Determination of the Minimum Infusion Rate of Alfaxalone Combined with Electroacupuncture in Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
2.2. Experimental Design
2.2.1. Electroacupuncture
2.2.2. General Anesthesia and MIR Determination
2.2.3. Cardiorespiratory Parameters and Rectal Temperature
2.2.4. Echocardiographic Parameters
2.2.5. Nociceptive Thresholds and Flank Muscle Tone
2.3. Statistical Analysis
3. Results
3.1. Effect of EA on Alfaxalone MIR
3.2. Effects of Anesthesia Maintenance with Alfaxalone Alone or Combined with EA Cardiorespiratory Parameters
3.3. Echocardiographic Parameters
3.4. Nociceptive Thresholds and Flank Muscle Tone
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Score | Description |
0 | Complete relaxation to palpation with minimal or no tone palpable. |
1 | Detectable relaxation to palpation with less tone palpable. |
2 | Normal resting tone: flank has some elasticity to palpation. |
3 | Mild resistance and tone with gentle pressure on the skin and muscle. |
4 | Strong resistance and tone with strong pressure on the skin |
References
- Dzikiti, B.T. Intravenous anaesthesia in goats: A review. J. S. Afr. Vet. Assoc. 2013, 84, a499. [Google Scholar] [CrossRef] [Green Version]
- Herbert, G.L.; Bowlt, K.L.; Ford-Fennah, V.; Covey-Crump, G.L.; Murrell, J.C. Alfaxalone for total intravenous anaesthesia in dogs undergoing ovariohysterectomy: A comparison of premedication with acepromazine or dexmedetomidine. Vet. Anaesth. Analg. 2013, 40, 124–133. [Google Scholar] [CrossRef]
- Brown, E.N.; Pavone, K.J.; Naranjo, M. Multimodal general anesthesia: Theory and practice. Anesth. Analg. 2018, 127, 1246. [Google Scholar] [CrossRef] [PubMed]
- Abouelfetouh, M.M.; Salah, E.; Ding, M.; Ding, Y. Application of α2-adrenergic agonists combined with anesthetics and their implication in pulmonary intravascular macrophages-insulted pulmonary edema and hypoxemia in ruminants. J. Vet. Pharmacol. Ther. 2021, 44, 478–502. [Google Scholar] [CrossRef] [PubMed]
- Ferré, P.J.; Pasloske, K.; Whittem, T.; Ranasinghe, M.G.; Li, Q.; Lefebvre, H.P. Plasma pharmacokinetics of alfaxalone in dogs after an intravenous bolus of Alfaxan-CD RTU. Vet. Anaesth. Analg. 2006, 33, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Whittem, T.; Pasloske, K.S.; Heit, M.C.; Ranasinghe, M.G. The pharmacokinetics and pharmacodynamics of alfaxalone in cats after single and multiple intravenous administration of Alfaxan® at clinical and supraclinical doses. J. Vet. Pharmacol. Ther. 2008, 31, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Ambros, B.; Duke-Novakovski, T.; Pasloske, K.S. Comparison of the anesthetic efficacy and cardiopulmonary effects of continuous rate infusions of alfaxalone-2-hydroxypropyl-β-cyclodextrin and propofol in dogs. Am. J. Vet. Res. 2008, 69, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Dzikiti, B.T.; Zeiler, G.E.; Dzikiti, L.N.; Garcia, E.R. The effects of midazolam and butorphanol, administered alone or combined, on the dose and quality of anaesthetic induction with alfaxalone in goats. J. S. Afr. Vet. Assoc. 2014, 85, a1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo-Mocholi, D.; Gasthuys, F.; Vlaminck, L.; Schauvliege, S. Clinical effect of a constant rate infusion of alfaxalone in isoflurane-anesthetized goats undergoing an experimental procedure: A pilot study. Vlaams Diergeneeskd. Tijdschr. 2020, 89, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Abouelfetouh, M.M.; Liu, L.; Salah, E.; Sun, R.; Nan, S.; Ding, M.; Ding, Y. The Effect of Xylazine Premedication on the Dose and Quality of Anesthesia Induction with Alfaxalone in Goats. Animals 2021, 11, 723. [Google Scholar] [CrossRef]
- Andaluz, A.; Felez-Ocana, N.; Santos, L.; Fresno, L.; Garcia, F. The effects on cardio-respiratory and acid-base variables of the anaesthetic alfaxalone in a 2-hydroxypropyl-β-cyclodextrin (HPCD) formulation in sheep. Vet. J. 2012, 191, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Pohodenko-Chudakova, I.O. Acupuncture analgesia and its application in cranio-maxillofacial surgical procedures. J. Cranio-Maxillofac. Surg. 2005, 33, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Parmen, V. Electroacupuncture analgesia in a rabbit ovariohysterectomy. J. Acupunct. Meridian Stud. 2014, 7, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Sheta, E.; Ragab, S.; Farghali, H.; Asmaa, E.S. Successful practice of electroacupuncture analgesia in equine surgery. J. Acupunct. Meridian Stud. 2015, 8, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Cho, S.H.; Song, K.H.; Lee, S.E.; Lee, S.H.; Kwon, G.O.; Kim, I.B.; Kim, Y.C.; Cho, J.H.; Kwon, Y.Y.; et al. Electroacupuncture analgesia for surgery in cattle. Am. J. Chin. Med. 2004, 32, 131–140. [Google Scholar] [CrossRef]
- Lin, J.G.; Lo, M.W.; Wen, Y.R.; Hsieh, C.L.; Tsai, S.K.; Sun, W.Z. The effect of high and low frequency electroacupuncture in pain after lower abdominal surgery. Pain 2002, 99, 509–514. [Google Scholar] [CrossRef]
- Qin, B.G.; Liu, Y.T.; Cheng, X.X.; Peng, Q.F.; Sun, Y.S.; Chen, W.L.; Zhang, L.Y. Electroacupuncture combined with low dose epidural anesthesia for subtotal gastrectomy. Chin. J. Pain Med. 1996, 2, 135–143. [Google Scholar]
- Tang, N.M.; Dong, H.W.; Wang, X.M.; Tsui, Z.C.; Han, J.S. Cholecystokinin antisense RNA increases the analgesic effect induced by electroacupuncture or low dose morphine: Conversion of low responder rats into high responders. Pain 1997, 71, 71–80. [Google Scholar] [CrossRef]
- Liu, D.M.; Zhou, Z.Y.; Ding, Y.; Chen, J.G.; Hu, C.M.; Chen, X.; Ding, M.X. Physiologic effects of electroacupuncture combined with intramuscular administration of xylazine to provide analgesia in goats. Am. J. Vet. Res. 2009, 70, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.; Hu, M.L.; Qiu, Z.Y.; Zhou, F.Y.; Zeng, J.; Wan, J.; Wang, S.W.; Zhang, W.; Ding, M.X. Physiologic and biochemical effects of electroacupuncture combined with intramuscular administration of dexmedetomidine to provide analgesia in goats. Am. J. Vet. Res. 2016, 77, 252–259. [Google Scholar] [CrossRef]
- Jeong, S.M. Effects of electroacupuncture on minimum alveolar concentration of isoflurane and cardiovascular system in isoflurane anesthetized dogs. J. Vet. Sci. 2002, 3, 193–202. [Google Scholar] [CrossRef]
- Culp, L.B.; Skarda, R.T.; Muir, W.W., III. Comparisons of the effects of acupuncture, electroacupuncture, and transcutaneous cranial electrical stimulation on the minimum alveolar concentration of isoflurane in dogs. Am. J. Vet. Res. 2005, 66, 1364–1370. [Google Scholar] [CrossRef]
- Oku, K.; Ohta, M.; Yamanaka, T.; Mizuno, Y.; Fujinaga, T. The minimum infusion rate (MIR) of propofol for total intravenous anesthesia after premedication with xylazine in horses. J. Vet. Med. Sci. 2005, 67, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Klide, A.M.; Kung, S.H. Veterinary Acupuncture; University of Pennsylvania Press: Philadelphia, PA, USA, 2002; pp. 67–82. [Google Scholar]
- Cheng, L.L.; Ding, M.X.; Xiong, C.; Zhou, M.Y.; Qiu, Z.Y.; Wang, Q. Effects of electroacupuncture of different frequencies on the release profile of endogenous opioid peptides in the central nerve system of goats. Evid.-Based Complement. Altern. Med. 2012, 2012, 476457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzikiti, B.T.; Ndawana, P.S.; Zeiler, G.; Ferreira, J.P.; Dzikiti, L.N. Determination of the minimum infusion rate of alfaxalone during its co-administration with fentanyl at three different doses by constant rate infusion intravenously in goats. Vet. Anaesth. Analg. 2016, 43, 316–325. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J.-Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, M.; Andersson, R.; Bloch, K.M.; Steding-Ehrenborg, K.; Mosén, H.; Stahlberg, F.; Ekmehag, B.; Arheden, H. Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J. Cardiovasc. Magn. Reson. 2012, 14, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Guo, N.; Li, Y.; Li, M.; Ding, M. Analgesic and physiological effect of electroacupuncture combined with epidural lidocaine in goats. Vet. Anaesth. Analg. 2017, 44, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Dzikiti, B.T.; Ndawana, P.S.; Zeiler, G.; Bester, L.; Dzikiti, L.N. Determination of the minimum infusion rate of alfaxalone during its co-administration with midazolam in goats. Vet. Rec. Open 2015, 2, e000065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmussen, S.; Przkora, R.; Maybauer, D.M.; Fraser, J.F.; Sanfilippo, F.; Jennings, K.; Adamzik, M.; Maybauer, M.O. Meta-analysis of electroacupuncture in cardiac anesthesia and intensive care. J. Intensive Care Med. 2019, 34, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Ndawana, P.S.; Dzikiti, B.T.; Zeiler, G.; Dzikiti, L.N. Determination of the Minimum Infusion Rate (MIR) of alfaxalone required to prevent purposeful movement of the extremities in response to a standardised noxious stimulus in goats. Vet. Anaesth. Analg. 2015, 42, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, T.; Hyun, C. Effects of alfaxalone on echocardiographic examination in healthy dogs. Korean J. Vet. Res. 2015, 55, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Nishijo, K.; Mori, H.; Yosikawa, K.; Yazawa, K. Decreased heart rate by acupuncture stimulation in humans via facilitation of cardiac vagal activity and suppression of cardiac sympathetic nerve. Neurosci. Lett. 1997, 227, 165–168. [Google Scholar] [CrossRef]
- Starke, K.; Schöffel, E.; Illes, P. The sympathetic axons innervating the sinus node of the rabbit possess presynaptic opioid ĸ-but not μ-or δ-receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1985, 329, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.; Chang, W.; Liang, H.; Su, M. Identification of opioid receptors in the sympathetic and parasympathetic nerves of guinea-pig atria. Fundam. Clin. Pharmacol. 2000, 14, 387–394. [Google Scholar] [CrossRef]
- Muir, W.; Lerche, P.; Wiese, A.; Nelson, L.; Pasloske, K.; Whittem, T. Cardiorespiratory and anesthetic effects of clinical and supraclinical doses of alfaxalone in dogs. Vet. Anaesth. Analg. 2008, 35, 451–462. [Google Scholar] [CrossRef]
- Muir, W.; Lerche, P.; Wiese, A.; Nelson, L.; Pasloske, K.; Whittem, T. The cardiorespiratory and anesthetic effects of clinical and supraclinical doses of alfaxalone in cats. Vet. Anaesth. Analg. 2009, 36, 42–54. [Google Scholar] [CrossRef]
- Wakuno, A.; Aoki, M.; Kushiro, A.; Mae, N.; Maeda, T.; Yamazaki, Y.; Minamijima, Y.; Nagata, S.I.; Ohta, M. Clinical pharmacokinetics and pharmacodynamics of intravenous alfaxalone in young Thoroughbred horses premedicated with medetomidine and midazolam. Vet. Rec. 2019, 184, 411. [Google Scholar] [CrossRef]
- Ponder, S.W.; Clark, W.G. Prolonged depression of thermoregulation after xylazine administration to cats. J. Vet. Pharmacol. Ther. 1980, 3, 203–207. [Google Scholar] [CrossRef]
- Goodwin, W.A.; Pasloske, K.; Keates, H.L.; Ranasinghe, M.G.; Woldeyohannes, S.; Perkins, N. Alfaxalone for total intravenous anaesthesia in horses. Vet. Anaesth. Analg. 2019, 46, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Benedetti, I.C.; Bublot, I.; Ribas, T.; Fourel, I.; Vogl, C.; Dubois, C.; Milani, M.; Ida, K.K.; Portier, K. Pharmacokinetics of intramuscular alfaxalone and its echocardiographic, cardiopulmonary and sedative effects in healthy dogs. PLoS ONE 2018, 13, e0204553. [Google Scholar] [CrossRef]
- Baumgartner, C.M.; Brandl, J.K.; Pfeiffer, N.E.; von Thaden, A.K.; Schuster, T.; Erhardt, W.D. A Comparison of the Hemodynamic Effects of Alfaxalone and Propofol in Pigs. SOJ Anesthesiol. Pain Manag. 2015, 2, 2–5. [Google Scholar] [CrossRef]
- Maney, J.K.; Shepard, M.K.; Braun, C.; Cremer, J.; Hofmeister, E.H. A comparison of cardiopulmonary and anesthetic effects of an induction dose of alfaxalone or propofol in dogs. Vet. Anaesth. Analg. 2013, 40, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Cantwell, S.L. Traditional Chinese veterinary medicine: The mechanism and management of acupuncture for chronic pain. Top. Companion Anim. Med. 2010, 1, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, S.A.; Johnson, M.H.; Long, N.R. An investigation of the gate control theory of pain using the experimental pain stimulus of potassium iontophoresis. Percept. Psychophys. 1996, 58, 693–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Lao, L.; Ren, K.; Berman, B.M. Mechanisms of acupuncture–electroacupuncture on persistent pain. Anesthesiology 2014, 120, 482–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | ALF Group (n = 6) | EA-ALF (n = 6) | p Value |
---|---|---|---|
Alfaxalone induction dose (mg/kg) | 4 (3.3–4.4) | 3.9 (3.4–4.5) | |
Alfaxalone MIR (mg/kg/h) | 12 (11.4–18) | 9 (4.8–9.6) * | 0.0035 |
MIR determination time (min) | 50 (40–70) | 30 (30–50) * | 0.0403 |
Parameter | Group | Time Points | |||
---|---|---|---|---|---|
Baseline | 2 min | 10 min | t-MIR | ||
HR (beats/min) | ALF | 93.8 ± 9.9 | 122.6 ± 17.4 * | 147.5 ± 26.8 *,† | 143.6 ± 23.2 * |
p = 0.0009 | *,† p < 0.0001 | p < 0.0001 | |||
EA-ALF | 98.1 ± 6.6 | 106 ± 16.3 | 112 ± 18.5 * | 127.5 ± 12.3 * | |
p < 0.0001 | p < 0.0001 | ||||
SAP (mmHg) | ALF | 114 ± 5.2 | 91.5 ± 5.8 * | 86.5 ± 6.4 * | 111.3 ± 6.5 |
p = 0.0002 | p < 0.0001 | ||||
EA-ALF | 110.1 ± 6.9 | 91.1 ± 7.2 * | 92.6 ± 4.4 * | 111.5 ± 2.5 | |
p = 0.0011 | p = 0.0026 | ||||
MAP (mmHg) | ALF | 82.3 ± 11.7 | 68.8 ± 17.5 | 79 ± 15.9 | 89.5 ± 15.3 |
EA-ALF | 95.1 ± 9.4 | 72.2 ± 8.9 | 82.6 ± 4.3 | 91.6 ± 18.3 | |
DAP (mmHg) | ALF | 71.1 ± 10.1 | 54 ± 5.2 * | 51.5 ± 8.7 * | 81.1 ± 7.8 |
p = 0.0396 | p = 0.0126 | ||||
EA-ALF | 73.8 ± 8.9 | 61.1 ± 13.9 | 56.6 ± 9.1 * | 75.1 ± 13.2 | |
p = 0.0396 | |||||
fR (breaths/min) | ALF | 20.5 ± 2.2 | 14 ± 3.5 *,† | 15.1 ± 3.7 * | 11.5 ± 2.3 *,† |
* p = 0.0020 | p = 0.0133 | * p < 0.0001 | |||
† p = 0.0045 | † p <0.0001 | ||||
EA-ALF | 22.8 ± 3 | 20 ± 2.9 | 19 ± 3.1 * | 21 ± 2.9 | |
p = 0.0364 | |||||
SpO2 (%) | ALF | 95.1 ± 1.7 | 86.5 ± 6.4 * | 92 ± 2.2 | 86.5 ± 5.5 * |
p = 0.0405 | p = 0.0405 | ||||
EA-ALF | 94.6 ± 1.9 | 94.6 ± 3.2 | 94.8 ± 2.1 | 94.1 ± 2 | |
RT (°C) | ALF | 39.1 ± 0.26 | 38.8 ± 0.45 | 38.6 ± 0.39 † | 37.8 ± 0.41 * |
p = 0.0210 | * p < 0.0001 | ||||
† p = 0.0002 | |||||
EA-ALF | 39.2 ± 0.25 | 39.3 ± 0.37 | 39.2 ± 0.47 | 38.7 ± 0.24 * | |
p = 0.0353 |
Parameter | Group | Time Points | |||
---|---|---|---|---|---|
Baseline | 2 min | 10 min | t-MIR | ||
EF (%) | ALF | 84.5 ± 2.9 | 81.2 ± 6.7 | 83.4 ± 4.7 | 78.9 ± 7.7 |
EA-ALF | 80.2 ± 4.8 | 80.3 ± 3.5 | 80.5 ± 5.1 | 81 ± 6.1 | |
FS (%) | ALF | 46.4 ± 3.5 | 43.4 ± 7.5 | 43.4 ± 5.4 | 41 ± 6.9 |
EA-ALF | 42.1 ± 5.3 | 42 ± 2.6 | 42.7 ± 5.1 | 43.3 ± 6 | |
SV (mL) | ALF | 12.9 ± 2.4 | 10.1 ± 1.7 | 10 ± 1.5 | 9.4 ± 1.5 *,† |
* p = 0.0195 | |||||
† p = 0.0003 | |||||
EA-ALF | 13.4 ± 2 | 15.1 ± 2.5 † | 14.6 ± 2.3 † | 14.7 ± 2.2 | |
† p = 0.0005 | † p = 0.0015 | ||||
CO (L/min) | ALF | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.5 ± 0.4 | 1.3 ± 0.3 |
EA-ALF | 1.3 ± 0.1 | 1.5 ± 0.2 | 1.6 ± 0.2 | 1.8 ± 0.2 * | |
p = 0.0312 | |||||
CI (L/min/m2) | ALF | 1.6 ± 0.4 | 1.6 ± 0.2 | 2 ± 0.6 | 1.8 ± 0.6 |
EA-ALF | 1.8 ± 0.3 | 2.2 ± 0.3 | 2.2 ± 0.3 | 2.6 ± 0.4 *,† | |
* p = 0.0354 | |||||
† p = 0.0451 |
Parameter | Group | Time Points | |||
---|---|---|---|---|---|
Baseline | 2 min | 10 min | t-MIR | ||
Nociceptive threshold (1) | ALF | 23.8 ± 2.5 | 28.8 ± 7.3 | 33.3 ± 7 * | 29.5 ± 6.3 |
p = 0.0432 | |||||
EA-ALF | 23.6 ± 5.2 | 46 ± 16.2 *,† | 53.6 ± 8.6 *,† | 48.5 ± 9 *,† | |
* p < 0.0001 | *,† p < 0.0001 | *,† p < 0.0001 | |||
† p = 0.0001 | |||||
Flank muscle tone (2) | ALF | 2 (2–3) | 1.5 (1–2) | 2 (1–2) | 2 (1–2) |
p = 0.0456 | |||||
EA-ALF | 2 (2–3) | 1 (1–2) | 1.5 (1–2) | 1.5 (1–2) | |
p = 0.0456 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Abouelfetouh, M.M.; Salah, E.; Sun, R.; Nan, S.; Ding, M.; Ding, Y. Determination of the Minimum Infusion Rate of Alfaxalone Combined with Electroacupuncture in Goats. Animals 2021, 11, 2989. https://doi.org/10.3390/ani11102989
Liu L, Abouelfetouh MM, Salah E, Sun R, Nan S, Ding M, Ding Y. Determination of the Minimum Infusion Rate of Alfaxalone Combined with Electroacupuncture in Goats. Animals. 2021; 11(10):2989. https://doi.org/10.3390/ani11102989
Chicago/Turabian StyleLiu, Lingling, Mahmoud M. Abouelfetouh, Eman Salah, Rui Sun, Sha Nan, Mingxing Ding, and Yi Ding. 2021. "Determination of the Minimum Infusion Rate of Alfaxalone Combined with Electroacupuncture in Goats" Animals 11, no. 10: 2989. https://doi.org/10.3390/ani11102989
APA StyleLiu, L., Abouelfetouh, M. M., Salah, E., Sun, R., Nan, S., Ding, M., & Ding, Y. (2021). Determination of the Minimum Infusion Rate of Alfaxalone Combined with Electroacupuncture in Goats. Animals, 11(10), 2989. https://doi.org/10.3390/ani11102989