Effect of Total Starch and Resistant Starch in Commercial Extruded Dog Foods on Gastric Emptying in Siberian Huskies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Dietary Treatments
2.3. Study Design
2.4. Acetaminophen Assay and Gastric Emptying Model
2.5. Statistical Analysis
3. Results
3.1. First-Order Slow Gastric Emptying Rate Constant (kSB2)
3.2. First-Order Fast Gastric Emptying Rate Constant (kSB3)
3.3. First-Order Elimination Constant (kel)
3.4. Area under the Serum Acetaminophen Curve (AUC)
3.5. Total Emptying Index
3.6. Time-Off, Time-Slow, and Time-Fast
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GE | Gastric emptying |
PPG | Postprandial glucose |
GER | Gastric emptying rate |
CHO | Carbohydrate |
RS | Resistant starch |
GI | Glycemic Index |
VFA | Volatile fatty acid |
GS | Gamma Scintigraphy |
Ac | Acetaminophen |
BW | Body weight |
BCS | Body condition score |
CBC | Complete blood count |
AOAC | Association of Official Analytical Chemists |
AOCS | American Oil Chemist Society |
TDF | Total dietary fiber |
AvCHO | Available carbohydrate |
TS | Total starch |
HPLC | High performance liquid chromatography |
rMSPE | Root mean square prediction error |
SAS | Statistical analysis software |
ANOVA | Analysis of variance |
kSB2 | First-order slow gastric emptying rate constant |
kSB3 | First-order fast gastric emptying rate constant |
kel | First-order elimination constant |
AUC | Area under the serum Acetaminophen curve |
SDS | Slowly digestible starch |
RDS | Rapidly digestible starch |
CCK | Cholecystokinin |
PYY | Peptide tyrosine-tyrosine |
GLP-1 | Glucagon-like peptide-1 |
AMY2B | Alpha-amylase 2B |
References
- Kealy, R.D.; Lawler, D.F.; Ballam, J.M.; Mantz, S.L.; Biery, D.N.; Greeley, E.H.; Lust, G.; Segre, M.; Smith, G.K.; Stowe, H.D. Effects of diet restriction on life span and age-related changes in dogs. J. Am. Vet. Med. Assoc. 2002, 220, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Kipperman, B.S.; German, A.J. The responsibility of veterinarians to address companion animal obesity. Animals 2018, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy balance and obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef] [PubMed]
- German, A.J. The growing problem of obesity in dogs and cats. J. Nutr. 2006, 136, 1940S–1946S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marathe, C.S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diabetes Care 2013, 36, 1396–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosetti, C.; Corinaldesi, R.; Stanghellini, V.; Pasquali, R.; Corbelli, C.; Zoccoli, G.; Di Febo, G.; Monetti, N.; Barbara, L. Gastric emptying of solids in morbid obesity. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 200–205. [Google Scholar] [PubMed]
- Bourreau, J.; Hernot, D.; Bailhache, E.; Weber, M.; Ferchaud, V.; Biourge, V.; Martin, L.; Dumon, H.; Nguyen, P. Gastric emptying rate is inversely related to body weight in dog breeds of different sizes. J. Nutr. 2004, 134, 2039S–2041S. [Google Scholar] [CrossRef]
- Abd El-Khalek, E.; Janssens, G.P.J. Effect of extrusion processing on starch gelatinisation and performance in poultry. Worlds. Poult. Sci. J. 2010, 66, 53–63. [Google Scholar] [CrossRef]
- Roberts, M.T.; Bermingham, E.N.; Cave, N.J.; Young, W.; McKenzie, C.M.; Thomas, D.G. Macronutrient intake of dogs, self-selecting diets varying in composition offered ad libitum. J. Anim. Physiol. Anim. Nutr. 2018, 102, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Englyst, K.N.; Liu, S.; Englyst, H.N. Nutritional characterization and measurement of dietary carbohydrates. Eur. J. Clin. Nutr. 2007, 61, 19S–39S. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Cox, M. Lehninger Principles of Biochemistry, 5th ed.; WH Freeman: New York, NY, USA, 2008. [Google Scholar]
- Biliaderis, C.G. The structure and interactions of starch with food constituents. Can. J. Physiol. Pharmacol. 1991, 69, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Aldred, P.; McKnight, S.; Panozzo, J.F.; Kasapis, S.; Adhikari, R.; Adhikari, B. Physicochemical and functional characteristics of lentil starch. Carbohydr. Polym. 2013, 92, 1484–1496. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Sosulski, F.W. Composition, structure, functionality, and chemical modification of legume starches: A review. Can. J. Physiol. Pharmacol. 1991, 69, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, 33S–50S. [Google Scholar]
- Jenkins, D.J.A.; Wolever, T.M.S.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Cuche, G.; Cuber, J.C.; Malbert, C.H. Ileal short-chain fatty acids inhibit gastric motility by a humoral pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G925–G930. [Google Scholar] [CrossRef]
- Cherbut, C.; Aubé, A.C.; Blottière, H.M.; Galmiche, J.P. Effects of short-chain fatty acids on gastrointestinal motility. Scand. J. Gastroenterol. Suppl. 1997, 222, 58–61. [Google Scholar] [CrossRef]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Stahel, P.; Cant, J.P.; MacPherson, J.A.R.; Berends, H.; Steele, M.A. A mechanistic model of intermittent gastric emptying and Glucose-Insulin dynamics following a meal containing milk components. PLoS ONE 2016, 11, e0156443. [Google Scholar] [CrossRef]
- Glerup, H.; Bluhme, H.; Villadsen, G.E.; Rasmussen, K.; Ejskjaer, N.; Dahlerup, J.F. Gastric emptying: A comparison of three methods. Scand. J. Gastroenterol. 2007, 42, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Ehsani-Kheradgerdi, A.; Sharifi, K.; Mohri, M.; Grünberg, W. Evaluation of a modified acetaminophen absorption test to estimate the abomasal emptying rate in holstein-friesian heifers. Am. J. Vet. Res. 2011, 72, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Rankovic, A.; Adolphe, J.L.; Dan Ramdath, D.; Shoveller, A.K.; Verbrugghe, A. Glycemic response in nonracing sled dogs fed single starch ingredients and commercial extruded dog foods with different carbohydrate sources. J. Anim. Sci. 2020, 98, skaa241. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D. Development and validation of a body condition score system for dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- National Research Council. Nutrient Requirements of Dogs and Cats; National Academy of Sciences: Washington, DC, USA, 2006. [Google Scholar]
- Hall, J.A.; Melendez, L.D.; Jewell, D.E. Using Gross Energy Improves Metabolizable Energy Predictive Equations for Pet Foods Whereas Undigested Protein And Fiber Content. PLoS ONE 2013, 8, e54405. [Google Scholar] [CrossRef] [Green Version]
- Brummer, Y.; Kaviani, M.; Tosh, S.M. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res. Int. 2015, 67, 117–125. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Liu, Q.; Donner, E.; Hawke, A.; Kalinga, D.; Winberg, J.; Wolever, T.M.S. Investigating the relationship between lentil carbohydrate fractions and in vivo postprandial blood glucose response by use of the natural variation in starch fractions among 20 lentil varieties. Food Funct. 2017, 8, 3783–3791. [Google Scholar] [CrossRef] [PubMed]
- Hasek, L.Y.; Phillips, R.J.; Hayes, A.M.R.; Kinzig, K.; Zhang, G.; Powley, T.L.; Hamaker, B.R. Carbohydrates designed with different digestion rates modulate gastric emptying response in rats. Int. J. Food Sci. Nutr. 2020, 71, 839–844. [Google Scholar] [CrossRef]
- Hunt, J.N.; Stubbs, D.F. The volume and energy content of meals as determinants of gastric emptying. J. Physiol. 1975, 245, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Elias, E.; Gibson, G.J.; Greenwood, L.F.; Hunt, J.N.; Tripp, J.H. The slowing of gastric emptying by monosaccharides and disaccharides in test meals. J. Physiol. 1968, 194, 317–326. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, G.; Leray, V.; Scarpignato, C.; Bentouimou, N.; Bruley Des Varannes, S.; Cherbut, C.; Galmiche, J.P. Specific adaptation of gastric emptying to diets with differing protein content in the rat: Is endogenous cholecystokinin implicated? Gut 1997, 41, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, K.E.; Read, N.W.; French, S.J. Adaptation to high-fat diet accelerates emptying of fat but not carbohydrate test meals in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R366–R371. [Google Scholar] [CrossRef] [PubMed]
- French, S.J.; Murray, B.; Rumsey, R.D.E.; Fadzlin, R.; Read, N.W. Adaptation to high-fat diets: Effects on eating behaviour and plasma cholecystokinin. Br. J. Nutr. 1995, 73, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Panel on the Definition of Dietary Fiber and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Appendix C, Development and Evolution of Methods Used to Extract and Measure Dietary Fiber. In Dietary Reference Intakes Proposed Definition of Dietary Fiber; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Holt, S.; Carter, D.C.; Tothill, P.; Heading, R.C.; Prescott, L.F. Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet 1979, 313, 636–639. [Google Scholar] [CrossRef]
- Gutzwiller, J.P.; Drewe, J.; Göke, B.; Schmidt, H.; Rohrer, B.; Lareida, J.; Beglinger, C. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999, 276. [Google Scholar] [CrossRef]
- Arendt, M.; Fall, T.; Lindblad-Toh, K.; Axelsson, E. Amylase activity is associated with AMY2B copy numbers in dog: Implications for dog domestication, diet and diabetes. Anim. Genet. 2014, 45, 716–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, M.S.; Bonen, A.; Snook, L.A.; Jain, S.S.; Bartels, K.; Geor, R.; Hueffer, K. Conditioning increases the gain of contraction-induced sarcolemmal substrate transport in ultra-endurance racing sled dogs. PLoS ONE 2014, 9, e103087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | ||||
---|---|---|---|---|
Traditional | Whole Grain | Grain-Free | Vegan | |
Moisture (%) | 5.85 | 6.32 | 6.56 | 7.15 |
Crude Protein (%DM) | 25.55 | 26.10 | 28.59 | 23.46 |
Crude Fat (%DM) | 10.25 | 10.21 | 11.58 | 8.20 |
Ash (%DM) | 7.24 | 10.10 | 7.66 | 5.00 |
Crude Fiber (%DM) | 1.05 | 1.24 | 3.14 | 2.10 |
NFE 1 (%DM) | 55.91 | 52.35 | 49.03 | 61.24 |
TDF (%DM) | 8.10 | 8.80 | 10.3 | 10.0 |
GE (kcal/kgDM) 2 | 4712 | 4593 | 4728 | 4619 |
ME (kcal/kgDM) 3 | 3959 | 3841 | 3816 | 3846 |
AvCHO (%DM) | 42.51 | 41.13 | 34.63 | 48.52 |
Total Starch (%DM) | 41.69 ± 1.48 | 40.83 ± 1.90 | 33.91 ± 0.44 | 48.06 ± 4.26 |
Resistant Starch (%DM) | 0.41 ± 0.02 | 0.16 ± 0.01 | 0.56 ± 0.02 | 0.26 ± 0.03 |
Glucose (%DM) | 0.099 ± 0.0032 | 0.023 ± 0.0008 | 0.032 ± 0.0013 | 0.029 ± 0.0018 |
Sucrose (%DM) | 1.40 ± 0.027 | 0.56 ± 0.028 | 1.38 ± 0.022 | 0.87 ± 0.036 |
Treatment | ||||
---|---|---|---|---|
Traditional | Whole Grain | Grain-Free | Vegan | |
Portion size for 25g AvCHO (g) | 62 | 77 | 65 | 55 |
Crude Protein (g) | 15.84 | 20.09 | 18.58 | 15.46 |
Crude Fat (g) | 6.35 | 7.86 | 7.52 | 5.41 |
Crude Fiber (g) | 0.651 | 0.954 | 2.04 | 1.15 |
TDF (g) | 5.02 | 6.77 | 6.69 | 5.50 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Traditional | Whole Grain | Grain-Free | Vegan | Glucose | SEM | p-Value | |
kSB2, /min | 0.0010 a | 0.0075 ab | 0.0164 b | 0.0123 ab | 0.0038 a | 0.0031 | 0.077 |
kSB3, /min | 0.0137 ab | 0.0251 a | 0.0270 a | 0.0184 ab | 0.0115 b | 0.0035 | 0.028 |
kel, /min | 0.0154 | 0.0133 | 0.0114 | 0.0105 | 0.0156 | 0.0020 | 0.386 |
rMSPE, % | 28.3 | 28.9 | 29.4 | 32.8 | 34.8 | 2.7 | 0.319 |
Time-off, min | 125 | 142 | 154 | 153 | 109 | 15 | 0.278 |
Time-slow, min | 251 | 258 | 266 | 233 | 286 | 23 | 0.726 |
Time-fast, min | 105 | 80 | 59 | 94 | 85 | 12 | 0.774 |
AUC, mg·min/L | 2369 b | 2638 bc | 2896 bc | 2879 c | 1653 a | 228 | <0.001 |
Total emptying index | 1.88 b | 4.05 ab | 5.77 a | 4.78 ab | 1.94 b | 0.93 | 0.074 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richards, T.L.; Rankovic, A.; Cant, J.P.; Shoveller, A.K.; Adolphe, J.L.; Ramdath, D.; Verbrugghe, A. Effect of Total Starch and Resistant Starch in Commercial Extruded Dog Foods on Gastric Emptying in Siberian Huskies. Animals 2021, 11, 2928. https://doi.org/10.3390/ani11102928
Richards TL, Rankovic A, Cant JP, Shoveller AK, Adolphe JL, Ramdath D, Verbrugghe A. Effect of Total Starch and Resistant Starch in Commercial Extruded Dog Foods on Gastric Emptying in Siberian Huskies. Animals. 2021; 11(10):2928. https://doi.org/10.3390/ani11102928
Chicago/Turabian StyleRichards, Taylor L., Alexandra Rankovic, John P. Cant, Anna K. Shoveller, Jennifer L. Adolphe, Dan Ramdath, and Adronie Verbrugghe. 2021. "Effect of Total Starch and Resistant Starch in Commercial Extruded Dog Foods on Gastric Emptying in Siberian Huskies" Animals 11, no. 10: 2928. https://doi.org/10.3390/ani11102928
APA StyleRichards, T. L., Rankovic, A., Cant, J. P., Shoveller, A. K., Adolphe, J. L., Ramdath, D., & Verbrugghe, A. (2021). Effect of Total Starch and Resistant Starch in Commercial Extruded Dog Foods on Gastric Emptying in Siberian Huskies. Animals, 11(10), 2928. https://doi.org/10.3390/ani11102928