Effects of Fish Oil and Dietary Antioxidant Supplementation on Bone Health of Growing Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animal Experiments
2.3. Determination of Chemical Composition
2.4. Densitometric Measurements of the Femur
2.5. Three-Point Bending Test of the Femur
2.6. Geometric Measurements of the Femur
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Skiba, G.; Poławska, E.; Sobol, M.; Raj, S.; Weremko, D. Omega-6 and omega-3 fatty acids metabolism pathways in the body of pigs fed diets with different sources of fatty acids. Arch. Anim. Nutr. 2015, 69, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sobol, M.; Skiba, G.; Raj, S. Dietary n-3 PUFA content as a modulator of the femur properties in growing pigs. Br. J. Nutr. 2019, 121, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed–Effect of feeding duration dietary fish oil, flaxseed, and rapeseed and n–3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Demirel, D.; Wachira, L.A.; Sinclair, R.G.; Wilkinson, R.G.; Wood, J.D.; Enser, M. Effects of dietary n–3 polyunsaturated fatty acids, breed and dietary vitamin E on the fatty acids of lamb muscle, liver and adipose tissue. Br. J. Nutr. 2004, 91, 551–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimi, M.; Rajion, M.A.; Goh, Y.M. Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients 2014, 24, 3913–3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouba, M.; Benatmane, F.; Blochet, J.E.; Mourot, J. Effect of linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Sci. 2008, 80, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, N.; Ferrari, S.L. Effects of long–term supplementation with omega-3 fatty acids on longitudinal changes in bone mass and microstructure in mice. J. Nutr. Biochem. 2011, 22, 665–672. [Google Scholar] [CrossRef]
- Razminowicz, R.H.; Kreuzer, M.; Leuenberger, H.; Scheeder, M.R.L. Efficiency of extruded linseed for the finishing of grass–fed steers to counteract a decline of omega-3 fatty acids in the beef. Livest. Sci. 2007, 114, 150–163. [Google Scholar] [CrossRef]
- Rozbicka-Wieczorek, A.; Wiesyk, E.; Krajewska-Bienias, K.; Wereszka, K. Supplementation effects of seleno–compounds, carnosic acid, and fish oil on concentrations of fatty acids, tocopherols, cholesterol, and amino acids in the livers of lambs. Turk. J. Vet. Anim. Sci. 2016, 40, 681–693. [Google Scholar] [CrossRef]
- Lourenco, M.; Ramos-Morales, E.; Wallace, R.J. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 2010, 4, 1008–1023. [Google Scholar] [CrossRef] [Green Version]
- Wasowska, I.; Maia, M.R.; Niedźwiedzka, K.M.; Czauderna, M.; Ramalho–Ribeiro, J.M.C.; Devillard, E.; Shingfield, K.J.; Wallace, R.J. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr. 2006, 95, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Morán, L.; Andrés, S.; Mateo, J.; Blancoa, C.; Sotoc, S.; Giráldez, F.J. Effect of dietary carnosic acid on meat quality from suckling lambs. Small Rumin. Res. 2014, 121, 314–319. [Google Scholar] [CrossRef]
- Miezeliene, A.; Alencikiene, G.; Gruzauskas, R.; Barstys, T. The effect of dietary selenium supplementation on meat quality of broiler chickens. Biotechnol. Agron. Soc. Environ. 2011, 15, 61–69. [Google Scholar]
- Davis, C.D.; Tsuji, P.A.; Milner, J.A. Selenoproteins and cancer prevention. Annu. Rev. Nutr. 2012, 32, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Gjerlaug-Enger, E.; Haug, A.; Gaarder, M.; Haug, A.; Gaarder, M.; Ljøkjel, K.; Stenseth, R.S.; Sigfridson, K.; Egelandsdal, B.; Saarem, K.; et al. Pig feeds rich in rapeseed products and organic selenium increased omega-3 fatty acids and selenium in pork meat and backfat. Food Sci. Nutr. 2015, 3, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Grela, E.R.; Sembratowicz, I. Organiczne związki selenu w żywieniu zwierząt. Med. Wet. 1997, 53, 385–386. [Google Scholar]
- Rayman, M.P. The use of high-selenium yeast to raise selenium status: How does it measure up? Br. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Kišidayová, S.; Mihaliková, K.; Siroka, P.; Čobanová, K.; Váradyov, Z. Effects of inorganic and organic selenium on the fatty acid composition of rumen contents of sheep and the rumen bacteria and ciliated protozoa. Anim. Feed Sci. Technol. 2014, 193, 51–57. [Google Scholar] [CrossRef]
- Białek, M.; Czauderna, M.; Białek, A. Partial replacement of rapeseed oil with fish oil, and dietary antioxidants supplementation affects concentrations of biohydrogenation products and conjugated fatty acids in rumen and selected lamb tissues. Anim. Feed Sci. Technol. 2018, 241, 64–74. [Google Scholar] [CrossRef]
- Baek, K.H.; Oh, K.W.; Lee, W.Y.; Lee, S.S.; Kim, M.K.; Kwon, H.S.; Rhee, E.J.; Han, J.H.; Song, K.H.; Cha, B.Y.; et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif. Tissue Int. 2010, 87, 226–235. [Google Scholar] [CrossRef]
- Ostman, B.; Michaëlsson, K.B.; Helmersson, J.; Byberg, L.; Gedeborg, R.; Melhus, H.; Basu, S. Oxidative stress and bone mineral density in elderly men: Antioxidant activity of alpha-tocopherol. Free Radic. Biol. Med. 2009, 47, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 2017, 14, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Turan, B.; Can, B.; Delilbasi, E. Selenium combined with vitamin E and vitamin C restores structural alterations of bones in heparin-induced osteoporosis. Clin. Rheumatol. 2003, 22, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Chałabis-Mazurek, A.; Wałkuska, G. Effect of different forms of selenium on trace elements in the blood serum and liver tissue of lambs. J. Element. 2014, 19, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Schultz, C.G.; Dier, J.; Kuchel, T.R.; Moore, R.J.; Chatterton, B.E. Serial DXA bone and soft tissue estimations in growing sheep. Br. J. Med. Res. 2015, 10, 1–9. [Google Scholar] [CrossRef]
- Sartoretto, S.C.; Uzeda, M.J.; Miguel, F.B.; Nascimento, J.R.; Ascoli, F.; Calasans-Maia, M.D. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop. Bras. 2016, 24, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.X.; Lei, W.; Hu, Y.Y.; Wang, H.Q.; Wan, S.Y.; Ma, Z.S.; Sang, H.X.; Fu, S.C.; Han, Y.S. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med. Eng. Phys. 2008, 30, 1112–1118. [Google Scholar] [CrossRef]
- Zarrinkalam, M.R.; Beard, H.; Schultz, C.G.; Moore, R.J. Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur. Spine J. 2009, 18, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Strzetelski, J.A.; Brzóska, F.; Kowalski, Z.M.; Osięgłowski, S. Feeding Recommendation for Ruminants and Feed Tables; National Research Institute of Animal Production: Krakow, Poland, 2014; p. 392. (In Polish) [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Czauderna, M.; Kowalczyk, J.; Korniluk, K.; Wąsowska, I. Improved saponification then mild base and acid-catalyzed methylation is a useful method for quantifying fatty acids, with special emphasis on conjugated dienes. Acta Chromatogr. 2007, 18, 59–71. [Google Scholar]
- Ferretti, J.L.; Capozza, R.F.; Mondelo, N.; Zanchetta, J.R. Interrelationships between densitometric, geometric and mechanical properties of rat femora: Inferences concerning mechanical regulation of bone modelling. J. Bone Miner. Res. 1993, 8, 1389–1396. [Google Scholar] [CrossRef]
- Lau, B.Y.; val Fajardo, A.; McMeekin, L.; Sacco, S.M.; Ward, W.E.; Roy, B.D.; Peters, S.J.; Leblanc, P.J. Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats. Appl. Physiol. Nutr. Metab. 2010, 35, 598–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdge, G.C. Metabolism of a-linolenic acid in humans. Prostaglandins Leukot. Essent. Fatty Acids 2006, 75, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Watkins, B.A.; Shen, C.L.; McMurtry, J.P.; Xu, H.; Bain, S.D.; Allen, K.G.; Seifert, M. Dietary lipids modulate bone prostaglandin E2 production, insulin-like growth factor-I concentration and formation rate in chicks. J. Nutr. 1997, 127, 1084–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofbauer, L.C.; Heufelder, A.E. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J. Mol. Med. 2001, 79, 243–253. [Google Scholar] [CrossRef]
- Sun, D.; Krishnan, A.; Zaman, K.; Lawrence, R.; Bhattacharya, A.; Fernandes, G. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J. Bone Miner. Res. 2003, 18, 1206–1216. [Google Scholar] [CrossRef]
- Shen, C.L.; Peterson, J.; Tatum, O.L.; Dunn, D.M. Effect of Long-Chain n-3 Polyunsaturated Fatty Acid on inflammation mediators during osteoblastogenesis. J. Med. Food 2008, 11, 105–110. [Google Scholar] [CrossRef]
- Watkins, B.A.; Li, Y.; Lippman, H.E.; Feng, S. Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 387–398. [Google Scholar] [CrossRef]
- Weiler, H.A.; Fitzpatrick-Wong, S.C. Modulation of essential (n-6):(n-3) fatty acid ratios alters fatty acid status but not bone mass in piglets. J. Nutr. 2002, 132, 2667–2672. [Google Scholar] [CrossRef] [Green Version]
- Classen, N.; Coetzer, H.; Steinmann, C.M.; Kruger, M.C. The effect of different n-6/n-3 essential fatty acid ratios on calcium balance and bone in rats. Prostaglandins Leukot. Essent. Fatty Acids 1995, 53, 13–19. [Google Scholar] [CrossRef]
- Heaney, R.P.; Carey, R.; Harkness, L. Roles of vitamin D, n-3 polyunsaturated fatty acid, and soy isoflavones in bone health. J. Am. Diet. Assoc. 2005, 105, 1700–1702. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.). Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Sedighi, R.; Wang, P.; Chen, H.; Zhu, Y.; Sang, S. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. J. Agric. Food Chem. 2015, 63, 4843–4852. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, H.; Basnet, R.; Wiyasihati, S.I.; Nakata, K.; Hagiwara, K.; Miyazaki, H.; Yoshida, K. Carnosic acid inhibits the formation of osteoclasts through attenuation of expression of RANKL. Pharma Nutr. 2015, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenoproteins and human health: Insights from epidemiological data. Biochim. Biophys. Acta 2009, 1790, 1533–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seko, Y.; Imura, N. Active oxygen generation as a possible mechanism of selenium toxicity. Biomed. Environ. Sci. 1997, 10, 333–339. [Google Scholar] [PubMed]
- Spallholz, J.E. On the nature of selenium toxicity and carcinostatic activity. Free Radic. Biol. Med. 1994, 17, 45–64. [Google Scholar] [CrossRef]
- Jang, Y.D.; Choi, H.B.; Durosoy, S.; Schlegel, P.; Choi, B.R.; Kim, Y.Y. Comparison of bioavailability of organic selenium sources in finishing pigs. Asian Austral. J. Anim. Sci. 2010, 23, 931–936. [Google Scholar] [CrossRef]
- Lisiak, D.; Janiszewski, P.; Blicharski, T.; Borzuta, K.; Grześkowiak, E.; Lisiak, B.; Powałowski, K.; Samardakiewicz, Ł.; Batorska, M.; Skrzymowska, K.; et al. Effect of selenium supplementation in pig feed on slaughter value and physicochemical and sensory characteristics of meat. Ann. Anim. Sci. 2014, 14, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Juniper, D.T.; Phipps, R.H.; Ramos-Morales, E.; Bertin, G. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. J. Anim. Sci. 2008, 86, 3100–3109. [Google Scholar] [CrossRef]
- Delezie, E.; Rovers, M.; Van der Aa, A.; Ruttens, A.; Wittocx, S.; Segers, L. Comparing responses to different selenium sources and dosages in laying hens. Poult. Sci. 2014, 93, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, T.; Zeweil, H.; Basyony, M.; Dosoky, W.M.; Badry, H. Fortification of rabbit diets with vitamin E or selenium affects growth performance, lipid peroxidation, oxidative status and immune response in growing rabbits. Livest. Sci. 2013, 155, 323–331. [Google Scholar] [CrossRef]
- Kanački, Z.; Ružić, Z. The effect of different forms of selenium in diet on liver function and body weight of broiler chickens. Veterinaria 2014, 63, 29–36. [Google Scholar]
- Amer, S.A.; Omar, A.E.; Abd El-Hack, M.E. Effects of Selenium- and Chromium-enriche of diets on growth performance, lipid profile, and mineral concentration in different tissues of growing rabbits. Biol. Trace Elem. Res. 2019, 187, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Vhile, S.G.; Berg, J.; Hove, K.; Egelandsdal, B. Feeding potentially health promoting nutrients to finishing bulls changes meat composition and allow for product health claims. Meat Sci. 2018, 145, 461–468. [Google Scholar] [CrossRef]
- Jiang, J.; Tang, X.; Xue, Y.; Lin, G.; Xiong, Y.L. Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork. Meat Sci. 2017, 131, 99–106. [Google Scholar] [CrossRef]
- Zeng, H.; Cao, J.J.; Combs, G.F., Jr. Selenium in bone health: Roles in antioxidant protection and cell proliferation. Nutrients 2013, 5, 97–110. [Google Scholar] [CrossRef]
- Hoeg, A.; Gogakos, A.; Murphy, E.; Mueller, S.; Köhrle, J.; Reid, D.M.; Glüer, C.C.; Felsenberg, D.; Roux, C.; Eastell, R.; et al. Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J. Clin. Endocrinol. Metab. 2012, 97, 4061–4070. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Lin, Y.; Zhou, G.; Lu, L.; Jiang, S.; Chen, F. Effects of dietary selenomethionine supplementation on growth performance, meat quality and antioxidant property in yellow broilers. J. Agric. Food Chem. 2009, 57, 9769–9772. [Google Scholar] [CrossRef]
- Banfi, G.; Iorio, E.L.; Corsi, M.M. Oxidative stress, free radicals and bone remodeling. Clin. Chem. Lab. Med. 2008, 46, 1550–1555. [Google Scholar] [CrossRef]
Group/Diet | Preliminary (3 Weeks) | Main Experiment (5 Weeks) | |||||
---|---|---|---|---|---|---|---|
Diet | Supplement | ||||||
Diet | RO (%) | FO (%) | Carnosic Acid (%) | SeY (ppm) | Na2SeO3 (ppm) | ||
C | BD | BD | 3.0 | - | - | - | - |
EI | BD | BD | 2.0 | 1.0 | - | - | - |
EII | BD | BD | 2.0 | 1.0 | 0.1 | - | |
EIII | BD | BD | 2.0 | 1.0 | 0.1 | 0.35 | - |
EIV | BD | BD | 2.0 | 1.0 | 0.1 | - | 0.35 |
Item | Meadow Hay | Concentrate | ||
---|---|---|---|---|
Barley Ground | Soybean Meal | Wheat Starch | ||
Dry matter (DM), % | 88.4 | 87.6 | 89.7 | 87.3 |
In DM, % | ||||
crude protein | 9.50 | 9.94 | 41.8 | 0.90 |
crude fibre | 27.3 | 2.87 | 4.34 | - |
crude fat | 3.40 | 2.50 | 2.25 | 0.09 |
crude ash | 4.85 | 1.84 | 6.16 | 0.12 |
Gross energy, MJ/kg DM | 17.1 | 16.3 | 17.8 | 16.7 |
Fatty Acids | Ingredients | Period of the Study | |||||
---|---|---|---|---|---|---|---|
Preliminary | Main Experiment (Diet/Group) | ||||||
Concentrate | Meadow hay | RO | FO | BD | C | EI, EII, EIII, EIV | |
C18:2 n-6 (LA) | 29.2 | 13.1 | 282.0 | 115.0 | 20.0 | 28.5 | 26.84 |
C18:3 n-3 (ALA) | 1.01 | 4.18 | 38.5 | 21.0 | 2.04 | 3.19 | 3.02 |
C20:5 n-3 (EPA) | nd | nd | nd | 6.79 | nd | nd | 0.07 |
C22:5 n-3 (DPA) | nd | nd | nd | 1.56 | nd | nd | 0.02 |
C22:6 n-3 (DHA) | nd | nd | nd | 26.6 | nd | nd | 0.27 |
Item | Group/Diet | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
C | EI | EII | EIII | EIV | |||
Mass, g | 136 | 137 | 135 | 135 | 132 | 4.09 | 0.9491 |
Length, cm | 17.3 | 17.4 | 17.2 | 17.4 | 16.9 | 0.20 | 0.3572 |
CWT, mm | 3.16 | 3.21 | 3.11 | 3.26 | 3.13 | 0.104 | 0.8534 |
CSA, mm2 | 149 a | 154 a,b | 149 a | 160 b | 148 a | 4.819 | 0.0461 |
CI, % | 34.7 a | 35.9 a | 35.3 a | 39.4 b | 36.0 a | 1.281 | 0.0315 |
BMC, g | 34.3 A | 35.1 A | 35.4 A,B | 37.2 B | 33.9 A | 0.618 | 0.0003 |
BMD, g/cm2 | 0.703 A | 0.713 A | 0.725 A | 0.768 B | 0.710 A | 0.009 | 0.0001 |
MES, N | 182 A | 190 A | 188 A | 216 B | 183 A | 5.101 | 0.0006 |
MS, N | 245 A | 261 A | 257 A | 281 B | 247 A | 5.509 | 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiba, G.; Raj, S.; Sobol, M.; Czauderna, M.; Kowalczyk, P.; Grela, E.R. Effects of Fish Oil and Dietary Antioxidant Supplementation on Bone Health of Growing Lambs. Animals 2021, 11, 230. https://doi.org/10.3390/ani11010230
Skiba G, Raj S, Sobol M, Czauderna M, Kowalczyk P, Grela ER. Effects of Fish Oil and Dietary Antioxidant Supplementation on Bone Health of Growing Lambs. Animals. 2021; 11(1):230. https://doi.org/10.3390/ani11010230
Chicago/Turabian StyleSkiba, Grzegorz, Stanisława Raj, Monika Sobol, Marian Czauderna, Paweł Kowalczyk, and Eugeniusz R. Grela. 2021. "Effects of Fish Oil and Dietary Antioxidant Supplementation on Bone Health of Growing Lambs" Animals 11, no. 1: 230. https://doi.org/10.3390/ani11010230
APA StyleSkiba, G., Raj, S., Sobol, M., Czauderna, M., Kowalczyk, P., & Grela, E. R. (2021). Effects of Fish Oil and Dietary Antioxidant Supplementation on Bone Health of Growing Lambs. Animals, 11(1), 230. https://doi.org/10.3390/ani11010230