Effect of Different Farming Practices on Lactic Acid Bacteria Content in Cow Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Characteristics
2.2. Milk Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallet, A.; Guéguen, M.; Kauffmann, F.; Chesneau, C.; Sesboué, A.; Desmasures, N. Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int. Dairy J. 2012, 27, 13–21. [Google Scholar] [CrossRef]
- Tormo, H.; Lekhal, D.A.H.; Roques, C. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria. Int. J. Food Micr. 2015, 210, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linares, D.M.; Gomez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microb. 2017, 8, 846. [Google Scholar] [CrossRef] [PubMed]
- CLAL.It. Italia:Settore Lattiero-Caseario. 2020. Available online: https://www.clal.it/?section=quadro_europa&country=IT (accessed on 12 December 2020).
- Donnelly, C.; Kehler, M. The Oxford Companion to Cheese; Oxford University Press: New York, NY, USA, 2016; pp. 413–414. ISBN 978-01-993-3088-1. [Google Scholar]
- De Reu, K.; Grijspeerdt, K.; Herman, L.A. Belgian survey of hygiene indicator bacteria and pathogenic bacteria in raw milk and direct marketing of raw milk farm products. J. Food Saf. 2004, 24, 17–36. [Google Scholar] [CrossRef]
- Morandi, S.; Battelli, G.; Silvetti, T.; Goss, A.; Cologna, N.; Brasca, M. How the biodiversity loss in natural whey culture is affecting ripened cheese quality? The case of Trentingrana cheese. LWT Food Sci. Technol. 2019, 115, 108480. [Google Scholar] [CrossRef]
- Cremonesi, P.; Morandi, S.; Ceccarani, C.; Battelli, G.; Castiglioni, B.; Cologna, N.; Goss, A.; Severgnini, M.; Mazzucchi, M.; Partel, E.; et al. Raw Milk Microbiota Modifications as Affected by Chlorine Usage for Cleaning Procedures: The Trentingrana PDO Case. Front. Microb. 2020, 11, 564749. [Google Scholar] [CrossRef] [PubMed]
- Michel, V.; Hauwuy, A.; Chamba, J.F. La flore microbienne de laits crus de vache: Diversité et influence des conditions de production. Le Lait 2001, 81, 575–592. [Google Scholar] [CrossRef] [Green Version]
- Verdier-Metz, I.; Michel, V.; Delbes, C.; Montel, M.C. Do milking practices influence the bacterial diversity of raw milk? Food Microb. 2009, 26, 305–310. [Google Scholar] [CrossRef]
- Schreiner, D.A.; Ruegg, P.L. Relationship between Udder and Leg Hygiene Scores and Subclinical Mastitis. J. Dairy Sci. 2003, 86, 3460–3465. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Shook, G.E. A lactation measure of somatic cell count. J. Dairy Sci. 1987, 70, 2666–2672. [Google Scholar] [CrossRef]
- ISO. ISO 6730: 2005 Milk—Enumeration of Colony-Forming Units of Psychrotrophic Microorganisms—Colony-Count Technique at 6.5 Degrees C; International Organization for Standardization: Genova, Switzerland, 2005. [Google Scholar]
- ISO. ISO/TS 11059:2009 Milk and Milk Products—Method for The enumeration of Pseudomonas spp.; International Organization for Standardization: Genova, Switzerland, 2009. [Google Scholar]
- Zucali, M.; Bava, L.; Colombini, S.; Brasca, M.; Decimo, M.; Morandi, S.; Tamburini, A.; Crovetto, G.M. Management practices and forage quality affecting the contamination of milk with anaerobic spore-forming bacteria. J. Sci. Food Agric. 2014, 95, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- ISO. ISO 7218:2013 Microbiology of Food and Animal Feeding-Stuffs. General Requirements and Guidance for Microbiological Examinations; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Regulation (EC), No. 853/2004 Laying Down Specific Hygiene Rules for the Hygiene of Hygiene Rules for Food of Animal Origin. OJEU 2004; L139. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004R0853 (accessed on 8 January 2021).
- Zucali, M.; Bava, L.; Tamburini, A.; Brasca, M.; Vanoni, L.; Sandrucci, A. Effects of season, milking routine and cow cleanliness on bacterial and somatic cell counts of bulk tank milk. J. Dairy Res. 2011, 78, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Doyle, C.J.; Gleeson, D.; O’Toole, P.W.; Cotter, P.D. Impacts of seasonal housing and teat preparation on raw milk microbiota: A high-throughput sequencing study. App. Environ. Microbiol. 2016, 83, e02694-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franciosi, E.; Gardini, F.; Monfredini, L.; Tabanelli, G.; Fabris, A.; Endrizzi, I.; Gasperi, F.; Cavazza, A. Does milk treatment before cheesemaking affect microbial and chemical traits of ripened cheese? Grana Trentino as a case study. J. Dairy Sci. 2012, 95, 5485–5494. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.M.M.; Driehuis, F.; Te Giffel, M.C.; De Jong, P.; Lankveld, J.M.G. Minimizing the level of butyric acid bacteria spores in farm tank milk. J. Dairy Sci. 2007, 90, 3278–3285. [Google Scholar] [CrossRef] [PubMed]
- Elmoslemany, A.M.; Keefe, G.P.; Dohoo, I.R.; Wichtel, J.J.; Stryhn, H.; Dingwell, R.T. The association between bulk tank milk analysis for raw milk quality and on-farm management practices. Prev. Vet. Med. 2010, 95, 32–40. [Google Scholar] [CrossRef]
Variable | Unit | N | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|---|
Utilized agricultural area | ha | 85 | 44.6 | 31.2 | 8.0 | 159 |
Lactating cows | n | 98 | 96.3 | 56.9 | 15.0 | 270 |
Udder hygiene score (3–4) | % | 42 | 29.7 | 25.9 | 0.0 | 100 |
Milk production | ||||||
Individual milk production | kg/day | 98 | 28.0 | 5.2 | 15.1 | 40.3 |
Fat | % | 98 | 3.65 | 0.29 | 3.02 | 4.39 |
Protein | % | 98 | 3.75 | 0.26 | 3.29 | 4.29 |
Linear Score | 80 | 3.52 | 0.84 | 1.41 | 5.35 | |
Lactating cow’s diet composition | ||||||
Feed intake | DM kg/day * | 94 | 21.7 | 2.53 | 14.1 | 28.5 |
Maize silage intake | DM kg/day * | 88 | 6.5 | 2.63 | 10.1 | |
Hay intake | DM kg /day * | 87 | 3.7 | 2.78 | 12.0 | |
Forage | % of DMI ^ | 90 | 58.1 | 8.9 | 39.7 | 86.5 |
Maize silage | % of DMI ^ | 94 | 29.5 | 12.7 | 47.4 | |
Hay | % of DMI ^ | 94 | 16.4 | 12.7 | 46.6 |
Bacterial Group | Unit | Summer | Winter | SEM a | p |
---|---|---|---|---|---|
Standard plate count (SPC) | Log10 CFU b/mL | 4.56 | 4.46 | 0.18 | 0.636 |
Lactic acid bacteria (LAB) | Log10 CFU/mL | 3.90 | 3.76 | 0.17 | 0.517 |
Coliforms | Log10 CFU/mL | 2.73 | 1.65 | 0.32 | 0.010 |
Pseudomonas spp. | Log10 CFU/mL | 3.52 | 3.93 | 0.27 | 0.206 |
Psychotrophic bacteria | Log10 CFU/mL | 4.36 | 4.58 | 0.22 | 0.490 |
Anerobic spore count | Log10 MPN c/L | 2.40 | 2.67 | 0.11 | 0.064 |
LAB/SPC | % | 88.1 | 86.5 | 8.70 | 0.883 |
Microbial Groups | Anaerobic Spore Count | SPC | Coliforms | Pseudomonas spp. | Psychotrophic Bacteria | LAB | LAB/SPC |
---|---|---|---|---|---|---|---|
Anerobic spore count | 1 | ||||||
SPC | 0.055 | 1 | |||||
Coliforms | −0.122 | 0.655 | 1 | ||||
Pseudomonas spp. | −0.058 | 0.622 | 0.451 | 1 | |||
Psychotrophic bacteria | 0.038 | 0.655 | 0.494 | 0.672 | 1 | ||
LAB | 0.159 | 0.604 | 0.412 | 0.243 | 0.458 | 1 | |
LAB/SPC | −0.082 | −0.498 | −0.190 | −0.273 | −0.122 | 0.158 | 1 |
Variable Name | Unit | Cluster 1 | Cluster 2 | Cluster 3 | SEM | p | CL1 vs. CL2 | CL1 vs. CL3 | CL2 vs. CL3 |
---|---|---|---|---|---|---|---|---|---|
Observation | n | 48 | 28 | 27 | |||||
Utilized agricultural area | ha | 44.3 | 43.7 | 47.0 | 6.790 | 0.929 | 0.949 | 0.754 | 0.720 |
Lactating cows | n | 103 | 94.1 | 90.8 | 11.75 | 0.663 | 0.525 | 0.400 | 0.834 |
Milk production | |||||||||
Individual milk production | kg/day | 29.6 | 26.8 | 27.9 | 1.040 | 0.073 | 0.025 | 0.189 | 0.424 |
Fat | % | 3.68 | 3.61 | 3.6 | 0.060 | 0.502 | 0.330 | 0.326 | 0.970 |
Protein | % | 3.71 | 3.85 | 3.76 | 0.050 | 0.079 | 0.025 | 0.417 | 0.204 |
LS | Log10 CFU/mL | 3.59 | 3.26 | 3.33 | 0.170 | 0.270 | 0.144 | 0.233 | 0.791 |
Lactating cows’ diet composition | |||||||||
Maize silage | % DM intake | 30.5 | 27.7 | 29.3 | 2.550 | 0.675 | 0.377 | 0.724 | 0.636 |
Hay | % DM intake | 16.3 | 18.7 | 15.4 | 2.630 | 0.628 | 0.460 | 0.798 | 0.362 |
Forage | % intake | 57 | 59.3 | 59.0 | 1.920 | 0.543 | 0.326 | 0.395 | 0.928 |
Bacteria count | |||||||||
Standard plate count (SPC) | Log10 CFU/mL | 4.35 | 4.69 | 4.88 | 0.170 | 0.034 | 0.099 | 0.013 | 0.392 |
Lactic acid bacteria (LAB) | Log10 CFU/mL | 3.72 | 3.8 | 4.09 | 0.150 | 0.143 | 0.670 | 0.053 | 0.157 |
Coliforms | Log10 CFU/mL | 2.09 | 2.43 | 2.88 | 0.290 | 0.096 | 0.328 | 0.031 | 0.240 |
Pseudomonas spp. | Log10 CFU/mL | 3.54 | 4.04 | 3.98 | 0.210 | 0.110 | 0.058 | 0.102 | 0.856 |
Psychotrophic bacteria | Log10 CFU/mL | 4.16 | 4.48 | 4.86 | 0.240 | 0.103 | 0.306 | 0.034 | 0.256 |
Anerobic spore count | Log10 MPN/mL | 2.26 | 2.38 | 2.67 | 0.130 | 0.041 | 0.439 | 0.012 | 0.099 |
LAB/SPC | % | 91.1 | 80.8 | 83.7 | 6.780 | 0.417 | 0.211 | 0.381 | 0.758 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bava, L.; Zucali, M.; Tamburini, A.; Morandi, S.; Brasca, M. Effect of Different Farming Practices on Lactic Acid Bacteria Content in Cow Milk. Animals 2021, 11, 522. https://doi.org/10.3390/ani11020522
Bava L, Zucali M, Tamburini A, Morandi S, Brasca M. Effect of Different Farming Practices on Lactic Acid Bacteria Content in Cow Milk. Animals. 2021; 11(2):522. https://doi.org/10.3390/ani11020522
Chicago/Turabian StyleBava, Luciana, Maddalena Zucali, Alberto Tamburini, Stefano Morandi, and Milena Brasca. 2021. "Effect of Different Farming Practices on Lactic Acid Bacteria Content in Cow Milk" Animals 11, no. 2: 522. https://doi.org/10.3390/ani11020522
APA StyleBava, L., Zucali, M., Tamburini, A., Morandi, S., & Brasca, M. (2021). Effect of Different Farming Practices on Lactic Acid Bacteria Content in Cow Milk. Animals, 11(2), 522. https://doi.org/10.3390/ani11020522