Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Animal Management
2.3. Growth Performance and Carcass Traits
2.4. Sample Collection
2.5. Apparent Ileal Nutrient Digestibility Assay
2.6. Chemical Analyses
2.7. Intestinal Morphology, Secreted Immunoglobulin A, and pH of Intestinal Digesta
2.8. Short Chain Fatty Acids (SCFAs) Analyses
2.9. DNA Extraction, PCR Amplification, and Sequencing
2.10. Sequence Data Process and Operational Taxonomy Units (OTUs) Clustering
2.11. Bioinformatics Analyses
2.12. Calculations and Statistical Analysis
3. Results
3.1. Growth Performance and Carcass Traits
3.2. Apparent Ileal Nutrient Digestibility
3.3. Intestinal Morphology and Secreted Immunoglobulin A (sIgA)
3.4. pH Value of Intestinal Contents
3.5. Short Chain Fatty Acids Concentration
3.6. Biodiversity of the Ileal Microbiota
3.7. Composition of Ileal Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, G.Y.; Hao, H.H.; Xie, S.Y.; Wang, X.; Dai, M.H.; Huang, L.L.; Yuan, Z.H. Antibiotic alternatives: The substitution of antibiotics in animal husbandry. Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef] [Green Version]
- Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong is the evidence? BMC Vet. Res. 2017, 13, 211. [Google Scholar] [CrossRef]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose oxidase-an overview. Biotechnol. Adv. 2009, 27, 489–501. [Google Scholar] [CrossRef]
- Biagi, G.; Piva, A.; Moschini, M.; Vezzali, E.; Roth, F.X. Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. J. Anim. Sci. 2006, 84, 370–380. [Google Scholar] [CrossRef]
- Tang, H.; Yao, B.; Gao, X.; Yang, P.; Wang, Z.; Zhang, G. Effects of glucose oxidase on the growth performance, serum parameters and faecal microflora of piglets. S. Afr. J. Anim. Sci. 2016, 46, 14–20. [Google Scholar] [CrossRef]
- Mu, S.; Li, N.; Yan, J.; Zheng, Z.; Ma, Y.; Li, Q.; Zhang, C. Effect of glucose oxidase on the growth performance and serum biochemical indexes of piglets. Chin. J. Anim. Husb. Vet. Med. 2018, 45, 2212–2218. [Google Scholar]
- Wu, S.; Li, T.; Niu, H.; Zhu, Y.; Liu, Y.; Duan, Y.; Sun, Q.; Yang, X. Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens. Poult. Sci. 2019, 98, 828–841. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xu, H.; Mei, X.; Gong, L.; Wang, B.; Li, W.; Jiang, S. Direct-fed glucose oxidase and its combination with B. amyloliquefaciens SC06 on growth performance, meat quality, intestinal barrier, antioxidative status, and immunity of yellow-feathered broilers. Poult. Sci. 2018, 97, 3540–3549. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, G.; Chen, Z.; Zheng, A.; Cai, H.; Chang, W.; Li, C.; Chen, J.; Wu, Z. Effects of glucose oxidase on growth performance, immune function, and intestinal barrier of ducks infected with Escherichia coli O88. Poult. Sci. 2020, 99, 6549–6558. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiang, Y.; Zhou, W.; Chen, J.; Li, K.; Yang, H. Microbial community mapping in intestinal tract of broiler chicken. Poult. Sci. 2019, 96, 1387–1393. [Google Scholar] [CrossRef]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef]
- Wu, X.Z.; Wen, Z.G.; Hua, J.L. Effects of dietary inclusion of Lactobacillus and inulin on growth performance, gut microbiota, nutrient utilization, and immune parameters in broilers. Poult. Sci. 2019, 98, 4656–4663. [Google Scholar] [CrossRef]
- Rodjan, P.; Soisuwan, K.; Thongprajukaew, K.; Theapparat, Y.; Khongthong, S.; Jeenkeawpieam, J.; Salaeharae, T. Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, e931–e940. [Google Scholar] [CrossRef]
- Waite, D.W.; Taylor, M.W. Exploring the avian gut microbiota: Current trends and future directions. Front. Microbiol. 2015, 6, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Gong, J.; Yu, H.; Jin, Y.; Zhu, J.; Han, Y. Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet. Microbiol. 2010, 140, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Antonissen, G.; Eeckhaut, V.; Van Driessche, K.; Onrust, L.; Haesebrouck, F.; Ducatelle, R.; Moore, R.J.; Van Immerseel, F. Microbial shifts associated with necrotic enteritis. Avian Pathol. 2016, 45, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiina, M.; Sandholm, M. Antibacterial effect of the glucose oxidase glucose system on food-poisoning organisms. Int. J. Food Microbiol. 1989, 8, 165–174. [Google Scholar] [CrossRef]
- Cichello, S.A. Oxygen absorbers in food preservation-a review. Food Sci. Technol. 2015, 52, 1889–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagona, S.; Turchi, B.; Fratini, F.; Giusti, M.; Torracca, B.; Nuvoloni, R.; Cerri, D.; Felicioli, A. Preliminary evaluation of glucose oxidase and its products in vitro antimicrobial activities on Paenibacillus larvae ATCC9545 vegetative form. Bull. Insectol. 2015, 68, 233–237. [Google Scholar]
- Ministry of Agricultural of the People’s Republic of China. Feeding Standard of Chicken; Chinese Agricultural Press: Beijing, China, 2004; pp. 6–8.
- Yang, G.Q.; Yin, Y.; Liu, H.Y.; Liu, G.H. Effects of dietary oligosaccharide supplementation on growth performance, concentrations of the major ordor-causing compounds in excreta, and the cecal microflora of broilers. Poult. Sci. 2016, 95, 2342–2351. [Google Scholar] [CrossRef]
- Bassanini, G.; Ceccarani, C.; Borgo, F.; Severgnini, M.; Rovelli, V.; Morace, G.; Verducin, E.; Borghi, E. Phenylketonuria diet promotes shifts in Frimicutes populations. Front. Cell Infect. Microbiol. 2019, 9, 101. [Google Scholar] [CrossRef]
- Reyon, D.; Tsai, S.Q.; Khayter, C.; Foden, J.A.; Sander, J.D.; Joung, J.K. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012, 30, 460–465. [Google Scholar] [CrossRef]
- Caporaso, J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.; Costello, E. QIIME allows analysis of high-throughput community sequencing data. Nat. Meth. 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Li, P.; Chen, N.; Liu, Y.; Liu, D.; Guo, Y. Effects of housing systems and glucose oxidase on growth performance and intestinal health of Beijing You Chickens. Poult. Sci. 2021, 100, 100943. [Google Scholar] [CrossRef]
- Wu, S.; Chen, X.; Li, T.; Ren, H.; Zheng, L.; Yang, X. Changes in the gut microbiota mediate the differential regulatory effects of two glucose oxidases produced by Aspergillus niger and Penicillium amagasakiense on the meat quality and growth performance of broilers. J. Anim. Sci. Biotechnol. 2020, 11, 73. [Google Scholar] [CrossRef]
- Richter, G.C.; Levine, G.M.; Shiau, Y.F. Effects of luminal glucose versus nonnutritive infusates on jejunal mass and absorption in the rat. Gastroenterology 1983, 85, 1105–1112. [Google Scholar] [CrossRef]
- Song, H.B.; Liu, Y.C.; Zhao, G.X.; Ma, K.W.; Zhang, Z.H.; Ji, C.; Ma, Q.G. Effects of glucose oxidase on serum index and immune performance of broilers. Anim. Husb. Sci. 2010, 9, 350–356. [Google Scholar]
- Martín-Venegas, R.; Rodríguez-Lagunas, M.J.; Mercier, Y.; Pierre-André Geraert, P.; Ferrer, R. Effect of pH on L- and D-methionine uptake across the apical membrane of Caco-2 cells. Am. J. Physiol. Cell Physiol. 2009, 296, C632–C638. [Google Scholar] [CrossRef] [Green Version]
- Coon-Kaczmarek, S.A.; Barri, A.; Hejdysz, M.; Rutkowski, A. Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers. Poult. Sci. 2016, 95, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Coon, S.; Kim, J.; Shao, G.; Sundaram, U. Na-glucose and Na-neutral amino acid cotransport are uniquely regulated by constitutive nitric oxide in rabbit small intestinal villus cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G1030–G1035. [Google Scholar] [CrossRef]
- García-Amado, M.A.; Castillo, J.R.; Perez, M.; Domínguez-Bello, M.J. Intestinal D-Glucose and L-Alanine Transport in Japanese Quail (Coturnix coturnix). Poult. Sci. 2005, 84, 947–950. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Q.; Ren, M.; Qiao, S.; He, P.; Li, D.; Zeng, X. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2. Br. J. Nutr. 2016, 116, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Pourabedin, M.; Zhao, X. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 2015, 362, fnv122. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.Y.; Ning, M.X.; Chen, D.K.; Ma, W.T. Interactions between the gut microbiota and the host innate immune response against pathogens. Front. Immunol. 2019, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Sigolo, S.; Milis, C.; Dousti, M.; Jahandideh, E.; Jalali, A.; Mirzaei, N.; Rasouli, B.; Seidavi, A.; Gallo, A.; Ferronato, G.; et al. Effects of different plant extracts at various dietary levels on growth performance, carcass traits, blood serum parameters, immune response and ileal microflora of Ross broiler chickens. Ital. J. Anim. Sci. 2021, 20, 359–371. [Google Scholar] [CrossRef]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.L.N.; Sunder, G.S. Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Aust. J. Anim. Sci. 2009, 22, 1026–1031. [Google Scholar] [CrossRef]
- Thompson, C.L.; Mikaelyan, A.; Brune, A. Immune-modulating gut symbionts are not “Candidatus Arthromitus”. Mucosal Immunol. 2013, 6, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Meek, B.; Doi, Y.; Muramatsu, M.; Chiba, T.; Honjo, T.; Fagarasan, S. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA 2004, 101, 1981–1986. [Google Scholar] [CrossRef] [Green Version]
- Liao, N.; Yin, Y.; Sun, G.; Xiang, C.; Liu, D.; Yu, H.D.; Wang, X. Colonization and distribution of segmented filamentous bacteria (SFB) in chicken gastrointestinal tract and their relationship with host immunity. FEMS Microbiol. Ecol. 2012, 81, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E.; Lillehoj, H.S.; Hong, Y.H.; Kim, G.B.; Lee, S.H.; Lillehoj, E.P.; Bravo, D.M. Dietary Capsicum and Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds. Res. Vet. Sci. 2015, 102, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Yang, L.; Pei, Z. Gut microiota, Fusobacteria, and colorectal cancer. Diseases 2018, 6, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedford, M.R.; Apajalahti, J. Microbial interactions in response to exogenous enzyme utilization. In Enzymes in Farm Animal Nutrition, 1st ed.; Bedford, M.R., Partrige, G.G., Eds.; CAB International: Wallingford, CT, USA, 2001; pp. 299–314. [Google Scholar]
Items | Starter Phase d 1 to 21 | Grower Phase d 22 to 42 |
---|---|---|
Ingredient, g/kg | ||
Ground corn | 547.4 | 597.0 |
Soybean meal (43.0% CP) | 376.2 | 323.9 |
Soybean oil | 36.0 | 43.5 |
Ground limestone | 11.8 | 11.2 |
Dicalcium phosphate | 17.5 | 15.2 |
DL-Methionine (98.5%) | 2.6 | 1.6 |
L-Lysine hydrochloride | 0.3 | — |
Sodium chloride | 4.0 | 4.0 |
Choline chloride | 1.6 | 1.0 |
Vitamins premix 1 | 0.3 | 0.3 |
Minerals premix 2 | 2.0 | 2.0 |
Bentonite | 0.3 | 0.3 |
Nutrient level 3, g/kg | ||
ME (MJ/kg) | 12.39 | 12.84 |
Crude protein | 213.0 | 191.3 |
Calcium | 10.32 | 9.21 |
Nonphytate phosphorus | 4.52 | 4.12 |
Lysine | 12.43 | 11.21 |
Methionine | 6.04 | 4.58 |
Arginine | 14.43 | 13.55 |
Histidine | 5.32 | 5.09 |
Isoleucine | 8.36 | 7.63 |
Leucine | 17.43 | 15.65 |
Threonine | 9.47 | 8.63 |
Phenylalanine | 10.78 | 10.06 |
Tyrosine | 7.98 | 7.52 |
Cystine | 3.57 | 3.42 |
Valine | 9.86 | 9.31 |
Treatments 1 | BW 2 (g) | DBWG 2 (g) | DFI 2 (g) | FCR 2 (g:g) | Mortality (%) | N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d 1 | d 21 | d 42 | d 1–21 | d 22–42 | d 1–42 | d 1–42 | d 22–42 | d 1–42 | d 1–21 | d 22–42 | d 1–42 | d 1–42 | ||
Control | 42.84 | 1085 | 2601 | 49.67 | 72.43 b | 60.90 | 62.19 | 151.00 | 106.7 | 1.254 | 2.049 | 1.714 | 1.89 | 10 |
E250 | 42.94 | 1030 | 2802 | 47.00 | 84.33 a | 65.69 | 60.57 | 165.29 | 112.9 | 1.289 | 1.962 | 1.685 | 1.32 | 10 |
E500 | 42.89 | 1059 | 2684 | 48.38 | 77.67 a,b | 62.90 | 62.52 | 158.67 | 110.6 | 1.292 | 2.050 | 1.721 | 1.42 | 10 |
E1000 | 42.94 | 1056 | 2743 | 48.29 | 80.33 a,b | 64.29 | 61.86 | 159.67 | 110.3 | 1.282 | 1.990 | 1.629 | 1.53 | 10 |
SEM | 0.06 | 14.21 | 60.54 | 0.67 | 2.31 | 1.28 | 0.95 | 3.53 | 2.02 | 0.013 | 0.032 | 0.017 | 0.56 | |
p-value | 0.549 | 0.163 | 0.328 | 0.158 | 0.018 | 0.237 | 0.506 | 0.360 | 0.207 | 0.139 | 0.153 | 0.463 | 0.532 |
Treatments 1 | Control | E250 | E500 | E1000 | SEM | p-Value |
---|---|---|---|---|---|---|
Dry matter | 73.48 | 74.02 | 72.71 | 71.98 | 2.31 | 0.436 |
Energy | 73.94 | 76.46 | 75.80 | 78.31 | 1.78 | 0.259 |
Crude protein (N × 6.25) | 64.96 | 72.92 | 70.32 | 71.73 | 2.81 | 0.074 |
Indispensable amino acids | ||||||
Arginine | 72.14 b | 78.85 a | 78.71 a | 80.86 a | 2.39 | 0.041 |
Histidine | 74.41 | 77.38 | 76.9 | 77.72 | 2.23 | 0.285 |
Isoleucine | 64.23 b | 73.87 a | 73.88 a | 74.02 a | 2.52 | 0.035 |
Leucine | 77.92 | 75.86 | 75.28 | 75.87 | 2.24 | 0.765 |
Lysine | 63.01 b | 72.10 a | 73.29 a | 76.34 a | 2.62 | 0.011 |
Methionine | 57.90 b | 71.77 a | 72.43 a | 69.79 a | 2.62 | 0.012 |
Phenylalanine | 79.97 | 76.93 | 76.29 | 77.80 | 2.11 | 0.479 |
Threonine | 54.98 b | 65.17 a | 67.08 a | 69.56 a | 2.98 | 0.014 |
Valine | 64.06 | 71.43 | 69.84 | 74.10 | 2.89 | 0.113 |
Dispensable amino acids | ||||||
Alanine | 64.87 | 72.02 | 72.90 | 73.91 | 2.83 | 0.112 |
Aspartic acid | 68.05 | 73.36 | 73.15 | 75.81 | 2.40 | 0.260 |
Glutamic acid | 72.58 | 78.48 | 78.20 | 79.25 | 2.05 | 0.108 |
Glycine | 69.50 | 67.24 | 69.22 | 72.11 | 2.67 | 0.633 |
Proline | 72.26 | 77.32 | 76.51 | 79.09 | 2.10 | 0.192 |
Cysteine | 55.25 b | 65.25 a | 67.32 a | 67.78 a | 2.74 | 0.025 |
Serine | 63.30 b | 71.36 a | 71.80 a | 74.53 a | 2.62 | 0.049 |
Tyrosine | 63.12 b | 73.37 a | 72.49 a | 75.21 a | 2.88 | 0.023 |
Total amino acids | 69.14 | 76.65 | 72.20 | 74.44 | 2.40 | 0.151 |
N | 10 | 10 | 10 | 10 |
Treatments 1 | Control | E250 | E500 | E1000 | SEM | p-Value |
---|---|---|---|---|---|---|
Duodenum | ||||||
Villus height (μm) | 1527 | 1605 | 1596 | 1513 | 81.63 | 0.772 |
Crypt depth (μm) | 213.1 | 247.6 | 207.3 | 231.1 | 17.44 | 0.371 |
Villus height/crypt depth | 6.85 | 6.52 | 7.69 | 6.83 | 0.55 | 0.516 |
sIgA 2 (mg/g protein) | 34.56 | 36.32 | 37.65 | 38.53 | 3.42 | 0.564 |
Jejunum | ||||||
Villus height (μm) | 1233 b | 1507 a | 1191 b | 1200 b | 105.6 | 0.042 |
Crypt depth (μm) | 265.2 | 271.9 | 210.4 | 240.4 | 27.61 | 0.541 |
Villus height/crypt depth | 4.43 | 5.58 | 5.44 | 5.00 | 0.47 | 0.220 |
sIgA (mg/g protein) | 63.41 | 66.53 | 67.86 | 62.19 | 2.95 | 0.633 |
Ileum | ||||||
Villus height (μm) | 881.9 b | 1019 a | 1053 a | 970.2 ab | 48.59 | <0.001 |
Crypt depth (μm) | 170.0 | 143.1 | 138.1 | 180.7 | 22.04 | 0.456 |
Villus height/crypt depth | 5.93 | 5.83 | 6.51 | 5.16 | 0.69 | 0.318 |
sIgA (mg/g protein) | 62.43 b | 74.52 a | 65.42 b | 68.53 ab | 2.84 | 0.046 |
N | 10 | 10 | 10 | 10 |
Treatments 1 | Control | E250 | E500 | E1000 | SEM | p-Value |
---|---|---|---|---|---|---|
Duodenum | 5.99 | 5.90 | 6.13 | 6.25 | 0.13 | 0.405 |
Jejunum | 6.19 a | 6.25 a | 5.85 b | 6.21 a | 0.08 | 0.042 |
Ileum | 6.18 a | 5.46 b | 6.33 a | 5.34 b | 0.17 | 0.024 |
N | 10 | 10 | 10 | 10 |
Treatment 1 | Acetic Acid (nmol/g) | Propionic Acid (nmol/g) | Butyric Acid (pmol/g) | Iso-Valeric Acid (pmol/g) | Valeric Acid (pmol/g) | Total SCFAs (nmol/g) | N |
---|---|---|---|---|---|---|---|
Control | 1.089 b | 0.428 | 41.82 b | 15.77 | 31.10 | 1.108 b | 10 |
E250 | 2.187 a | 0.522 | 78.73 a | 18.33 | 29.64 | 2.612 a | 10 |
E500 | 0.921 b | 0.418 | 34.28 b | 21.05 | 38.61 | 1.236 b | 10 |
E1000 | 0.819 b | 0.496 | 44.53 b | 14.43 | 23.06 | 0.739 b | 10 |
SEM | 0.235 | 0.040 | 11.99 | 1.91 | 7.46 | 0.385 | |
p-value | 0.002 | 0.236 | 0.043 | 0.106 | 0.575 | 0.017 |
Treatment 1 | Observed Species | Chao | ACE | Shannon | Simpson | N |
---|---|---|---|---|---|---|
Control | 446 ab | 717 a | 803 a | 2.46 | 0.76 | 6 |
E250 | 180 c | 273 b | 296 b | 1.98 | 0.73 | 6 |
E500 | 453 a | 705 a | 771 a | 2.61 | 0.75 | 6 |
E1000 | 226 bc | 382 ab | 414 ab | 1.75 | 0.62 | 6 |
SEM | 69 | 105.5 | 119.7 | 0.34 | 0.06 | |
p-value | 0.032 | 0.014 | 0.006 | 0.536 | 0.364 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Huo, H.; Zhang, Y.; Bai, S.; Wang, R.; Zhang, K.; Ding, X.; Wang, J.; Zeng, Q.; Peng, H.; et al. Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals 2021, 11, 2909. https://doi.org/10.3390/ani11102909
Meng Y, Huo H, Zhang Y, Bai S, Wang R, Zhang K, Ding X, Wang J, Zeng Q, Peng H, et al. Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals. 2021; 11(10):2909. https://doi.org/10.3390/ani11102909
Chicago/Turabian StyleMeng, Yong, Haonan Huo, Yang Zhang, Shiping Bai, Ruisheng Wang, Keying Zhang, Xuemei Ding, Jianping Wang, Qiufeng Zeng, Huanwei Peng, and et al. 2021. "Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens" Animals 11, no. 10: 2909. https://doi.org/10.3390/ani11102909
APA StyleMeng, Y., Huo, H., Zhang, Y., Bai, S., Wang, R., Zhang, K., Ding, X., Wang, J., Zeng, Q., Peng, H., & Xuan, Y. (2021). Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens. Animals, 11(10), 2909. https://doi.org/10.3390/ani11102909