.10 | 1.18 | −0.88 | Pungent, rum-like, pineapple |
6-methoxy-2-hexanone | Ketone | −0.76 | 1.03 | 0.63 | Fruity e spicy 3 |
Decanal | Aldehyde | 1.07 | −0.06 | −0.30 | Sweet, waxy, floral, citrus, fatty |
Acetic acid, ethenyl ester | Ester | 0.88 | 0.04 | −0.50 | Wine, fruity 4 |
dihydro-5-penthyl-2(3H) furanone | Furanone | 0.00 | 0.85 | 0.57 | Coconut and fatty |
Hexadecanoic acid, ethyl ester | Ester | 0.81 | 0.45 | 0.02 | Mild, waxy sweet |
Undecanoic acid, methyl ester | Ester | −0.07 | −1.22 | 0.02 | Fatty, waxy fruity 1 |
Proportion of explained variation | 0.56 | 0.31 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirtori, F.; Aquilani, C.; Dimauro, C.; Bozzi, R.; Franci, O.; Calamai, L.; Pezzati, A.; Pugliese, C. Characterization of Subcutaneous Fat of Toscano Dry-Cured Ham and Identification of Processing Stage by Multivariate Analysis Approach Based on Volatile Profile. Animals 2021, 11, 13. https://doi.org/10.3390/ani11010013
Sirtori F, Aquilani C, Dimauro C, Bozzi R, Franci O, Calamai L, Pezzati A, Pugliese C. Characterization of Subcutaneous Fat of Toscano Dry-Cured Ham and Identification of Processing Stage by Multivariate Analysis Approach Based on Volatile Profile. Animals. 2021; 11(1):13. https://doi.org/10.3390/ani11010013
Chicago/Turabian StyleSirtori, Francesco, Chiara Aquilani, Corrado Dimauro, Riccardo Bozzi, Oreste Franci, Luca Calamai, Antonio Pezzati, and Carolina Pugliese. 2021. "Characterization of Subcutaneous Fat of Toscano Dry-Cured Ham and Identification of Processing Stage by Multivariate Analysis Approach Based on Volatile Profile" Animals 11, no. 1: 13. https://doi.org/10.3390/ani11010013
APA StyleSirtori, F., Aquilani, C., Dimauro, C., Bozzi, R., Franci, O., Calamai, L., Pezzati, A., & Pugliese, C. (2021). Characterization of Subcutaneous Fat of Toscano Dry-Cured Ham and Identification of Processing Stage by Multivariate Analysis Approach Based on Volatile Profile. Animals, 11(1), 13. https://doi.org/10.3390/ani11010013