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Simple Summary: Contactless physiological monitoring can be important for animal health and
well-being. The current study investigated whether heart rate in pigs can be extracted automatically
from videos without disturbing the pig and showed that this was possible with 4.69 beats per minute
in mean absolute error. The study also tested different body regions and found that the abdomen was
a better region to measure heart rate from videos compared to the front leg or the neck. However,
future studies are needed that include videos with different light conditions, different housing
systems and multiple pigs to enable real-time on-farm monitoring of heart rate from videos.

Abstract: Heart rate (HR) is a vital bio-signal that is relatively easy to monitor with contact sensors
and is related to a living organism’s state of health, stress and well-being. The objective of this study
was to develop an algorithm to extract HR (in beats per minute) of an anesthetized and a resting
pig from raw video data as a first step towards continuous monitoring of health and welfare of pigs.
Data were obtained from two experiments, wherein the pigs were video recorded whilst wearing
an electrocardiography (ECG) monitoring system as gold standard (GS). In order to develop the
algorithm, this study used a bandpass filter to remove noise. Then, a short-time Fourier transform
(STFT) method was tested by evaluating different window sizes and window functions to accurately
identify the HR. The resulting algorithm was first tested on videos of an anesthetized pig that
maintained a relatively constant HR. The GS HR measurements for the anesthetized pig had a mean
value of 71.76 bpm and standard deviation (SD) of 3.57 bpm. The developed algorithm had 2.33 bpm
in mean absolute error (MAE), 3.09 bpm in root mean square error (RMSE) and 67% in HR estimation
error below 3.5 bpm (PE3.5). The sensitivity of the algorithm was then tested on the video of a non-
anaesthetized resting pig, as an animal in this state has more fluctuations in HR than an anaesthetized
pig, while motion artefacts are still minimized due to resting. The GS HR measurements for the
resting pig had a mean value of 161.43 bpm and SD of 10.11 bpm. The video-extracted HR showed
a performance of 4.69 bpm in MAE, 6.43 bpm in RMSE and 57% in PE3.5. The results showed that
HR monitoring using only the green channel of the video signal was better than using three color
channels, which reduces computing complexity. By comparing different regions of interest (ROI),
the region around the abdomen was found physiologically better than the face and front leg parts.
In summary, the developed algorithm based on video data has potential to be used for contactless
HR measurement and may be applied on resting pigs for real-time monitoring of their health and
welfare status, which is of significant interest for veterinarians and farmers.
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1. Introduction

Cardiac activity variables have been widely used in animal health and animal welfare
research. For instance, heart rate (HR) brings valuable information in relation to an ani-
mal’s disease status, physiological functioning, psychological stress and in assessing their
individual characteristics, e.g., temperament and coping strategies [1]. Farm animals such
as pigs may encounter many stressors during their lifetime, and HR monitoring has proven
to be a useful technology to assess their response in many cases. For example, monitoring
the HR of sows showed that their reproductive performance was impaired when they
experienced stress [2]. Other research has shown that HR can potentially be a valuable
measure for stress resilience, e.g., a decrease in HR was linked with a counteraction of the
sympathetic overreaction caused by the chronic stress of tethering in sows [3]. Therefore,
monitoring HR of pigs can provide information on how to maintain optimal conditions for
production performance and animal welfare.

In previous studies, HR of animals was monitored using two types of technologies,
namely implantable transmitters and external body-mounted sensors [1]. Although im-
plantable transmitters provide accurate data, their use is associated with several critical
drawbacks, e.g., initial implantation surgery [4], influence on normal circadian rhythms [5],
potential distress and discomfort caused by the implanted device itself and the limited
battery life of the transmitter [6]. For body-mounted sensors, electrocardiography (ECG)
has been used to monitor the HR of dogs [7] and bats [8], and photoplethysmography
(PPG) [9] has previously been used for HR monitoring in pigs. However, ECG and PPG
signals may be disrupted by the poor contact between the electrodes and the skin and the
movement/removal of the device/belt caused by the pig itself or by its conspecifics [1].
Moreover, devices such as a belt are not applicable in field situations where pigs are typi-
cally housed together with conspecifics. Compared to these two technologies, a contactless
method based on video analysis could have significant potential in research and farm
applications involving HR monitoring, as it obviates the need to fit/implant sensors on/in
animals or any other manipulation of the animal, avoiding potential disruptions for sam-
ple collection. Therefore, a contactless HR monitoring system based on video analysis is
a non-invasive and non-intrusive method that could help assessing pig health and welfare.

Presently, HR extraction based on different video analysis techniques extract the
subtle changes (color or motion) caused by the pulsatile activity of the beating heart.
Some of the recently developed algorithms are based on blind source separation (BSS),
i.e., separation of the source signals from a set of mixed signals without prior information
about the source signals [10,11], such as independent component analysis (ICA) [10] or
principle component analysis (PCA) [11]. Using the BSS approach, the red, green and
blue(RGB) traces are decomposed into the three independent sources of signals. After that,
the highest power of the spectrum of the component containing the heart signal [10] or
the frequency of the principal component that most closely resembles the heart signal [11]
is considered as the HR frequency/signal. Other algorithms able to extract HR-related
information from video signals include techniques such as combining three channels under
different proportions [12,13] or processing each pixel independently by Eulerian video
magnification (EVM) [14,15]. It should be noticed that both kinds of methods use three
channels to extract HR, and because of that, they need three filters to remove noise and
three times the computer memory to store the signal during the process of computing.
However, to achieve accurate continuous monitoring of HR in practical environments, the
implemented algorithm must be accurate while having a computational footprint as low
as possible to run on embedded systems. To reduce the computing complexity, this study
attempts to use a single color channel to monitor a pig’s HR.
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Recently, the video-based HR monitoring approach has been explored in animal re-
search including cattle [16], primates [17] and rodents [18]. Video-based monitoring of pigs
has become popular on farms, mainly for behavior recording [19–23]. There is an opportu-
nity to monitor other bio-signals, extracting greater value for the users of video technology.
Although some studies have already analyzed HR of pigs from video data, a limited
number achieved it continuously [24–26]. To our knowledge, only the study by Addi-
son et al. [27] could continuously monitor the HR using video technology of anesthetized
pigs during acute hypoxia. However, the algorithm used in that research was developed
based on three channels, which could be improved in terms of computing complexity.

Another vital aspect of accurate monitoring of HR is the identification of a region
of interest (ROI). The subtle blood flow changes caused by the heart beats have to be
detected from continuous frames and, thus, an adequate body part of the animal has to
be assessed. Regions with large capillaries near the skin surface and low hair covering
can be chosen as an ROI. In this sense, domestic pigs present a large area of exposed skin
with low hair coverage, and commercially housed pigs spend about 60–80% of the daily
life resting [28,29], facilitating the monitoring of their HR. On the other hand, pigs are
known for their high level of backfat and thickness of epidermis [30], which make changes
in blood flow less visible at skin level. Previous studies have used the area around the neck
as the ROI [25,26]; however, no studies have explored the suitability of other body regions.
Therefore, selecting the ROI was a key aspect explored in this study, as different body parts
may offer different sensitivities for HR monitoring.

The main goal of the present work was to develop a video-based HR monitoring algo-
rithm for pigs with minimum computational burden for real-time applications. The specific
objectives were to:

1. Investigate the combination of bandpass filtering and short-time Fourier transform
(STFT) with sliding windows for extracting HR from noisy input data in a continu-
ous fashion;

2. Explore different regions of interests (ROI) from different anatomical parts of the pig’s
body to find the most suitable ROI for signal extraction of cardiac activity;

3. Optimize the different heart rate extraction processing steps to minimize the com-
putational complexity of the algorithm for implementation of real-time monitor-
ing applications.

2. Materials and Methods
2.1. Experimental Setup

The datasets used in the analysis were obtained from two different experimental
set-ups. In the first experiment, video recordings of one anaesthetized pig was made and
its data used to develop the algorithm, as the pig had very limited movement (breathing)
with no motion artefacts. In the second experiment, a non-anaesthetized resting pig was
video recorded. The pig from the second experiment presented larger variations in HR,
and its data were used to test the developed algorithm. All the raw videos were stored on
an exchangeable, external 4 TB hard drive (Seagate, Cupertino, CA, USA). The authors
are aware of the limited number of animals and variation included in the data and what
limitations this has for the interpretation of the developed algorithms. However, this was
evaluated as acceptable, as the study presents the initial work on a new method for HR
monitoring.

2.1.1. Experiment on the Anesthetized Pig

The first dataset included one anaesthetized two-year-old Göttinger Minipig (Figure 1a),
weighing 30.2 kg. Zoletil (Tiletamin and Zolazepam) and isoflurane were used to anes-
thetize the pig. The experiment was conducted under ambient light. The webcam (C920
HD PRO, Logitech, Taiwan, China) was positioned above the pig towards the neck and
the side face of the pig at a distance of 0.84 m with about 45 degrees angle. The resolution
of the video was 640 × 480 pixels and the frame rate was 30 fps. The video chosen for
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the algorithm development was 180 seconds long. As a gold standard (GS), the reference
HR was collected using an electrocardiogram (BEAM EKG-/Loop- Eventrekorder; I.E.M.
GmbH, Stolberg, Deutschland), and it measured the HR (200 Hz, 0,1–75 Hz) directly from
the skin region above the heart.
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Figure 1. (a) Experiment set-up of the anesthetized pig; (b) experiment set-up of the resting pig. The red rectangles represent
regions of interest chosen to investigate for heart rate monitoring.

2.1.2. Experiment on the Resting Pig

The second dataset included one resting, individually housed Large White × York
pig weighing 20 kg (Figure 1b). The experiment was conducted at Purdue University,
West Lafayette, IN, USA. The pig was placed in a PigTurnTM (West Lafayette, IN, USA)
experimental pen with enough space for an individual animal (1.12 m2) under ambient
light. The animal wore a wearable sensor (Zephyr BioHarness-3) in order to measure its
movement with a 3D accelerometer (100 Hz,± 16 G) and its HR (1 Hz, 25–240 bpm ±1 bpm
accuracy), which was used as the GS. Video recordings of the pig were made during
the whole experiment using a Sony HandyCam HDR-SR5 camcorder. The camera was
positioned on a Manfrotto Autopole at a height of 2.5 and 2 m from the center of the pen.
The resolution of the video was 1440 × 1080 pixels, and the frame rate was 30 fps. One
period of the video of about 450 s was chosen and used to test the algorithm, as the pig
during this period was constantly resting with minimal movements.

2.2. Algorithm

The different steps taken in the HR extraction algorithm are represented in Figure 2.
The algorithm was developed and tested on the raw videos. All analyses and calculations
were performed in the MATLAB (MathWorks, US) environment. All the analysis were
conducted on Windows 10 software with a Inter(R) i7-8650U CPU and 16GB RAM.
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2.2.1. Region of Interest Selection

The first challenge in developing the algorithm was to identify the ROI for pigs. Subtle
changes in the video signal are used to extract heart rate. Thus, in human applications,
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places with large capillaries near the skin surface and low hair covering are frequently
chosen as the ROI [31]. The skin around the neck was, thus, chosen from the anaesthetized
pig for developing the algorithm (red rectangle in Figure 1a). Further, pigs have large
subscapular artery and median sacral artery that provide extensive flow to their front
legs and abdomen [32]. In order to see which part was most sensitive to fluctuating HR
extraction, body areas around the neck, front legs and abdomen were chosen as potential
ROIs (red rectangles in Figure 1b) from the video of the resting pig. To develop the
algorithm, the color variations through all video frames for all pixels of the ROI are needed.
The pre-processing step first extracted RGB values for all pixels of the ROI from every
frame of the video and stored them in a multidimensional matrix. Then, the average values
were individually computed in red, green and blue channels of each frame. As a result,
the colors in the ROI for each frame were represented by the corresponding average RGB
values, and three time series based on three channels were derived.

2.2.2. Noise Removal

The finite impulse response (FIR) bandpass filter has been widely used in suppressing
frequency components outside the HR bandwidth [17,25]. Compared to an infinite impulse
response (IIR) filter, it is less susceptible to finite bit precision effects [33]. In this study, an
FIR bandpass filter was introduced to obtain HR-related ranges. The cut-off frequencies
are chosen based on the expected physiological HR range [34]. Frequency components
outside of the HR bandwidth 30–360 bpm are supposed to be suppressed. In our case, the
frequency range of the bandpass filter was set to 0.5–3 Hz.

2.2.3. Heart Rate Extraction

The short-time Fourier transform (STFT) is a variant of the classic Fourier transform,
where a window function is convolved with the original signal to only transform a short
part of the signal into the frequency domain. Hence, a simultaneous representation in
time and frequency can be achieved. The length and shape of the window function can
control the time and frequency resolution. Due to the uncertainty principle, there is always
a trade-off between time and frequency resolution. If the window size is too large, almost
all the frequency information will be captured, which is similar with using fast Fourier
transform (FFT) over a long window. In this case, the time resolution would be lost and
vice versa for small windows. In order to find the optimum setting, we tested different
window sizes and window functions. Specifically, the signal was first split into pieces by
the windows. Then, a window function was adopted to time the data points in every piece.
After that, Fourier transformation was performed in each piece, and the amplitude of each
frequency was computed. Finally, the HR was computed based on the amplitude and the
predefined frequency range (based on the range of the GS HR). The frequency that holds
the highest amplitude is considered as the HR frequency. Note that the overlap between
two continuous windows was set to three quarters of the window, and f1 and f2 were 0.6
and 6 Hz, respectively. The computing details were as follows:
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Algorithms 1 Computation details of HR extraction

Input: single colour signal S = si(i = 1, 2, . . . N); sampling rate r; window size w; window
function wf; overlap window size wn (here wn=3*w/4); minimum frequency f1 and maximum
frequency f2.
Output: Estimated heart rate hr
1: min_hr_freq = 1 + f1 ∗w/r
2: max_hr_freq = 1 + f 2 ∗ w/r
3: For i in [1, 2, . . . , K, K= b N/(w-wn) c ] do
4: wini= (i− 1) ∗ (w−wn) + 1
5: end for
6: For k in [1,2, . . . K] do
7: fwink= (s p: sq) ∗wf, where p = wini and q = wini + (w−wn)−1
8: Ak= abs(fft(fwink)/w)
9: Ak= Ak(min_hr_freq : max_hr_freq)
10: HRFreqIndexk= max(Ak);
11: hrk =

(
60∗ r

w
)
∗(HRFreqIndex k +min_hr_freq− 2)

12: end for

2.2.4. Validation

To investigate the quality of HR estimation, mean absolute error (MAE), root-mean-
square error (RMSE) and percentage of HR error below 3.5 (PE3.5) beats per minute (bpm)
were used to make the comparison with the GS HR. Assume that the estimated and
reference HR are p1 and p2, respectively, then MAE, RMSE and PE3.5 are given by:

MAE =
1
N ∑

i
|p1 − p2| (1)

RMSE =
1
N

√
∑

i
(p1 − p2)

2 (2)

PE3.5 =
1
N
{i : |p1 − p2| < 3.5 BPM} (3)

where N is the total number of windows, and i is the i-th window.

2.2.5. Channel Selection

The core of extracting HR from the video is to extract effective information from RGB
channels. As different color channels contain different levels of information regarding
HR [17], first, three single channels (R, G and B) were tested individually by using STFT to
extract HR. Then, the extracted HR was compared with the GS HR by computing MAE,
RMSE and PE3.5. Finally, the channel that performed best in validation was selected as the
one used in monitoring.

2.2.6. Algorithm Comparison

After channel selection, only one channel was used in the developed algorithm for
extracting the HR. Less computation is needed in this way. However, the accuracy of this
study was also compared to the algorithms using three channels that included combining
three channels in different proportions [12,13,35,36] and blind source separation method
based on ICA [10].

In previous studies [12,13,35,36] of extracting HR from video signal, three-channel
signals were combined in four different proportions: green-red difference (GRD), adaptive
green-red difference (aGRD), chrominance-based method (CHROM), plane-orthogonal-
to-skin (POS), and they were defined as follows. Assume r, g, b are the color signal of the
three channels, then:

GRD = g − r (4)
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POS = g− b +
σL

x
σL

y
(g− b− 2r) (5)

where σL
x and σL

y are L-point running standard deviations of x = g − b and y = g + b − 2r,
respectively;

CHROM = 0.77r− 0.51g− σL
x

σL
y
(0.77r + 0.51g− 0.77b) (6)

where σL
x and σL

y are L-point running standard deviations of x = 0.77r − 0.51g and
y = 0.77r + 0.51g − 0.77b, respectively;

aGRD = ||c0||
(

g
g0
− r

r0

)
(7)

where g0 and r0 are the average of g and r channel of all pixels in ROI,

c0 =
√

r2
0 + g2

0 + b2
0 (8)

Besides the above channel combination methods, blind source separation based on
ICA [10] were also used for comparison. To select the best component when doing ICA,
fast Fourier transform (FFT) was applied on the output sources and chose the one with the
highest peak. Their workflow is showed in Figure 3.
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3. Results and Discussion

The video of the anaesthetized pig was used for choosing the channel and comparing
with other algorithms; the results are shown in Figures 4 and 5 and Tables 1 and 2. The
video from the resting pig was used to further test different ROI, and the related results
can be found in Tables 3 and 4 and Figure 6.
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Table 1. Validation results of different window sizes (anaesthetized pig) and the three RGB channels presented as mean
absolute error (MAE), root mean square error (RMSE) and percentage of heart rate (HR) error below 3.5 beats per minute
when compared to the gold standard.

R Channel G Channel B Channel

Window Size (s) Window
Function MAE RMSE PE3.5 MAE RMSE PE3.5 MAE RMSE PE3.5

8.53 rect 5.41 6.41 37% 4.66 5.25 22% 6.11 6.94 31%
8.53 hamming 5.67 6.62 31% 4.74 5.37 22% 6.45 7.31 30%
8.53 hanning 5.85 6.80 30% 4.81 5.46 22% 6.72 7.55 27%
8.53 blackman 6.17 7.11 26% 5.17 5.90 20% 6.63 7.49 28%

17.07 rect 3.86 5.44 54% 3.11 4.61 54% 6.59 7.66 23%
17.07 hamming 4.39 5.94 49% 3.26 4.80 54% 7.55 8.69 23%
17.07 hanning 4.75 6.40 46% 3.26 4.80 54% 7.55 8.69 23%
17.07 blackman 4.83 6.42 46% 3.43 4.96 51% 7.55 8.52 18%
34.13 rect 3.36 4.61 67% 2.62 3.40 67% 6.59 7.84 22%
34.13 hamming 3.66 4.76 61% 2.33 3.09 67% 6.35 7.54 28%
34.13 hanning 3.66 4.76 61% 2.33 3.09 67% 6.48 7.60 22%
34.13 blackman 3.68 4.77 61% 2.33 3.09 67% 6.77 7.88 22%
68.27 rect 2.96 3.96 57% 2.03 2.76 59% 7.21 8.19 14%
68.27 hamming 3.34 4.30 57% 2.03 2.76 59% 8.21 9.57 14%
68.27 hanning 3.34 4.30 57% 2.03 2.76 59% 8.21 9.57 14%
68.27 blackman 3.46 4.35 57% 2.03 2.76 59% 6.58 8.45 29%

Table 2. Accuracy and computing complexity comparison of different methods performed on the
anaesthetized pig and presented as mean absolute error (MAE), root mean square error (RMSE) and
percentage of HR error below 3.5 beats per minute when compared to the gold standard.

G GRD aGRD CHROM POS ICA

MAE 2.33 2.79 2.76 4.66 4.32 3.04
RMSE 3.09 3.74 3.64 6.07 5.79 4.12
PE3.5 67% 53% 49% 33% 41% 54%

Table 3. Evaluation results of different regions of interest (ROIs) of the same size on the resting pig
presented as mean absolute error (MAE), root mean square error (RMSE) and percentage of HR error
below 3.5 beats per minute when compared to the gold standard.

Face Front Leg Abdomen

Window Size (s) MAE RMSE PE3.5 MAE RMSE PE3.5 MAE RMSE PE3.5

34.14 5.48 6.98 45% 7.04 8.47 34% 5.24 7.07 53%
68.27 5.64 6.52 29% 6.27 7.52 32% 4.69 6.43 57%

Table 4. Accuracy comparison of different species presented as mean absolute error (MAE), root
mean square error (RMSE) and percentage of HR error below 3.5 beats per minute (bpm) when
compared to the gold standard.

MAE RMSE PE3.5

Pig (current study) 4.69 6.43 57%
Primate [17] 4.4 / 56%
Human [31] 1.99 3.25 87%
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Figure 4 shows the noise removal and spectral information of the anaesthetized pig.
Specifically, Figure 4a–c illustrates the original color signal (green channel), the filtered
signal and a zoom-in view of the filtered signal plotted in the time domain, respectively.
The filtered signal is clearer than the original one and has regular patterns related to HR.
Figure 4d is the spectrogram generated from the filtered signal, showing that the noise was
removed effectively. Figure 4e shows the Welch power spectrum density (PSD) estimate
where the cut-off frequency was set to 3 Hz. We can see that in Figure 4f, the energy is
mostly around 1.5 to 2.5 Hz with a center frequency around 1.8 Hz, which falls in the
expected HR range of the anaesthetized pig.

Table 1 shows the validation results of MAE, RMSE and PE3.5 from R, G and B channels
of the anaesthetized pig. Based on a lower MAE, RMSE and a higher PE3.5, the G channel is
better than the other two channels. Hence, the G channel is, in the current study, considered
the best for HR extraction in pigs and is the channel used in further analysis. In order to
find the best HR estimation of the anaesthetized pig, different window sizes and window
functions were tested on the three RGB channels. Note that the overlap between two
continuous windows was set to three quarters of the window and the GS HR used the
same window and overlap sizes as the video data. Four window sizes were tested on the
video of the anesthetized pig: 8.53, 17.07, 34.13 and 68.27 s, representing the number of
data points 256, 512, 1024 and 2048, respectively, used in the windows. Different window
functions (rect, hamming, hanning and blackman) were also tested. By comparing the MAE,
RMSE and PE3.5 from different window sizes in Table 1, we can see that the lowest MAE
and RMSE were obtained with window size 68.27 s, but the PE3.5 of this window was not
the highest. This might result from some extreme large or small HR estimations when
using window size 68.27 s. Thus, considering the highest PE3.5 and relatively low MAE and
RMSE, the best window size for the anesthetized pig’s HR extraction was 34.13 s. Further,
by comparing the MAE, RMSE and PE3.5 from different window functions of window
size of 34.13 and 68.27 s in the G channel, hamming and hanning worked better than rect
and blackman, and there was not much difference between hamming and hanning. If we
compare the MAE, RMSE and PE3.5 from window size 8.53 and 17.07 s, we can see that rect
performed better than hamming and hanning; this may be caused by the small data sample
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size. More experiments should be conducted in future to further investigate this matter.
For further analysis, only window function hamming will be used.

Regarding the extraction accuracy and computing complexity of using the single G
channel, the current study made a comparison with three-channel-based methods that
includes combining three channels in different proportions of GRD, aGRD, CHROM
and POS [12,13,35,36]. The video used for comparison was the one extracted from the
anaesthetized pig. The pre-processing of all the methods were the same including bandpass
filter range (shown in Figure 3), window size (34.13 s), overlapping style (3/4 of the window
size) and window function (hamming). Table 2 shows the MAE, RMSE and PE3.5 as well
as computation time regarding the comparison of the different methods. Note that the
computation time included the reading of the video and all the processing time. It can be
concluded that in the current study, the result obtained by the single G channel is better
than for the other methods. Figure 5 shows the correlation between the test results from GS
HR and the different methods. Note that R and p in Figure 5 indicate the correlation and p
value respectively. The dark dotes represent HR numbers. Besides Figure 5 also gives the
95% confidence interval. We can observe that using the single G channel had the highest
correlation with the GS HR. It is interesting that the second best result was from aGRD,
which uses the signal of G and R channels, whereas other methods using three channels
performed worse. This suggests that using more channels would not yield the best result,
while the G channel seems the most effective for extracting HR from videos of pigs. This
might result from the fact that the G channel has a higher absorption of hemoglobin.

The resting pig has larger variations in HR than the anaesthetized pig, which was
used to test the sensitivity of the algorithm, using only the G channel, the 34.13 and 68.27 s
window sizes and hamming window based on the results described above.

Table 3 shows the estimated results from different ROIs of the resting pig, which
includes the face, front leg and abdomen. In order to find out which ROI is physiologically
best, the effect of pixel number was excluded with the size of the three ROI all set to
46 × 49 pixels. The lengths of the windows were set to 34.13 and 68.27 s, representing
1024 and 2048 data points used in the windows, respectively. Note that the overlap
between two continuous windows was set to three quarters of the window, and the GS HR
used the same window and overlap sizes as the video data. Comparing the MAE, RMSE
and PE3.5 of face, front leg and abdomen in Table 3, we can see that the results obtained
from the front leg were the worst, and results from the abdomen were better than from
the face, especially using window size 68.27 s. Thus, according to the current study, the
region of the abdomen is considered physiologically better than the other two parts for
HR extraction from RGB videos. This might result from the fact that the backfat of the
pig decreases from the shoulder, where it is the thickest, to the last rib, and the ROI of the
abdomen is right at the fat-decreasing part [37]. Additionally, Figure 6a,b illustrates the
comparison between the GS HR and the monitoring results from the abdomen by using
window size 68.27 and 34.14 s, respectively. It can be seen that the developed algorithm
can monitor pig’s HR effectively when the pig is in resting status.

This study continuously monitored the HR of a pig by using the single green channel
of a video signal. In order to evaluate the monitoring effectiveness on pigs, the current
study made a comparison with other species, and the results can be found in Table 4. We
can see that the MAE and PE3.5 of pigs are more or less the same as for primates, but worse
than for humans. We know that animals have more uncontrollable factors than humans,
and in this case, the monitoring of HR in pigs on a non-moving subject can be considered
acceptable.

In the current study, the videos of an anaesthetized and a resting pig were used to
develop and to test an algorithm to monitor the HR of pigs. From the evaluation parameters
of MAE, RMSE and PE3.5 (2.33, 3.09 and 67% on the anesthetized pig and 4.69, 6.43 and 57%
on the resting pig, respectively), it can be seen that the proposed algorithm was reliable
in the currently used setting. Compared to previous studies using three channels, this
work decreased the computing complexity by using a single channel. Additionally, from
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the comparison with other methods, we can conclude that using a single channel also
presents the advantage of enhancing accuracy to extract HR from the video of pigs. These
advantages may also have the potential to help in the monitoring of other physiological
parameters, e.g., respiration rate [26,38]. The demonstrated technique can be an important
forward towards continuous monitoring of health and welfare of animals, not only under
experimental conditions, but also on farms in the future. However, the experiments were
pilot experiments to test the feasibility of using a single G channel to monitor pig’s HR. The
data were limited, and the cut-off frequency was designed to only suit the data. In order to
improve the robustness of the presented method, it is still necessary to test different lighting
conditions, different environmental conditions, different animal and animal sizes as well
as animals in movement and in different postures. Thus, much work still needs to be
conducted in the future to have a reliable system to monitor HR in pigs without disturbing
the animal. Future work should focus on monitoring the physiological parameters of
moving pigs with physical movements included. Although this is a serious challenge, it
might be achieved by combining an efficient tracking method with the designed monitoring
algorithm. In spite of these challenges, we are convinced that digitalization and artificial
intelligence will increasingly play an important role in veterinary medicine and animal
farming in the future. Applying the presented novel sensor technology for measuring
animal-based indicators in real-time, such as heart rate on pigs, is one of the first steps but
can mark a paradigm shift in monitoring health and welfare of farm animals.

4. Conclusions

A FIR band pass filter combined with short-time Fourier transform (STFT) based
on a single green channel signal allowed us to successfully monitor the HR of pigs in
a contactless way from video. Analyzing MAE, RMSE and PE3.5, values of 2.33, 3.09 and
67% were obtained from the video of an anesthetized pig and values of 4.69, 6.43 and
57% from a resting pig. The skin area of the abdomen proved to be the most sensitive
body region of the three tested for monitoring the HR of the resting pig. The monitoring
results obtained from the single green channel presented higher accuracy and needed less
computation time than other methods, including combing three color channels in different
proportions (DRG, aGRD, CHROM, POS) and ICA. The experimental results indicate that
the developed algorithm based on RGB video analysis was capable of monitoring the HR
of pigs under the used conditions. It has the potential to be used for contactless heart rate
measurement and may be applied on resting pigs for real-time monitoring of their health
and welfare status, which is of significant interest for veterinarians and farmers.
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