Protected or Unprotected Fat Addition for Feedlot Lambs: Feeding Behavior, Carcass Traits, and Meat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, Management, and Diets
2.2. Sampling and Chemical Analyses
2.3. Feeding Behaviour
2.4. Slaughter, Carcass Data, and Meat Samples
2.5. Physicochemical Meat Analysis
2.6. Fatty Acid Profile
2.7. Statistical Analyses
3. Results
3.1. Feeding Behaviour
3.2. Carcass Traits and Meat Quality
3.3. Fatty Acids
4. Discussion
4.1. Feeding Behaviour
4.2. Carcass Traits and Meat Quality
4.3. Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Souza, J.; Batistel, F.; Santos, F.A.P. Effect of sources of calcium salts of fatty acids on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows. J. Dairy Sci. 2017, 100, 1072–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, T.; Ma, Y.; Qu, Y.; Luo, H.; Liu, K.; Zuo, Z.; Lu, X. Effect of dietary oil sources on fatty acid composition of ruminal digesta and populations of specific bacteria involved in hydrogenation of 18-carbon unsaturated fatty acid in finishing lambs. Small Rumin. Res. 2016, 144, 126–134. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- Messana, J.D.; Berchielli, T.T.; Arcuri, P.B.; Reis, R.A.; Canesin, R.C.; Ribeiro, A.F.; Fiorentini, G.; Fernandes, J.J.D.R. Rumen fermentation and rumen microbes in Nellore steers receiving diets with different lipid contents. Rev. Bras. Zootec. 2013, 42, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Pitta, D.; Indugu, N.; Vecchiarelli, B.; Rico, D.; Harvatine, K. Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows. J. Dairy Sci. 2018, 101, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Conte, G.; Serra, A.; Mele, M. Dairy Cow Breeding and Feeding on the Milk Fatty Acid Pattern. In Nutrients in Dairy and their Implications on Health and Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 19–41. [Google Scholar]
- Alvarado-Gilis, C.A.; Aperce, C.C.; Miller, K.A.; Van Bibber-Krueger, C.L.; Klamfoth, D.; Drouillard, J.S. Protection of polyunsaturated fatty acids against ruminal biohydrogenation: Pilot experiments for three approaches1. J. Anim. Sci. 2015, 93, 3101–3109. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T. A 100-Year Review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [Green Version]
- Freitas, J.; Takiya, C.; Del Valle, T.; Barletta, R.; Venturelli, B.; Vendramini, T.; Mingoti, R.; Calomeni, G.; Gardinal, R.; Gandra, J.; et al. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. J. Dairy Sci. 2018, 101, 7881–7891. [Google Scholar] [CrossRef]
- Gandra, J.R.; Takiya, C.S.; De Oliveira, E.R.; De Paiva, P.G.; de Tonissi e Buschinelli de Goes, R.H.; Gandra Érika, R.D.S.; Araki, H.M.C. Nutrient digestion, microbial protein synthesis, and blood metabolites of Jersey heifers fed chitosan and whole raw soybeans. Rev. Bras. Zootec. 2016, 45, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Brandao, V.; Dai, X.; Paula, E.; Silva, L.; Marcondes, M.; Shenkoru, T.; Poulson, S.; Faciola, A. Effect of replacing calcium salts of palm oil with camelina seed at 2 dietary ether extract levels on digestion, ruminal fermentation, and nutrient flow in a dual-flow continuous culture system. J. Dairy Sci. 2018, 101, 5046–5059. [Google Scholar] [CrossRef] [Green Version]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 2002. [Google Scholar]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds that Contain Non-Protein Nitrogen. University of Florida, Gainesville, FL, USA. Bulletin 2000, 339, 25. [Google Scholar]
- Bürger, P.J.; Pereira, J.C.; De Queiroz, A.C.; Da Silva, J.F.C.; Filho, S.D.C.V.; Cecon, P.R.; Casali, A.D.P. Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, G.G.; Rebouças, R.; Campos, F.; Santos, E.; Araújo, G.; Gois, G.; De Oliveira, J.; Oliveira, R.; Rufino, L.D.A.; Azevedo, J.; et al. Intake, digestibility, performance, and feeding behavior of lambs fed diets containing silages of different tropical forage species. Anim. Feed. Sci. Technol. 2017, 228, 140–148. [Google Scholar] [CrossRef]
- Cézar, M.F.; Sousa, W.H. Sheep and Goat Carcasses: Production, Evaluation and Classification; Uberaba, M.G., Ed.; Agropecuária Tropical: Goiânia, Brazil, 2007. [Google Scholar]
- Miltenburg, G.A.J.; Wensing, T.; Smulders, F.J.M.; Breukink, H.J. Relationship between blood hemoglobin, plasma and tissue iron, muscle heme pigment, and carcass color of veal1. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- AMSA—American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2015. [Google Scholar]
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Evaluation of slice shear force as an objective method of assessing beef longissimus tenderness. J. Anim. Sci. 1999, 77, 2693–2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, J.K.G.; Fellner, V.; Dugan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santossilva, J.; Bessa, R. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Rhee, K.S. Fatty acids in meats and meat products. In Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992; pp. 65–93. [Google Scholar]
- Malau-Aduli, A.E.O.; Siebert, B.D.; Bottema, C.D.K.; Pitchford, W.S. A comparison of the fatty acid composition of triacylglycerols in adipose tissue from Limousin and Jersey cattle. Aust. J. Agric. Res. 1997, 48, 715. [Google Scholar] [CrossRef] [Green Version]
- Kazala, E.C.; Lozeman, F.J.; Mir, P.; Laroche, A.; Bailey, D.R.C.; Weselake, R.J. Relationship of fatty acid composition to intramuscular fat content in beef from crossbred Wagyu cattle. J. Anim. Sci. 1999, 77, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Urbano, S.A.; Ferreira, M.d.A.; Bispo, S.V.; Silva, E.C.d.; Suassuna, J.M.A.; Oliveira, J.P.F.d. Corn germ meal in replacement of corn in Santa Ines sheep diet: Carcass characteristics and tissue composition. Acta Vet. Bras. 2016, 10, 165–171. [Google Scholar] [CrossRef]
- Millen, D.; Arrigoni, M.B.; Pacheco, R.D.L. Rumenology; Springer Nature: Berlin/Heidelberg, Germany, 2016; pp. 63–102. [Google Scholar]
- Costa, R.G.; Ribeiro, N.; Nobre, P.T.; Carvalho, F.; Medeiros, A.N.; Martins, F.E. Ingestive behavior and efficacy of male sheep housed in different stocking densities. Rev. Bras. Zootec. 2019, 48, 20180219. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, F.M.; De Araújo, G.G.L.; De Souza, L.L.; Yamamoto, S.M.; Queiroz, M.A.Á.; Lanna, D.P.D.; De Moraes, S.A. Impact of water restriction periods on carcass traits and meat quality of feedlot lambs in the Brazilian semi-arid region. Meat Sci. 2019, 156, 196–204. [Google Scholar] [CrossRef]
- Souza, J.d.S.; Difante, G.d.S.; Neto, J.V.E.; Lana, Ângela, M.Q.; Roberto, F.F.d.S.; Ribeiro, P.H.C. Biometric measurements of Santa Inês meat sheep reared on Brachiaria brizantha pastures in Northeast Brazil. PLoS ONE 2019, 14, e0219343. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.R.M.; Orrico, M.A.P.; Orrico, A.C.A.; Júnior, F.V.; Oliveira, A.B.D.M. Desempenho e características qualitativas da carcaça e da carne de cordeiros terminados em confinamento alimentados com dietas contendo soja grão ou gordura protegida. Rev. Bras. Zootec. 2011, 40, 1822–1829. [Google Scholar] [CrossRef] [Green Version]
- Sklan, D.; Nagar, L.; Arieli, A. Effect of feeding different levels of fatty acids or calcium soaps of fatty acids on digestion and metabolizable energy in sheep. Anim. Sci. 1990, 50, 93–98. [Google Scholar] [CrossRef]
- Bhatt, R.; Sahoo, A.; Gadekar, Y. Production performance of lambs on milk replacer during pre-weaning followed by post-weaning linseed and calcium soap supplementation. Anim. Feed. Sci. Technol. 2018, 240, 145–156. [Google Scholar] [CrossRef]
- Filho, J.G.L.R.; Pereira, E.; Selaive-Villarroel, A.; Pimentel, P.G.; Medeiros, A.N.; Fontenele, R.M.; Maia, I.S.G. Composição corporal e exigências líquidas proteicas de ovinos Santa Inês em crescimento. Rev. Bras. Zootec. 2011, 40, 1339–1346. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, G.; Carvalho, I.P.C.; Messana, J.D.; Castagnino, P.S.; Berndt, A.; Canesin, R.C.; Frighetto, R.T.S.; Berchielli, T.T. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers1. J. Anim. Sci. 2014, 92, 1613–1620. [Google Scholar] [CrossRef] [Green Version]
- Urbano, S.A.; Ferreira, M.D.A.; Madruga, M.S.; De Azevedo, P.S.; Bispo, S.V.; Da Silva, E.C. Corn germ meal as substitute for corn in the diet of confined Santa Inês sheep: Chemical and lipid meat composition. Ciência Agrotecnologia 2014, 38, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Junior, A.C.H.; Ezequiel, J.M.B.; Fávaro, V.R.; Perez, H.L.; Almeida, M.T.C.; Paschoaloto, J.R.; D’áurea, A.P.; Carvalho, V.B.; Nocera, B.F. Fontes de lipídios e classe sexual no confinamento de ovinos. Semina Ciências Agrárias 2015, 36, 2165–2174. [Google Scholar] [CrossRef] [Green Version]
- Cleef, F.D.O.S.V.; Ezequiel, J.M.B.; D’Aurea, A.P.; Almeida, M.T.C.; Perez, H.L.; Van Cleef, E.H.C.B. Feeding behavior, nutrient digestibility, feedlot performance, carcass traits, and meat characteristics of crossbred lambs fed high levels of yellow grease or soybean oil. Small Rumin. Res. 2016, 137, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Chulayo, A.Y.; Muchenje, V. The Effects of Pre-slaughter Stress and Season on the Activity of Plasma Creatine Kinase and Mutton Quality from Different Sheep Breeds Slaughtered at a Smallholder Abattoir. Asian-Australas. J. Anim. Sci. 2013, 26, 1762–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, A.F.; Rodrigues, S.; Leite, A.; Paulos, K.; Pereira, E.; Teixeira, A. Short Communication: Quality of ewe and goat meat cured productmantas. An approach to provide value added to culled animals. Can. J. Anim. Sci. 2014, 94, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, M.M.Y.; de Tonissi e Buschinelli de Goes, R.H.; Da Silva, L.H.X.; Fernandes, A.R.M.; De Oliveira, R.T.; Cardoso, C.A.L.; Hirata, A.S.O. Quality traits and lipid composition of meat from crossbreed Santa Ines ewes fed diets including crushed crambe. Rev. Bras. Zootec. 2016, 45, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Shange, N.; Makasi, T.N.; Gouws, P.A.; Hoffman, L.C. The influence of normal and high ultimate muscle pH on the microbi-ology and colour stability of previously frozen black wildebeest (Connochaetes gnou) meat. Meat Sci. 2018, 135, 14–19. [Google Scholar] [CrossRef]
- Bonagurio, S.; Pérez, J.R.O.; Garcia, I.F.F.; Bressan, M.C.; Lemos, A.L.S.C. Quality of meat production of purebred Santa Inês and crossbred Texel x Santa Inês lambs at different slaughter weights. Rev. Bras. Zootec. 2003, 32, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Sobrinho, A.G.D.S.; Purchas, R.W.; Kadim, I.T.; Yamamoto, S.M. Características de qualidade da carne de ovinos de diferentes genótipos e idades ao abate. Rev. Bras. Zootec. 2005, 34, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Sañudo, C.; Enser, M.; Campo, M.; Nute, G.; Marıa, G.; Sierra, I.; Wood, J. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 2000, 54, 339–346. [Google Scholar] [CrossRef]
- Hedrick, H.B.; Aberle, E.D.; Forrest, J.C.; Judge, M.D.; Mer-kel, R.A. Principles of Meat Science; Kendall-Hunt Publishing Company: Dubuque, IA, USA, 1994. [Google Scholar]
- Hopkins, D.; Allingham, P.; Colgrave, M.L.; Van De Ven, R. Interrelationship between measures of collagen, compression, shear force and tenderness. Meat Sci. 2013, 95, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, R.; Jorge, A.; Souza, H.; Boiago, M. Coloração da gordura e qualidade da carne de ovelhas de descarte abatidas em distintos estágios fisiológicos. Arq. Bras. Med. Veterinária Zootec. 2010, 62, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Souza, D.; Selaive-Villarroel, A.; Pereira, E.; Silva, E.; Oliveira, R. Effect of the Dorper breed on the performance, carcass and meat traits of lambs bred from Santa Inês sheep. Small Rumin. Res. 2016, 145, 76–80. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Soni, L.K.; Sahoo, A.; Gadekar, Y.; Sarkar, S. Dietary supplementation of extruded linseed and calcium soap for augmenting meat attributes and fatty acid profile of longissimus thoracis muscle and adipose tissue in finisher Malpura lambs. Small Rumin. Res. 2020, 184, 106062. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.; Watkins, P.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Børsting, C.; Brask, M.; Hellwing, A.L.F.; Weisbjerg, M.R.; Lund, P. Enteric methane emission and digestion in dairy cows fed wheat or molasses. J. Dairy Sci. 2020, 103, 1448–1462. [Google Scholar] [CrossRef] [Green Version]
- Fievez, V.; Colman, E.; Montoya, J.C.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed. Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Doreau, M.; Meynadier, A.; Fievez, V.; Ferlay, A. Ruminal metabolism of fatty acids: Modulation of polyunsaturated, conju-gated, and trans fatty acids in meat and milk. In Handbook of Lipids in Human Function; Watson, R.R., Meester, F., Eds.; AOCS Press: San Diego, CA, USA, 2016; pp. 521–542. [Google Scholar]
- Naik, P.K. Bypass fat in dairy ration-a review. Anim. Nutr. Feed Technol. 2013, 13, 147–163. [Google Scholar]
- Fruet, A.; Trombetta, F.; Stefanello, F.; Speroni, C.; Donadel, J.; De Souza, A.; Júnior, A.R.; Tonetto, C.; Wagner, R.; De Mello, A.; et al. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis. Meat Sci. 2018, 140, 112–118. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- Miltko, R.; Majewska, M.P.; Bełżecki, G.; Kula, K.; Kowalik, B. Growth performance, carcass and meat quality of lambs supplemented different vegetable oils. Asian-Australasian, J. Anim. Sci. 2019, 32, 767–775. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Kothapalli, K.S.; Brenna, J.T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Parodi, P.W. Dietary guidelines for saturated fatty acids are not supported by the evidence. Int. Dairy J. 2016, 52, 115–123. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
Item | Experimental Diets | ||||
---|---|---|---|---|---|
NAF | WSB | CSFA | SO | CG | |
Ingredients (g/kg DM) | |||||
Tifton-85 hay | 400.0 | 400.0 | 400.0 | 400.0 | 400.0 |
Ground corn | 459.0 | 353.0 | 414.0 | 419.0 | 364.0 |
Soybean meal | 120.0 | 30.0 | 130.0 | 130.0 | 115.0 |
Soybean oil | - | - | - | 30.0 | - |
Whole soybean | - | 200.0 | - | - | - |
Calcium salt of fatty acids | - | - | 35.0 | - | - |
Corn germ | - | - | - | - | 100.0 |
Urea | 6.0 | 2.0 | 6.0 | 6.0 | 6.0 |
Mineral supplement 1 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 |
Chemical composition (g/kg DM) | |||||
Dry matter (g/kg as fed) | 900.5 | 903.0 | 903.6 | 903.8 | 904.6 |
Ash | 52.5 | 54.8 | 57.3 | 52.6 | 52.2 |
Crude protein | 175.3 | 187.4 | 176.2 | 176.7 | 177.2 |
Ether extract | 32.6 | 61.6 | 61.2 | 61.1 | 68.5 |
Neutral detergent fiber ap 2 | 349.5 | 358.2 | 345.9 | 346.5 | 365.9 |
Acid detergent fiber ap 3 | 171.9 | 178.1 | 171.4 | 171.5 | 191.2 |
Lignin | 35.1 | 35.0 | 34.6 | 34.7 | 37.7 |
Non-fibrous carbohydrates | 390.0 | 338.0 | 359.4 | 363.1 | 336.2 |
Total digestible nutrients | 708.4 | 740.6 | 742.3 | 746.7 | 737.9 |
Neutral detergent insoluble protein | 30.7 | 41.0 | 30.3 | 30.4 | 34.1 |
Acid detergent insoluble protein | 10.3 | 13.6 | 10.1 | 10.1 | 10.4 |
Fatty acid profile (mg/100 g) | |||||
Caprylic (C8:0) | 1.0 | 1.0 | 1.0 | 1.3 | 1.3 |
Capric (C10:0) | 5.1 | 5.1 | 4.7 | 5.3 | 6.8 |
Lauric (C12:0) | 10.2 | 10.1 | 9.6 | 10.7 | 12.0 |
Myristic (C14:0) | 61.2 | 60.2 | 56.7 | 61.7 | 113.0 |
Palmitic (C16:0) | 476.7 | 497.0 | 530.7 | 620.8 | 987.3 |
Palmitoleic (C16:1) | 13.0 | 13.2 | 14.0 | 14.3 | 20.2 |
Stearic (C18:0) | 112.4 | 122.2 | 149.4 | 154.9 | 210.1 |
Oleic (C18:1 n-9) | 786.8 | 804.7 | 967.0 | 916.5 | 2146.2 |
Linoleic (C18:2 n-6) | 1250.5 | 1356.5 | 1655.3 | 1465.5 | 2949.8 |
α-linolenic (C18:3 n-3) | 57.9 | 77.9 | 112.2 | 78.2 | 85.9 |
Item | Experimental Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
NAF | WSB | CSFA | SO | CG | |||
Total Intake, kg | |||||||
Dry matter | 115.9a | 95.3b | 114.0a | 100.8b | 90.6b | 2.455 | <0.001 |
Neutral detergent fiber | 44.7a | 38.6b | 43.5a | 38.5b | 36.8b | 0.879 | 0.010 |
Time, h/day | |||||||
Rumination | 8.6 | 8.4 | 7.7 | 8.8 | 8.4 | 0.145 | 0.197 |
Feeding | 3.2 | 2.9 | 3.1 | 2.6 | 3.4 | 0.106 | 0.081 |
Idling | 12.2 | 12.7 | 13.2 | 12.6 | 12.2 | 0.196 | 0.476 |
Chewing | 11.8 | 11.3 | 10.8 | 11.4 | 11.8 | 0.196 | 0.476 |
Efficiency, g DM/h | |||||||
Feeding | 372.5 | 369.2 | 402.3 | 437.9 | 304.5 | 14.851 | 0.057 |
Rumination | 138.2ab | 122.1b | 159.9a | 122.1b | 115.5b | 3.779 | <0.001 |
Efficiency, g NDF/h | |||||||
Feeding | 134.2 | 135.7 | 139.6 | 153.5 | 112.1 | 5.208 | 0.157 |
Rumination | 49.9ab | 45.0b | 55.6a | 42.7b | 42.5b | 1.333 | 0.003 |
Cuds | |||||||
Cuds, n°/day | 705.4 | 691.9 | 723.0 | 650.2 | 658.5 | 14.393 | 0.467 |
Dry matter for cud, g | 1.7 | 1.5 | 1.8 | 1.6 | 1.5 | 0.049 | 0.309 |
Item | Experimental Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
NAF | WSB | CSFA | SO | CG | |||
External length | 55.0 | 55.0 | 57.1 | 56.5 | 55.0 | 0.460 | 0.429 |
Internal length | 53.9 | 53.9 | 54.9 | 54.4 | 52.9 | 0.342 | 0.427 |
Leg length | 38.7 | 37.9 | 37.7 | 39.2 | 38.1 | 0.339 | 0.626 |
Leg circumference | 44.9 | 42.2 | 45.9 | 43.6 | 42.3 | 0.503 | 0.066 |
Thoracic width | 26.0 | 25.2 | 27.1 | 25.9 | 25.3 | 0.295 | 0.221 |
Thoracic depth | 25.9 | 25.0 | 26.8 | 25.8 | 25.1 | 0.252 | 0.177 |
Thoracic perimeter | 78.4 | 75.3 | 81.0 | 74.6 | 75.3 | 0.834 | 0.062 |
Rump width | 21.6 | 20.8 | 23.0 | 21.2 | 21.1 | 0.319 | 0.193 |
Rump perimeter | 53.7 | 50.8 | 56.3 | 52.3 | 52.6 | 0.765 | 0.207 |
Carcass compactness index | 0.35ab | 0.31b | 0.38a | 0.33ab | 0.30b | 0.008 | 0.001 |
Leg compactness index | 0.56 | 0.55 | 0.61 | 0.54 | 0.56 | 0.011 | 0.222 |
Item | Experimental Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
NAF | WSB | CSFA | SO | CG | |||
Carcass traits | |||||||
Slaughter body weight, kg | 42.8ab | 39.1b | 45.5a | 42.3ab | 38.8b | 0.700 | 0.006 |
Hot carcass weight, kg | 19.2ab | 16.5b | 21.2a | 18.1ab | 16.2b | 0.466 | 0.001 |
Cold carcass weight, kg | 19.1ab | 16.4b | 21.0a | 18.0ab | 16.1b | 0.461 | 0.001 |
Cooling losses, kg | 0.493 | 0.235 | 0.645 | 0.364 | 0.686 | 0.078 | 0.318 |
Hot carcass yield, % | 44.6ab | 42.1b | 46.5a | 42.8ab | 41.5b | 0.500 | 0.004 |
Cold carcass yield, % | 44.4ab | 42.0b | 46.2a | 42.7ab | 41.2b | 0.497 | 0.006 |
Subjective evaluation | |||||||
Conformation | 3.4ab | 3.3ab | 3.5a | 3.1b | 3.2b | 0.046 | 0.020 |
Finishing | 3.2ab | 3.0ab | 3.4a | 3.0ab | 2.9b | 0.053 | 0.019 |
Marbling | 2.7 | 2.5 | 2.8 | 2.1 | 2.0 | 0.109 | 0.086 |
Kidney Fat | 2.2 | 2.2 | 2.3 | 2.2 | 2.1 | 0.057 | 0.975 |
Longissimus lumborum muscle | |||||||
Loin, kg | 0.96ab | 0.84b | 1.14a | 0.97ab | 0.80b | 0.030 | 0.001 |
Loin eye area, cm2 | 12.3ab | 11.1b | 14.0a | 12.0ab | 10.0b | 0.368 | 0.004 |
Subc. fat thickness, mm | 2.6 | 2.1 | 2.6 | 2.9 | 2.8 | 0.190 | 0.708 |
Item | Experimental Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
NAF | WSB | CSFA | SO | CG | |||
Physicochemical characteristics | |||||||
pH 45 min | 7.1 | 7.0 | 7.1 | 7.1 | 7.1 | 0.040 | 0.902 |
pH 24 h | 5.9 | 5.6 | 5.9 | 5.7 | 5.7 | 0.035 | 0.149 |
T° 45 min, °C | 31.2 | 31.9 | 30.9 | 30.9 | 31.2 | 0.294 | 0.813 |
T° 24 h, °C | 9.6 | 9.2 | 9.4 | 9.6 | 9.5 | 0.103 | 0.679 |
Cooking losses, % | 29.9 | 25.5 | 39.1 | 36.4 | 25.1 | 2.103 | 0.106 |
Shear force, kgf/cm2 | 2.7 | 2.8 | 2.9 | 2.7 | 2.7 | 0.069 | 0.933 |
Lightness, L * | 40.2 | 40.8 | 38.6 | 40.4 | 41.6 | 0.489 | 0.401 |
Redness, a * | 21.7 | 22.0 | 22.5 | 22.7 | 22.5 | 0.201 | 0.572 |
Yellowness, b * | 6.9 | 7.6 | 7.3 | 7.8 | 7.8 | 0.245 | 0.757 |
Centesimal composition of LL muscle (g/kg) | |||||||
Dry matter | 273.6 | 277.8 | 269.6 | 268.7 | 266.4 | 0.176 | 0.253 |
Moisture | 726.4 | 722.2 | 730.4 | 731.3 | 733.6 | 0.176 | 0.253 |
Ash | 8.6 | 9.0 | 8.7 | 9.2 | 9.3 | 0.017 | 0.679 |
Ether extract | 37.3 | 39.6 | 36.5 | 30.2 | 31.8 | 0.157 | 0.277 |
Crude protein | 213.7 | 214.9 | 217.2 | 221.3 | 229.5 | 0.207 | 0.096 |
Fatty Acid | Experimental Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
NAF | WSB | CSFA | SO | CG | |||
Saturated fatty acids | |||||||
Lauric (C12:0) | 3.0 | 3.14 | 2.6 | 2.2 | 2.7 | 0.147 | 0.271 |
Myristic (C14:0) | 76.5 | 73.95 | 72.6 | 59.7 | 65.5 | 3.141 | 0.444 |
Pentadecanoic (C15:0) | 10.7 | 12.06 | 8.5 | 9.0 | 10.6 | 0.562 | 0.241 |
Palmitic (C16:0) | 911.5 | 863.1 | 779.4 | 698.7 | 767.9 | 31.256 | 0.242 |
Stearic (C18:0) | 581.1b | 735.5ab | 538.6c | 609.4bc | 805.5a | 32.856 | 0.028 |
Branched-chain fatty acids | |||||||
C14:0 iso | 1.2 | 1.59 | 1.0 | 1.1 | 1.5 | 0.098 | 0.232 |
C15:0 iso | 4.9 | 5.60 | 3.4 | 4.1 | 4.6 | 0.304 | 0.199 |
C15:0 anteiso | 5.0 | 6.4 | 3.8 | 4.9 | 5.8 | 0.353 | 0.206 |
C16:0 iso | 6.4 | 6.8 | 4.4 | 5.9 | 6.3 | 0.400 | 0.400 |
C17:0 iso | 1.4a | 0.8b | 0.8b | 0.6b | 0.5b | 0.086 | 0.008 |
C18:0 iso | 1.5c | 1.3c | 3.2a | 2.2b | 1.8bc | 0.160 | <0.001 |
Monounsaturated fatty acids | |||||||
Palmitoleic (C16:1) | 55.7 | 55.2 | 51.8 | 44.9 | 39.7 | 2.247 | 0.089 |
Oleic (C18:1 n-9) | 1741.4a | 1483.8ab | 1215.0b | 1304.8b | 1360.8b | 58.839 | 0.041 |
Vaccenic (C18:1 t11) | 33.8d | 62.8cd | 143.1a | 101.9b | 88.4bc | 8.826 | <0.001 |
Polyunsaturated fatty acids | |||||||
Linoleic (C18:2 c9c12) | 103.2c | 199.4a | 158.6b | 159.8b | 170.3a | 8.609 | 0.001 |
CLA 1 | 7.5b | 9.7b | 22.5a | 18.3a | 19.0a | 10.439 | 0.002 |
CLA isomer (C18:2 t10c12) | 0.9 | 0.7 | 1.2 | 0.9 | 0.7 | 0.075 | 0.149 |
α-linolenic (C18:3 n-3) | 6.9c | 12.1a | 7.9bc | 9.2b | 5.2d | 0.543 | <0.001 |
Arachidonic (C20:4 n-6) | 36.8b | 42.5a | 29.7c | 42.8a | 42.4a | 1.280 | <0.001 |
Eicosapentaenoic (EPA; C20:5 n-3) | 4.3a | 4.9a | 3.1b | 4.6a | 3.0b | 0.198 | <0.001 |
Docosapentaenoic (DPA; C22:5 n-3) | 6.3bc | 8.3a | 5.3c | 7.1ab | 5.7bc | 0.307 | 0.004 |
Docosahexaenoic (DHA; C22:6 n-3) | 1.2ab | 1.9a | 0.8bc | 1.4ab | 1.1bc | 0.113 | 0.037 |
Item 1 | Experimental Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
NAF | WSB | CSFA | SO | CG | |||
Σ SFA | 1635.1ab | 1962.1a | 1437.4b | 1417.8b | 1695.9ab | 58.864 | 0.025 |
Σ MUFA | 1877.2 | 1754.7 | 1448.3 | 1478.7 | 1513.1 | 57.893 | 0.065 |
Σ PUFA | 178.8b | 270.0a | 247.8a | 254.4a | 250.5a | 7.882 | <0.001 |
PUFA:SFA | 0.11c | 0.14b | 0.17a | 0.18a | 0.15b | 0.006 | <0.001 |
Σ PUFA n-6 | 39.1b | 45.4a | 32.0c | 46.0a | 45.2a | 1.355 | <0.001 |
Σ PUFA n-3 | 18.3bc | 25.4a | 16.4c | 21.1b | 15.6c | 0.847 | <0.001 |
n-6:n-3 | 2.07b | 1.61c | 1.98b | 1.96bc | 3.33a | 0.130 | <0.001 |
AI | 0.60b | 0.67a | 0.62ab | 0.53c | 0.57bc | 0.013 | 0.004 |
TI | 1.7b | 2.0a | 1.8b | 1.7b | 2.0a | 0.040 | <0.001 |
h:H | 1.8a | 1.6b | 1.5b | 1.8a | 1.8a | 0.036 | 0.006 |
Δ9 C18 | 74.4a | 65.6cd | 69.3b | 68.1bc | 63.6d | 0.892 | <0.001 |
Elongase | 70.5b | 70.6b | 67.9c | 72.7a | 72.8a | 0.465 | <0.001 |
DFA | 2631.6 | 2869.9 | 2234.8 | 2342.6 | 2646.6 | 81.703 | 0.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba, H.D.R.; Freitas Júnior, J.E.d.; Leite, L.C.; Azevêdo, J.A.G.; Santos, S.A.; Pina, D.S.; Cirne, L.G.A.; Rodrigues, C.S.; Silva, W.P.; Lima, V.G.O.; et al. Protected or Unprotected Fat Addition for Feedlot Lambs: Feeding Behavior, Carcass Traits, and Meat Quality. Animals 2021, 11, 328. https://doi.org/10.3390/ani11020328
Alba HDR, Freitas Júnior JEd, Leite LC, Azevêdo JAG, Santos SA, Pina DS, Cirne LGA, Rodrigues CS, Silva WP, Lima VGO, et al. Protected or Unprotected Fat Addition for Feedlot Lambs: Feeding Behavior, Carcass Traits, and Meat Quality. Animals. 2021; 11(2):328. https://doi.org/10.3390/ani11020328
Chicago/Turabian StyleAlba, Henry D. R., José E. de Freitas Júnior, Laudi C. Leite, José A. G. Azevêdo, Stefanie A. Santos, Douglas S. Pina, Luís G. A. Cirne, Carlindo S. Rodrigues, Willian P. Silva, Victor G. O. Lima, and et al. 2021. "Protected or Unprotected Fat Addition for Feedlot Lambs: Feeding Behavior, Carcass Traits, and Meat Quality" Animals 11, no. 2: 328. https://doi.org/10.3390/ani11020328
APA StyleAlba, H. D. R., Freitas Júnior, J. E. d., Leite, L. C., Azevêdo, J. A. G., Santos, S. A., Pina, D. S., Cirne, L. G. A., Rodrigues, C. S., Silva, W. P., Lima, V. G. O., Tosto, M. S. L., & Carvalho, G. G. P. d. (2021). Protected or Unprotected Fat Addition for Feedlot Lambs: Feeding Behavior, Carcass Traits, and Meat Quality. Animals, 11(2), 328. https://doi.org/10.3390/ani11020328