Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Preparation
2.2. DNA Extraction from Blood
2.3. Primer Design and Sequencing
2.4. Genotyping and Statistical Analysis
3. Results
3.1. PCR Amplification and SNP Screening
3.2. SNP Genotyping of the SORBS1 Gene
3.3. Haplotype and Diplotype Analysis of Each Amino Acid Mutation Site of SORBS1
3.4. Association Analysis between SNP Genotypes and Milk Fat Traits
3.5. Association Analysis between Genotype Combinations and the Milk Fat Traits of Cattleyak
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zi, X.D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 2003, 59, 1303–1312. [Google Scholar] [CrossRef]
- Barsila, S.R.; Devkota, N.R.; Kreuzer, M.; Marquardt, S. Effects of different stocking densities on performance and activity of cattle × yak hybrids along a transhumance route in the Eastern Himalaya. Springerplus 2015, 4, 398. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Xu, C.; Wu, S.; Zhao, W.; Luo, H.; Yi, C.; Liu, W.; Cai, X. Isolation and characterization of spermatogenic cells from cattle, yak and cattleyak. Anim. Reprod. Sci. 2018, 193, 182–190. [Google Scholar] [CrossRef]
- Filipczak-Fiutak, M.; Pluta-Kubica, A.; Domagała, J.; Duda, I.; Migdał, W. Nutritional value and organoleptic assessment of traditionally smoked cheeses made from goat, sheep and cow’s milk. PLoS ONE 2021, 16, e0254431. [Google Scholar] [CrossRef]
- Park, C.H.; Ranaraja, U.; Dang, C.G.; Kim, J.J.; Do, C.H. Genetic parameters for milk fatty acid composition of Holstein in Korea. Asian-Australas. J. Anim. Sci. 2020, 33, 1573–1578. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, Q.; Zhang, Q.; Arbab, A.; Li, M.; Yang, Z.; Karrow, N.A.; Mao, Y. Polymorphisms of the ACSL1 Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Animals 2020, 10, 2282. [Google Scholar] [CrossRef]
- Sanchez, M.P.; Ferrand, M.; Gelé, M.; Pourchet, D.; Miranda, G.; Martin, P.; Brochard, M.; Boichard, D. Short communication: Genetic parameters for milk protein composition predicted using mid-infrared spectroscopy in the French Montbéliarde, Normande, and Holstein dairy cattle breeds. J. Dairy Sci. 2017, 100, 6371–6375. [Google Scholar] [CrossRef]
- Prakapenka, D.; Liang, Z.; Jiang, J.; Ma, L.; Da, Y. A Large-Scale Genome-Wide Association Study of Epistasis Effects of Production Traits and Daughter Pregnancy Rate in U.S. Holstein Cattle. Genes 2021, 12, 1089. [Google Scholar] [CrossRef]
- Sun, X.; Liang, Y.; Gao, Q.; Guo, J.; Tang, C.; Shi, K.; Yang, Z.; Mao, Y. AGPAT3 Gene polymorphisms are associated with milk production traits in Chinese Holstein cows. J. Dairy Res. 2021, 15, 1–6. [Google Scholar] [CrossRef]
- Brzáková, M.; Rychtářová, J.; Čítek, J.; Sztankóová, Z. A Candidate Gene Association Study for Economically Important Traits in Czech Dairy Goat Breeds. Animals 2021, 11, 1796. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Rong, Y.; Liu, Z.; Yang, S.; Zhang, W.; Li, J.; Cai, Y. A Novel SNPs in Alpha-Lactalbumin Gene Effects on Lactation Traits in Chinese Holstein Dairy Cows. Animals 2019, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Pegolo, S.; Mota, L.; Bisutti, V.; Martinez-Castillero, M.; Giannuzzi, D.; Gallo, L.; Schiavon, S.; Tagliapietra, F.; Revello Chion, A.; Trevisi, E.; et al. Genetic parameters of differential somatic cell count, milk composition, and cheese-making traits measured and predicted using spectral data in Holstein cows. J. Dairy Sci. 2021, 104, 10934–10949. [Google Scholar] [CrossRef]
- Stoop, W.M.; van Arendonk, J.A.; Heck, J.M.; van Valenberg, H.J.; Bovenhuis, H. Genetic parameters for major milk fatty acids and milk production traits of Dutch Holstein-Friesians. J. Dairy Sci. 2008, 91, 385–394. [Google Scholar] [CrossRef]
- Naserkheil, M.; Miraie-Ashtiani, S.R.; Sadeghi, M.; Nejati-Javaremi, A.; Park, C.W.; Min, K.S.; Lee, D. Exploring novel single nucleotide polymorphisms and haplotypes of the diacylglycerol O-acyltransferase 1 (DGAT1) gene and their effects on protein structure in Iranian buffalo. Genes Genom. 2019, 41, 1265–1271. [Google Scholar] [CrossRef]
- Schennink, A.; Heck, J.M.; Bovenhuis, H.; Visker, M.H.; van Valenberg, H.J.; van Arendonk, J.A. Milk fatty acid unsaturation: Genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1). J. Dairy Sci. 2008, 91, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Schennink, A.; Stoop, W.M.; Visker, M.H.; van der Poel, J.J.; Bovenhuis, H.; van Arendonk, J.A. Short communication: Genome-wide scan for bovine milk-fat composition. II. Quantitative trait loci for long-chain fatty acids. J. Dairy Sci. 2009, 92, 4676–4682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.J.; Wang, W.C.; Hsiung, C.A.; He, C.T.; Lin, M.W.; Sheu, W.H.; Chang, Y.C.; Quertermous, T.; Chen, I.; Rotter, J.; et al. Genetic variation in the human SORBS1 gene is associated with blood pressure regulation and age at onset of hypertension: A SAPPHIRe Cohort Study. Medicine 2016, 95, e2970. [Google Scholar] [CrossRef]
- Chang, T.J.; Wang, W.C.; Hsiung, C.A.; He, C.T.; Lin, M.W.; Sheu, W.H.; Chang, Y.C.; Quertermous, T.; Chen, Y.I.; Rotter, J.I.; et al. Genetic variation of SORBS1 gene is associated with glucose homeostasis and age at onset of diabetes: A SAPPHIRe Cohort Study. Sci. Rep. 2018, 8, 10574. [Google Scholar] [CrossRef]
- Germain, M.; Pezzolesi, M.G.; Sandholm, N.; McKnight, A.J.; Susztak, K.; Lajer, M.; Forsblom, C.; Marre, M.; Parving, H.H.; Rossing, P.; et al. SORBS1 gene, a new candidate for diabetic nephropathy: Results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia 2015, 58, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Irvin, M.R.; Zhi, D.; Aslibekyan, S.; Claas, S.A.; Absher, D.M.; Ordovas, J.M.; Tiwari, H.K.; Watkins, S.; Arnett, D.K. Genomics of post-prandial lipidomic phenotypes in the Genetics of Lipid lowering Drugs and Diet Network (GOLDN) study. PLoS ONE. 2014, 9, e99509. [Google Scholar] [CrossRef]
- Baumann, C.A.; Ribon, V.; Kanzaki, M.; Thurmond, D.C.; Mora, S.; Shigematsu, S.; Bickel, P.E.; Pessin, J.E.; Saltiel, A.R. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 2000, 407, 202–207. [Google Scholar] [CrossRef]
- Lin, W.H.; Chiu, K.C.; Chang, H.M.; Lee, K.C.; Tai, T.Y.; Chuang, L.M. Molecular scanning of the human sorbin and SH3-domain-containing-1 (SORBS1) gene: Positive association of the T228A polymorphism with obesity and type 2 diabetes. Hum. Mol. Genet. 2001, 10, 1753–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, W.C.; Jang, J.E.; Kim, K.H.; Yoo, B.C.; Ku, J.L. SORBS1 serves a metastatic role via suppression of AHNAK in colorectal cancer cell lines. Int. J. Oncol. 2020, 56, 1140–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Sun, D.; Zhang, S.; Wang, S.; Wu, X.; Zhang, Q.; Liu, L.; Li, Y.; Qiao, L. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS ONE 2014, 9, e96186. [Google Scholar]
- Cao, M.; Shi, L.; Peng, P.; Han, B.; Liu, L.; Lv, X.; Ma, Z.; Zhang, S.; Sun, D. Determination of genetic effects and functional SNPs of bovine HTR1B gene on milk fatty acid traits. BMC Genom. 2021, 22, 575. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, A.; Gondro, C.; da Silva Romero, A.R.; Karthikeyan, A.; Mehrotra, A.; Pandey, A.K.; Dutt, T.; Mishra, B.P. Identification of genes affecting milk fat and fatty acid composition in Vrindavani crossbred cattle using 50 K SNP-Chip. Trop. Anim. Health Prod. 2021, 53, 347. [Google Scholar] [CrossRef]
- Zwierzchowski, L.; Ostrowska, M.; Żelazowska, B. Bagnicka, E. Single nucleotide polymorphisms in the bovine SLC2A12 and SLC5A1 glucose transporter genes—The effect on gene expression and milk traits of Holstein Friesian cows. Anim. Biotechnol. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Bordonaro, S.; Tumino, S.; Marletta, D.; De Angelis, A.; Di Paola, F.; Avondo, M.; Valenti, B. Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows. Animals 2020, 10, 1651. [Google Scholar] [CrossRef]
- Labonté, M.È.; Jenkins, D.J.; Lewis, G.F.; Chiavaroli, L.; Wong, J.M.; Kendall, C.W.; Hogue, J.C.; Couture, P.; Lamarche, B. Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br. J. Nutr. 2013, 110, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Golanski, J.; Szymanska, P.; Rozalski, M. Effects of Omega-3 polyunsaturated fatty acids and their metabolites on haemostasis-current perspectives in cardiovascular disease. Int. J. Mol. Sci. 2021, 22, 2394. [Google Scholar] [CrossRef]
- Mäki-Tanila, A.; Webster, L. Heritability, SNP, inbreeding, dairy cattle, genomic selection-and other keywords. J. Anim. Breed. Genet. 2019, 136, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azimu, W.; Manatbay, B.; Li, Y.; Kaimaerdan, D.; Wang, H.E.; Reheman, A.; Muhatai, G. Genetic diversity and population structure analysis of eight local chicken breeds of Southern Xinjiang. Br. Poult. Sci. 2018, 59, 629–635. [Google Scholar] [CrossRef]
- Santos, C.P.; Aguiar, A.F.; Giometti, I.C.; Mariano, T.B.; de Freitas, C.; Nai, G.A.; de Freitas, S.Z.; Pai-Silva, M.D.; Pacagnelli, F.L. High final energy of gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats. Lasers Med. Sci. 2018, 33, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Z.; He, H.; Sun, J.J.; Wang, J.; Li, Z.J.; Lan, X.Y.; Lei, C.Z.; Zhang, C.L.; Zhang, E.P.; Wang, J.Q.; et al. Haplotype combination of SREBP-1c gene sequence variants is associated with growth traits in cattle. Genome 2011, 54, 507–516. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, Z.; Chu, M. The effect of SNP rs400827589 in exon 2 of the MTNR1B gene on reproductive seasonality and litter size in sheep. Vet. Med. Sci. 2020, 6, 804–812. [Google Scholar] [CrossRef]
- Jones, M.; Sergeant, C.; Richardson, M.; Groth, D.; Brooks, S.; Munyard, K. A non-synonymous SNP in exon 3 of the KIT gene is responsible for the classic grey phenotype in alpacas (Vicugna pacos). Anim. Genet. 2019, 50, 493–500. [Google Scholar] [CrossRef]
- Mesrian Tanha, H.; Rahgozar, S.; Mojtabavi Naeini, M. ABCC4 functional SNP in the 3′ splice acceptor site of exon 8 (G912T) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia. Cancer Chemother. Pharmacol. 2017, 80, 109–117. [Google Scholar] [CrossRef]
- Xiang, G.; Ren, J.; Hai, T.; Fu, R.; Yu, D.; Wang, J.; Li, W.; Wang, H.; Zhou, Q. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell. Mol. Life Sci. 2018, 75, 4619–4628. [Google Scholar] [CrossRef]
- Yadav, T.; Magotra, A.; Bangar, Y.C.; Kumar, R.; Yadav, A.S.; Garg, A.R.; Bahurupi, P.; Kumar, P. Effect of BsaA I genotyped intronic SNP of leptin gene on production and reproduction traits in Indian dairy cattle. Anim. Biotechnol. 2021, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mi, T.; Liu, K.; Guo, T.; Li, L.; Wang, Y.; Li, C.; Cui, Y.; Dai, J.; Zhang, Y.; Hu, S. Analysis of the eighth intron polymorphism of NR6A1 gene in sheep and its correlation with lumbar spine number. Anim. Biotechnol. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Nair, V.; Sankaranarayanan, R.; Vasavada, A.R. Deciphering the association of intronic single nucleotide polymorphisms of crystallin gene family with congenital cataract. Indian J. Ophthalmol. 2021, 69, 2064–2070. [Google Scholar] [PubMed]
- Magotra, A.; Gupta, I.D.; Ahmad, T.; Alex, R. Polymorphism in DNA repair gene BRCA1 associated with clinical mastitis and production traits in indigenous dairy cattle. Res. Vet. Sci. 2020, 133, 194–201. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence(5′-3′) | PCR Product Size (bp) | Region (bp) | Annealing Temperature (°C) |
---|---|---|---|---|
Primer 1 | F: CACTTGCTCTCCCCTTCCTG R: CAACGTTCAGCCTCTGGACT | 675 | 5791–6750 | 62 |
Primer 2 | F: ATGCCCTGTGCTGTCAACTT R: TACAGTGGTCGCTGCCATAC | 642 | 7741–8740 | 60 |
Primer 3 | F: GGACAGGAGAGTTCTGTGGC R: AAGGACAGAGCTGCTGGAAC | 939 | 18,181–19,180 | 63 |
Primer 4 | F: AGAGTGCCTCACTGCATGTC R: ACAGACTGGTGAACAGCCAC | 684 | 24,361–25,360 | 59 |
Primer 5 | F: ACCGGATTGAGCCACAGTTT R: GGCACCAAGATTTTCCCAGC | 789 | 28,681–29,680 | 60 |
Primer 6 | F: ACTGAGGTCTCTCAGCCAGT R: TACAGTGGTCGCTGCCATAC | 950 | 43,111–44,110 | 59 |
Primer 7 | F: CTGTCTGACCCTGCTCTGTG R: GCCGGTGAGAAACTCAGGAA | 680 | 79,641–80,640 | 61 |
Primer 8 | F: TGCCATCTCCTCCCTACACA R: GTCCACACCATGGCCACTAA | 721 | 85,681–86,680 | 61 |
Primer 9 | F: CCAAGATGAGCACGGAAGGT R: GGGATTGTGGTGGTACCCAG | 649 | 94,081–95,080 | 61 |
Primer 10 | F: TCTCCAGACATCCCGTGTGA R: GGTCTTGTGGGCATCCACTT | 952 | 96,061–97,060 | 61 |
Primer 11 | F: GTTGAACGGATCTCCCCCAA R: GCAACTGGAAACTGCCCTTC | 530 | 112,141–113,140 | 63 |
Primer 12 | F: AAGCCCCTAACCTTGGTGTG R: AGAGCACGTGCAGGCTAAAT | 790 | 114,001–115,000 | 61 |
Loci | Genomic Region | Amino Acid | Genotype | Genotype Frequency (%) | Allele | Allele Frequency (%) | Ho | He | Ne | PIC | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|
g.6256 C > T (c.298 C > T) | Exon 3 | Ser100Pro | CC | 38.3 | C | 61.9 | 0.528 | 0.472 | 1.894 | 0.361 | 0.054 |
CT | 47.1 | T | 38.1 | ||||||||
TT | 14.6 | ||||||||||
g.24791 A > G (c.706 A > G) | Exon 7 | Arg229His | AA | 38.3 | A | 61.9 | 0.528 | 0.472 | 1.894 | 0.361 | 0.054 |
AG | 47.1 | G | 38.1 | ||||||||
GG | 14.6 | ||||||||||
g.29029 T > C | Intron 7 | - | TT | 38.3 | T | 61.9 | 0.528 | 0.472 | 1.894 | 0.361 | 0.054 |
TC | 47.1 | C | 38.1 | ||||||||
CC | 14.6 | ||||||||||
g.29050 A > G | Intron 7 | - | AA | 38.3 | A | 61.9 | 0.528 | 0.472 | 1.894 | 0.361 | 0.054 |
AG | 47.1 | G | 38.1 | ||||||||
GG | 14.6 | ||||||||||
g.29121 A > G (c.979 A > G) | Exon 8 | Ala327Thr | AA | 48.0 | A | 66.7 | 0.556 | 0.444 | 1.799 | 0.346 | 0.017 |
AG | 37.4 | G | 33.3 | ||||||||
GG | 14.6 | ||||||||||
g.29245 C > T | Intron 8 | - | CC | 40.6 | C | 63.0 | 0.534 | 0.466 | 1.873 | 0.358 | 0.073 |
CT | 44.8 | T | 37.0 | ||||||||
TT | 14.6 | ||||||||||
g.29305 C > T | Intron 8 | - | CC | 40.6 | C | 63.0 | 0.534 | 0.466 | 1.873 | 0.358 | 0.073 |
CT | 44.8 | T | 37.0 | ||||||||
TT | 14.6 | ||||||||||
g.29347 T > C | Intron 8 | - | TT | 40.6 | T | 63.0 | 0.534 | 0.466 | 1.873 | 0.358 | 0.073 |
TC | 44.8 | C | 37.0 | ||||||||
CC | 14.6 | ||||||||||
g.96284 G > A (c.3090 G > A) | Exon 28 | Ser1030Ser | GG | 39.7 | G | 62.7 | 0.532 | 0.468 | 1.879 | 0.358 | 0.057 |
GA | 46.0 | A | 37.3 | ||||||||
AA | 14.3 |
Haplotype | Ploymorphism Sites of SORBS1 Gene | Frequency (%) | ||
---|---|---|---|---|
g.6256 C > T (c.298 C > T) | g.24791 A > G (c.706 A > G) | g.29121 A > G (c.979 A > G) | ||
H1 | C | A | A | 61.8 |
H2 | T | G | G | 33.3 |
H3 | T | G | A | 4.9 |
Loci | Genotype | Milk Fat Percentage (%) | MUFAs | PUFAs | SFAs |
---|---|---|---|---|---|
g.6256 C > T | CC | 5.649 ± 0.499 a | 1.605 ± 0.212 a | 0.180 ± 0.018 a | 3.771 ± 0.388 a |
CT | 4.783 ± 0.732 b | 1.305 ± 0.177 b | 0.162 ± 0.023 b | 3.268 ± 0.479 b | |
TT | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.24791 A > G | AA | 5.649 ± 0.499 a | 1.605 ± 0.212 a | 0.180 ± 0.018 a | 3.771 ± 0.388 a |
AG | 4.783 ± 0.732 b | 1.305 ± 0.177 b | 0.162 ± 0.023 b | 3.268 ± 0.479 b | |
GG | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.29029 T > C | TT | 5.649 ± 0.499 a | 1.605 ± 0.212 a | 0.180 ± 0.018 a | 3.771 ± 0.388 a |
TC | 4.783 ± 0.732 b | 1.305 ± 0.177 b | 0.162 ± 0.023 b | 3.268 ± 0.479 b | |
CC | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.29050 A > G | AA | 5.649 ± 0.499 a | 1.605 ± 0.212 a | 0.180 ± 0.018 a | 3.771 ± 0.388 a |
AG | 4.783 ± 0.732 b | 1.305 ± 0.177 b | 0.162 ± 0.023 b | 3.268 ± 0.479 b | |
GG | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.29121 A > G | AA | 5.516 ± 0.621 a | 1.568 ± 0.225 a | 0.178 ± 0.021 a | 3.662 ± 0.516 a |
AG | 4.729 ± 0.715 b | 1.274 ± 0.152 b | 0.160 ± 0.020 b | 3.278 ± 0.401 b | |
GG | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.29245 C > T | CC | 5.611 ± 0.588 a | 1.587 ± 0.231 a | 0.178 ± 0.021 a | 3.746 ± 0.465 a |
CT | 4.773 ± 0.696 b | 1.305 ± 0.167 b | 0.163 ± 0.022 a | 3.625 ± 0.428 b | |
TT | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.29305 C > T | CC | 5.611 ± 0.588 a | 1.587 ± 0.231 a | 0.178 ± 0.021 a | 3.746 ± 0.465 a |
CT | 4.773 ± 0.696 b | 1.305 ± 0.167 b | 0.163 ± 0.022 a | 3.625 ± 0.428 b | |
TT | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.29347 T > C | TT | 5.611 ± 0.588 a | 1.587 ± 0.231 a | 0.178 ± 0.021 a | 3.746 ± 0.465 a |
TC | 4.773 ± 0.696 b | 1.305 ± 0.167 b | 0.163 ± 0.022 a | 3.625 ± 0.428 b | |
CC | 3.280 ± 0.677 c | 1.033 ± 0.231 c | 0.130 ± 0.011 c | 1.834 ± 0.529 c | |
g.96284 G > A | GG | 4.335 ± 0.772 c | 1.297 ± 0.377 b | 0.152 ± 0.029 b | 2.829 ± 0.679 b |
GA | 5.334 ± 0.612 a | 1.483 ± 0.167 a | 0.174 ± 0.021 a | 3.565 ± 0.467 a | |
AA | 5.040 ± 0.283b | 1.278 ± 0.088b | 0.168 ± 0.011 a | 3.417 ± 0.024 a |
Diplotype | Combinatorial Genotype | Number of Amino Acid Mutations | Milk Fat Percentage (%) | MUFAs | PUFAs | SFAs |
---|---|---|---|---|---|---|
H1–H1 | CCAAAA | 3 | 5.649 ± 0.499 a | 1.605 ± 0.161 a | 0.180 ± 0.018 a | 3.771 ± 0.388 a |
H1–H2 | CTAGAG | 0–3 | 4.783 ± 0.595 b | 1.305 ± 0.143 c | 0.162 ± 0.020 c | 3.268 ± 0.396 b |
H1–H3 | CTAGAA | 1–3 | 4.992 ± 0.465 b | 1.421 ± 0.122 b | 0.171 ± 0.027 b | 3.321 ± 0.516 b |
H2–H2 | TTGGGG | 0 | 3.280 ± 0.652 c | 1.033 ± 0.153 d | 0.130 ± 0.011 d | 1.834 ± 0.262 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Min, X.; Zhu, Y.; Hu, Y.; Yang, M.; Yu, H.; Li, J.; Xiong, X. Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak. Animals 2021, 11, 3461. https://doi.org/10.3390/ani11123461
Yang L, Min X, Zhu Y, Hu Y, Yang M, Yu H, Li J, Xiong X. Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak. Animals. 2021; 11(12):3461. https://doi.org/10.3390/ani11123461
Chicago/Turabian StyleYang, Luyu, Xingyu Min, Yanjin Zhu, Yulei Hu, Manzhen Yang, Hailing Yu, Jian Li, and Xianrong Xiong. 2021. "Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak" Animals 11, no. 12: 3461. https://doi.org/10.3390/ani11123461
APA StyleYang, L., Min, X., Zhu, Y., Hu, Y., Yang, M., Yu, H., Li, J., & Xiong, X. (2021). Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak. Animals, 11(12), 3461. https://doi.org/10.3390/ani11123461