The Effect of Feeding Restriction on the Microbiota and Metabolome Response in Late-Phase Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals
2.3. Experimental Design
2.4. Sample Collection
2.5. DNA Extraction and 16S rDNA Amplicon Pyrosequencing of Feces Sample
2.6. Sequence Analysis
2.7. Metabolomic Extraction of Feces and Serum Sample
2.8. Metabolomic Analysis
2.9. Metabolomic Data Processing
2.10. Statistical Analysis
3. Results
3.1. Effect of FR on Production Performance of Laying Hens
3.2. Microbiota Sequencing
3.3. Effect of FR on Microbial Diversity and Relative Abundance
3.4. Effect of FR on KEGG Pathway in Cecum and Serum
3.5. The Relationship of Different Relative Abundance of Bacteria in the Cecal Microbiota with Cecal and Serum Metabolites
4. Discussion
4.1. Performance Parameters
4.2. Effect of FR on Microbial Diversity and Relative Abundance
4.3. Effect of FR on KEGG Pathway in Cecum and Serum
4.4. The Relationship of Different Relative Abundance of Bacteria in the Cecal Microbiota with Cecal and Serum Metabolites
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apajalahti, J. Comparative Gut Microflora, Metabolic Challenges, and Potential Opportunities. J. Appl. Poult. Res. 2005, 14, 444–453. [Google Scholar] [CrossRef]
- Chen, M.X.; Wang, S.Y.; Kuo, C.H.; Tsai, I.L. Metabolome analysis for investigating host-gut microbiota interactions. J. Formos. Med. Assoc. 2019, 118 (Suppl. 1), S10–S22. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Li, H.; Emmerson, D.A.; Webb, K.E., Jr.; Wong, E.A. Dietary Protein Quality and Feed Restriction Influence Abundance of Nutrient Transporter mRNA in the Small Intestine of Broiler Chicks. J. Nutr. 2008, 138, 262–271. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Siegerstetter, S.C.; Magowan, E.; Lawlor, P.G.; Petri, R.M.; O’Connell, N.E.; Zebeli, Q. Feed Restriction Modifies Intestinal Microbiota-Host Mucosal Networking in Chickens Divergent in Residual Feed Intake. Msystems 2019, 4, e00261-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Meng, J.; Chen, S.; Li, C. Integrative analysis of the gut microbiota and metabolome in rats treated with rice straw biochar by 16S rRNA gene sequencing and LC/MS-based metabolomics. Sci. Rep. 2019, 9, 17860. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, S.; Seidavi, A.; Sahraei, M.; Blanco, F.P.; Schiavone, A.; Martínez Marín, A.L. Effects of Feed Restriction and Diet Nutrient Density During Re-Alimentation on Growth Performance, Carcass Traits, Organ Weight, Blood Parameters and the Immune Response of Broilers. Ital. J. Anim. Sci. 2016, 14, 583–590. [Google Scholar] [CrossRef]
- Tolkamp, B.J.; Sandilands, V.; Kyriazakis, I. Effects of qualitative feed restriction during rearing on the performance of broiler breeders during rearing and lay. Poult. Sci. 2005, 84, 1286–1293. [Google Scholar] [CrossRef]
- Leeson, S.; Caston, L.; Summers, J.D. Layer performance of four strains of Leghorn pullets subjected to various rearing programs. Poult. Sci. 1997, 76, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hester, P.Y.; Stevens, R.W. Feed restriction of turkey breeder hens—A review. Poult. Sci. 1990, 69, 1439–1446. [Google Scholar] [CrossRef]
- SonKamble, V.V.; Srivastava, A.K.; Pawar, M.M.; Chauhan, H.D.; Ankuya, K.J.; Jain, A.K. Effect of feed restriction during growing period on growth and egg production performance of lehorn layers. Haryana Vet. 2020, 59, 25–28. [Google Scholar]
- Gous, R.M.; Bradford, G.D.; Johnson, S.A.; Morris, T.R. Effect of age of release from light or food restriction on age at sexual maturity and egg production of laying pullets. Br. Poult. Sci. 2000, 41, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Sheridan, A.K. Effects of restricted feeding in the growing and laying periods on the performance of White Leghorn by Australorp crossbred and White Leghorn strain cross chickens. Br. Poult. Sci. 1982, 23, 199–214. [Google Scholar] [CrossRef]
- Fassbinder-Orth, C.A.; Karasov, W.H. Effects of feed restriction and realimentation on digestive and immune function in the Leghorn chick. Poult. Sci. 2006, 85, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Hocking, P.M.; Robertson, G.W. Limited effect of intense genetic selection for broiler traits on ovarian function and follicular sensitivity in broiler breeders at the onset of lay. Br. Poult. Sci. 2005, 46, 354–360. [Google Scholar] [CrossRef]
- Olawumi, S.O. Effect of short-term feed restriction on production traits of brown and black plumage commercial layer strains at late phase of egg production. Am. J. Agric. For. 2014, 2, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Olawuni, K.A.; Ubosi, C.O.; Alaku, S.O. Effects of feed restriction on egg production and egg quality of exotic chickens during their second year of production in a Sudano-Sahelian environment. Anim. Feed Sci. Technol. 1992, 38, 1–9. [Google Scholar] [CrossRef]
- Savaram, V.R.R.; Paul, S.S.; Mantina, V.; Devanaboyina, N.; Bhukya, P. Graded concentrations of digestible lysine on performance of White Leghorn laying hens fed sub-optimal levels of protein. Anim. Biosci. 2021, 34, 886–894. [Google Scholar] [CrossRef]
- Onimisi, P.A.; Orunmuyi, M.; Musa, A.A.; Bale, S.; Bawa, G.S. Effects of feed lysine content on laying performance and egg quality of late laying hens. Int. J. Appl. Res. Technol. 2012, 1, 104–110. [Google Scholar]
- Oyedeji, J.O.; Orheruata, A.M.; Omatsuli, M. Effects of feed rationing on the laying performance of 40-weeks in-lay hens. J. Food Agric. Environ. 2007, 5, 301–303. [Google Scholar]
- Siegerstetter, S.C.; Petri, R.M.; Magowan, E.; Lawlor, P.G.; Zebeli, Q.; O’Connell, N.E.; Metzler-Zebeli, B.U. Feed Restriction Modulates the Fecal Microbiota Composition, Nutrient Retention, and Feed Efficiency in Chickens Divergent in Residual Feed Intake. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onagbesan, O.M.; Metayer, S.; Tona, K.; Williams, J.; Decuypere, E.; Bruggeman, V. Effects of genotype and feed allowance on plasma luteinizing hormones, follicle-stimulating hormones, progesterone, estradiol levels, follicle differentiation, and egg production rates of broiler breeder hens. Poult. Sci. 2006, 85, 1245–1258. [Google Scholar] [CrossRef]
- Swann, J.R.; Claus, S.P. Nutrimetabonomics: Nutritional applications of metabolic profiling. Sci. Prog. 2014, 97 Pt 1, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Rezzi, S.; Ramadan, Z.; Fay, L.B.; Kochhar, S. Nutritional Metabonomics: Applications and Perspectives. J. Proteome Res. 2007, 6, 513–525. [Google Scholar] [CrossRef]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken Gut Microbiota: Importance and Detection Technology. Front. Vet. Sci. 2018, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Egg production. In FAO Agricultural Services Bulletin; FAO: Rome, Italy, 2003; Chapter 1. [Google Scholar]
- Attia, Y.A.; Al-Harthi, M.A.; Abo El-Maaty, H.M. Calcium and Cholecalciferol Levels in Late-Phase Laying Hens: Effects on Productive Traits, Egg Quality, Blood Biochemistry, and Immune Responses. Front. Vet. Sci. 2020, 7, 389. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.A.; Markowitz, V.M.; Chu, K.; Palaniappan, K.; Szeto, E.; Pillay, M.; Ratner, A.; Huang, J.; Andersen, E.; Huntemann, M.; et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017, 45, D507–D516. [Google Scholar] [CrossRef] [Green Version]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017, 45, D535–D542. [Google Scholar] [CrossRef]
- Ward, T.; Larson, J.; Meulemans, J.; Hillmann, B.; Lynch, J.; Sidiropoulos, D.; Spear, J.R.; Caporaso, G.; Blekhman, R.; Knight, R.; et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv 2017. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugland, K.I.; Gray, J.S.; Ellingsen, K.E. The species-accumulation curve and estimation of species richness. J. Anim. Ecol. 2003, 72, 888–897. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Sun, K.; Yin, S.; Jiang, B.; Chen, Y.; Gong, Y.; Chen, Y.; Yang, Z.; Chen, J.; Yuan, Z.; et al. Burn Injury Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Rat Gastrointestinal Microbiome. Front. Microbiol. 2017, 8, 1237. [Google Scholar] [CrossRef]
- Pla, L.; Casanoves, F.; Di Rienzo, J. Functional Diversity Indices. In Quantifying Functional Biodiversity; SpringerBriefs in Environmental Science; Springer: Dordrecht, The Netherlands, 2012; pp. 27–51. [Google Scholar]
- Subramanian, M.V.; James, T.J. Age-related protective effect of deprenyl on changes in the levels of diagnostic marker enzymes and antioxidant defense enzymes activities in cerebellar tissue in Wistar rats. Cell Stress Chaperones 2010, 15, 743–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Sun, C.; Yan, Y.; Li, G.; Shi, F.; Wu, G.; Liu, A.; Yang, N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Sci. Rep. 2018, 8, 10832. [Google Scholar] [CrossRef] [Green Version]
- Moreira, R.F.; Freitas, E.R.; Sucupira, F.S.; Diógenes, A.L.F.; Abe, M.S.; Araújo, F.W.S. Effect of feed restriction with voluntary hay intake on the performance and quality of laying hen eggs. Acta Sci. Anim. Sci. 2012, 34, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.M.A.; Toson, M.A.; Abdel-Latif, S.A.; Hassanien, H.H.M.; Marwan, T.M.A. Effect of fasting on reproductive performance of laying hens. Egypt Poult. Sci. 2010, 30, 1031–1057. [Google Scholar]
- Sakomura, N.K.; Basaglia, R.; de Resende, K.T. Modelling Protein Utilization in Laying Hens. Rev. Bras. Zootec. 2002, 31, 2247–2254. [Google Scholar] [CrossRef]
- Snetsinger, D. Limited feeding can reduce feed costs per dozen. Poult. Dig. 1976, 35, 106–110. [Google Scholar]
- Jones, G.P. Manipulation of organ growth by early-life food restriction: Its influence on the development of ascites in broiler chickens. Br. Poult. Sci. 1995, 36, 135–142. [Google Scholar] [CrossRef]
- Rosebrough, R.W.; Steele, N.C.; McMurtry, J.P.; Plavnik, I. Effect of early feed restriction in broilers. II. Lipid metabolism. Growth 1986, 50, 217–227. [Google Scholar]
- Ray, S.; Swain, P.; Amin, R.; Nahak, A.; Sahoo, S.; Rautray, A.; Mishra, A. Prolapse in Laying Hens: Its Pathophysiology and management: A Review. Indian J. Anim. Prod. Mgmt. 2013, 29, 17–24. [Google Scholar]
- Wolford, J.H.; Polin, D. Lipid Accumulation and Hemorrhage in Livers of Laying Chickens.: A Study on Fatty Liver-Hemorrhagic Syndrome (FLHS)1. Poult. Sci. 1972, 51, 1707–1713. [Google Scholar] [CrossRef]
- Jahanpour, H.; Seidavi, A.; Qotbi, A.A.A.; Delgado, F.; Gamboa, S. Effect of intensity and duration of quantitative feed restriction on broiler caecum microbiota. Indian J. Anim. Sci. 2015, 84, 554–558. [Google Scholar]
- Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE 2014, 9, e91941. [Google Scholar] [CrossRef]
- Clench, M.H.; Mathias, J.R. The Avian Cecum: A Review. Wilson Bull. 1995, 107, 93–121. [Google Scholar]
- Huang, C.B.; Xiao, L.; Xing, S.C.; Chen, J.Y.; Yang, Y.W.; Zhou, Y.; Chen, W.; Liang, J.B.; Mi, J.D.; Wang, Y.; et al. The microbiota structure in the cecum of laying hens contributes to dissimilar H2S production. BMC Genom. 2019, 20, 770. [Google Scholar] [CrossRef]
- Xing, S.; Wang, X.; Diao, H.; Zhang, M.; Zhou, Y.; Feng, J. Changes in the cecal microbiota of laying hens during heat stress is mainly associated with reduced feed intake. Poult. Sci. 2019, 98, 5257–5264. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.M.; Impey, C.S. Anaerobic Gram Negative Nonsporing Bacteria from the Caeca of Poultry. J. Appl. Bact. 1968, 31, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Mead, G.C. Microbes of the Avian Cecum: Types Present and Substrates Utilized. J. Exp. Zool. Suppl. 1989, 3, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Clavijo, V.; Florez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.M. the intestinal microflora normal of poultry and game birds during life and after storage. J. Appl. Biotechnol. 1979, 46, 407–419. [Google Scholar]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Videnska, P.; Sedlar, K.; Lukac, M.; Faldynova, M.; Gerzova, L.; Cejkova, D.; Sisak, F.; Rychlik, I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS ONE 2014, 9, e115142. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics To Enhance Gut Health and Food Safety. Appl. Environ. Microbiol. 2020, 86, 1–18. [Google Scholar] [CrossRef]
- Besrukov, S.M. Functional consequences of lipid packing stress. Curr. Opin. Colloid Interface Sci. 2000, 5, 237–243. [Google Scholar] [CrossRef]
- Hornbuckle, W.E.; Simpson, K.W.; Tennant, B.C. Gastrointestinal Function. In Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: San Diego, CA, USA, 2008; pp. 413–457. [Google Scholar]
- Corton, J.M.; Gillespie, J.G.; Hawley, S.A.; Hardie, D.G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 1995, 229, 558–565. [Google Scholar] [CrossRef]
- Fryer, L.G.D.; Carling, D. AMP-activated protein kinase and the metabolic syndrome. Biochem. Soc. Trans. 2005, 33, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Nakamaru, K.; Matsumoto, K.; Taguchi, T.; Suefuji, M.; Murata, Y.; Igata, M.; Kawashima, J.; Kondo, T.; Motoshima, H.; Tsuruzoe, K.; et al. AICAR, an activator of AMP-activated protein kinase, down-regulates the insulin receptor expression in HepG2 cells. Biochem. Biophys. Res. Commun. 2005, 328, 449–454. [Google Scholar] [CrossRef]
- Wong, A.K.F.; Howie, J.; Petrie, J.R.; Lang, C.C. AMP-activated protein kinase pathway: A potential therapeutic target in cardiometabolic disease. Clin. Sci. 2009, 116, 607–620. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Major, A.; Rendon, D.; Lugo, M.; Jackson, V.; Shi, Z.; Mori-Akiyama, Y.; Versalovic, J. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri. MBio 2015, 6, e01358-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mahony, L.; Akdis, M.; Akdis, C.A. Regulation of the immune response and inflammation by histamine and histamine receptors. J Allergy Clin. Immunol. 2011, 128, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- PubChem Compound Summary for CID 64689, beta-D-Glucose. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/beta-D.-Glucose (accessed on 2 June 2021).
- Louis, P.; Scott, K.P.; Duncan, S.H.; Flint, H.J. Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 2007, 102, 1197–1208. [Google Scholar] [CrossRef]
- Peng, G.; Li, L.; Liu, Y.; Pu, J.; Zhang, S.; Yu, J.; Zhao, J.; Liu, P. Oleate Blocks Palmitate-Induced Abnormal Lipid Distribution, Endoplasmic Reticulum Expansion and Stress, and Insulin Resistance in Skeletal Muscle. Endocrinology 2011, 152, 2206–2218. [Google Scholar] [CrossRef] [Green Version]
- Zenobi, M.G.; Scheffler, T.L.; Zuniga, J.E.; Poindexter, M.B.; Campagna, S.R.; Castro Gonzalez, H.F.; Farmer, A.T.; Barton, B.A.; Santos, J.E.P.; Staples, C.R. Feeding increasing amounts of ruminally protected choline decreased fatty liver in nonlactating, pregnant Holstein cows in negative energy status. J. Dairy Sci. 2018, 101, 5902–5923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrow, T.A. Choline. In Handbook of Vitamins, 5th ed.; Zempleni, J., Suttie, J.W., Gregory, J.F., III, Stover, P.J., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 491–513. [Google Scholar]
Ingredients (as Fed-Basis %) | Composition |
---|---|
Yellow corn grain | 52.2 |
Soybean meal dehulled (CP 47%) | 30.3 |
CaCO3 | 11.1 |
MonoCaP | 2.2 |
Soybean oil | 3.0 |
DL-Met | 0.3 |
Salt | 0.3 |
Vitamin premix 1 | 0.05 |
Mineral premix 2 | 0.05 |
NaHCO3 | 0.5 |
Metabolizable energy, kcal/kg | 2953.2 |
Total | 100 |
Nutrient (calculated) | |
Crude protein (%) | 18.1 |
Crude fat (%) | 5.4 |
Calcium (%) | 4.7 |
Available phosphorus (%) | 0.6 |
Methionine + cysteine (%) | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artdita, C.A.; Zhuang, Y.-R.; Liu, T.-Y.; Cheng, C.-Y.; Hsiao, F.S.-H.; Lin, Y.-Y. The Effect of Feeding Restriction on the Microbiota and Metabolome Response in Late-Phase Laying Hens. Animals 2021, 11, 3043. https://doi.org/10.3390/ani11113043
Artdita CA, Zhuang Y-R, Liu T-Y, Cheng C-Y, Hsiao FS-H, Lin Y-Y. The Effect of Feeding Restriction on the Microbiota and Metabolome Response in Late-Phase Laying Hens. Animals. 2021; 11(11):3043. https://doi.org/10.3390/ani11113043
Chicago/Turabian StyleArtdita, Clara Ajeng, Yi-Ru Zhuang, Tzu-Yu Liu, Chih-Yuan Cheng, Felix Shih-Hsiang Hsiao, and Yuan-Yu Lin. 2021. "The Effect of Feeding Restriction on the Microbiota and Metabolome Response in Late-Phase Laying Hens" Animals 11, no. 11: 3043. https://doi.org/10.3390/ani11113043
APA StyleArtdita, C. A., Zhuang, Y. -R., Liu, T. -Y., Cheng, C. -Y., Hsiao, F. S. -H., & Lin, Y. -Y. (2021). The Effect of Feeding Restriction on the Microbiota and Metabolome Response in Late-Phase Laying Hens. Animals, 11(11), 3043. https://doi.org/10.3390/ani11113043