Alternative Management Systems of Beef Cattle Manure for Reducing Nitrogen Loadings: A Case-Study Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Policy Background
2.2. Manure Management System
2.3. Sample Descriptions
2.4. Methods
3. Results
3.1. Individual Case Studies
3.1.1. Compost-Based Systems: Farm A
3.1.2. Product-Based Systems: Farm B
3.1.3. Substrate-Based Systems: Farm C
3.1.4. Substrate-Based Systems: Farm D
3.1.5. Biogas-Based Systems: Farm E
3.2. Cross-Case Studies
4. Discussion
4.1. Cross-System Comparison
4.1.1. Reasons of Emergence
4.1.2. Success Factors
4.1.3. Risk Factors
4.1.4. Operation Mechanism
4.1.5. Scalability
4.1.6. Key Elements
4.1.7. Environmental Effects
4.2. Future Trends and Positive Externalities
4.2.1. Mixed Recycling Systems as a Trend
4.2.2. Increasing Role of Third-Party Entities
4.2.3. Co-Improvement of Rural Living Environment
4.2.4. Positive Spillover Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bluemling, B.; Wang, F. An institutional approach to manure recycling: Conduit brokerage in Sichuan Province, China. Resour. Conserv. Recycl. 2018, 139, 396–406. [Google Scholar] [CrossRef]
- FAO Manure Management. 2019. Available online: http://www.fao.org/faostat/en/#data/GM (accessed on 4 November 2020).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The change of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Havlik, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Bluemmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, M.; Thornton, P.K. Livestock and global change: Emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20878–20881. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.K.V.; Vu, D.Q.; Jensen, L.S.; Sommer, S.G.; Bruun, S. Life cycle assessment of biogas production in small-scale household digesters in Vietnam. J. Anim. Sci. 2015, 28, 716–729. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlik, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef] [Green Version]
- Chinese Academy of Agricultural Science, Institute of Environment and Sustainable Development in Agriculture. The First National Pollution Source Census, Livestock and Poultry Industry Pollution Coefficient Manual. 2017. Available online: https://www.docin.com/p-1847271729.html (accessed on 17 December 2020).
- Geng, W.; Hu, L.; Cui, J.Y.; Bu, M.D.; Zhang, B.B. Biogas energy potential for livestock manure and gross control of animal feeding in region level of China. Trans. Chin. Soc. Agric. Eng. 2013, 29, 171–179. [Google Scholar]
- Lin, Y.; Ma, J. The structure distribution and prospect of China manure resource. China Agric. Sci. Bull. 2012, 28, 1–5. [Google Scholar]
- Chadwick, D.R.; Williams, J.R.; Lu, Y.; Ma, L.; Bai, Z.; Hou, Y.; Chen, X.; Misselbrook, T.H. Strategies to reduce nutrient pollution from manure management in China. Front. Agric. Sci. Eng. 2020, 7, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, J.; Wang, X.; Wang, Y. The impact of alternative policies on livestock farmers’ willingness to recycle manure: Evidence from central China. China Agric. Econ. Rev. 2020, 12, 583–594. [Google Scholar] [CrossRef]
- Wang, J.; Baerenklau, K.A. How inefficient are nutrient application limits? A dynamic analysis of groundwater nitrate pollution from CAFOs. Appl. Econ. Perspect. Policy 2015, 37, 130–150. [Google Scholar] [CrossRef] [Green Version]
- Joshi, J.; Wang, J. Manure management coupled with bioenergy production: An environmental and economic assessment of large dairies in New Mexico. Energy Econ. 2018, 74, 197–207. [Google Scholar] [CrossRef]
- Ghimire, S.; Wang, J.; Fleck, J.R. Integrated Crop-Livestock Systems for Nitrogen Management: A Multi-Scale Spatial Analysis. Animals 2021, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lin, H.S.; White, E.A. Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. Catena 2008, 73, 180–188. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, J.J.; Liu, L.; Liu, H.; Du, J.G. First-principles study of the effect of water on the phase transitions in Mg2SiO4 forsterite. High Press. Res. 2010, 30, 318–324. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerda, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Pandey, P.C.; Nanda, G.; Gupta, S. Long-term effects of inorganic fertilizer and farmyard manure application on productivity, sustainability and profitability of rice-wheat system in Mollisols. Arch. Agron. Soil Sci. 2019, 65, 139–151. [Google Scholar] [CrossRef]
- Zhang, J.C.; Liu, L.; Jiang, Y.R.; Faisal, S.; Wei, L.L.; Cao, C.J.; Yan, W.H.; Wang, Q. Converting peanut protein biomass waste into “double green” meat substitutes using a high-moisture extrusion process: A multiscale method to explore a process for forming a meat-like fibrous structure. J. Agric. Food Chem. 2019, 67, 10713–10725. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Schulin, R. Effects of soil organic residue amendment on losses of dissolved organic carbon, P, Cu, and Zn via surface runoff from arable soils. Soil Till. Res. 2019, 195, 104352. [Google Scholar] [CrossRef]
- Cai, X.P.; Liu, H.B.; Liu, J.; Zhai, L.M.; Yang, B.; Wu, S.X.; Ren, T.Z.; Lei, Q.L.; Wang, H.Y. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar]
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreal, C.M.; Ellert, B.H. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Maillard, E.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Yu, Q.G.; Ye, J.; Yang, S.N.; Fu, J.R.; Ma, J.W.; Sun, W.C.; Jiang, L.N.; Wang, Q.; Wang, J.M. Effects of nitrogen application level on rice nutrient uptake and ammonia volatilization. Rice Sci. 2013, 20, 139–147. [Google Scholar] [CrossRef]
- Chupora, V.V. Effect of green manuring crops on intensity of production-destruction processes in agro-ecosystems of central Siberia. Agrokhimiya 1995, 11, 152–155. [Google Scholar]
- Rehim, A.; Khan, M.; Imran, M.; Bashir, M.A.; UI-Allah, S.; Khan, M.N.; Hussain, M. Integrated use of farm manure and synthetic nitrogen fertilizer improves nitrogen use efficiency, yield and grain quality in wheat. Ital. J. Agron. 2020, 15, 1360. [Google Scholar] [CrossRef] [Green Version]
- Mielke, L.N.; Mazurak, A.P. Infiltration of water on a cattle feedlot. TASABE 1976, 19, 0341–0344. [Google Scholar]
- Sommerfeldt, T.G.; Chang, C. Changes in soil properties under annual applications of feedlot manure and different tillage practices. Soil Sci. Soc. Am. J. 1985, 49, 983–987. [Google Scholar] [CrossRef]
- Rajendran, A.; Fox, T.; Reis, G.R.; Wilson, B.; Hu, B. Deposition of manure nutrients in a novel mycoalgae biofilm for nutrient management. Biocatal. Agric. Biotechnol. 2018, 14, 120–128. [Google Scholar] [CrossRef]
- Huijsmans, J.F.M.; Hol, J.M.G.; Vermeulen, G.D. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos. Environ. 2003, 37, 3669–3680. [Google Scholar] [CrossRef]
- Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D. Impacts of swine manure pits on groundwater quality. Environ. Pollut. 2002, 12, 475–492. [Google Scholar] [CrossRef]
- Rotz, C.A.; Oenema, J. Predicting management effects on ammonia emissions from dairy and beef farms. TASABE 2006, 49, 1139–1149. [Google Scholar]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Clean. Prod. 2017. [Google Scholar] [CrossRef]
- Loyon, L. Overview of animal manure management for beef, pig, farms in France. Front. Sustain. Food Syst. 2018, 2, 36. [Google Scholar] [CrossRef]
- Moeletsi, M.E.; Tongwane, M.I. 2004 methane and nitrous oxide emissions from manure management in South Africa. Animals 2015, 5, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Loyon, L. Overview of manure treatment in France. Waste Manag. 2017, 61, 516–520. [Google Scholar] [CrossRef]
- Drozdz, D.; Wystalska, K.; Malinska, K.; Grosser, A.; Grobelak, A.; Kacprzak, M. Management of poultry manure in Poland: Current state and future perspectives. J. Environ. Manag. 2020, 264, 110327. [Google Scholar] [CrossRef]
- Porter, S.A.; James, D.E. Using a spatially explicit approach to assess the contribution of livestock manure to Minnesota’s agricultural nitrogen budget. Agronomy 2020, 10, 480. [Google Scholar] [CrossRef] [Green Version]
- Nasir, L.M.; Ghazi, T.M.; Omar, R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Yang, G.; Feng, Y.; Ren, G. Development process and probable future transformation of rural biogas in China. Renew. Sustain. Energy Rev. 2016, 55, 703–712. [Google Scholar] [CrossRef]
- Esteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C.R.V. Life cycle assessment of manure biogas production: A review. J. Clean. Prod. 2019, 219, 411–423. [Google Scholar] [CrossRef]
- Roubik, H.; Mazancova, J.; Phung, L.D.; Banout, J. Current approach to manure management for small-scale Southeast Asian farmers: Using Vietnamese biogas and non-biogas farms as an example. Renew. Energy 2018, 115, 362–370. [Google Scholar] [CrossRef]
- Qiu, H.; Mo, H.; Bai, J.; Cai, Y.; Wang, J. Treatment methods and influencing factors of livestock manure in rural China: An empirical analysis based on survey data from five provinces. China Rural Econ. 2012, 28, 78–87. [Google Scholar]
- Gutierrez, A.S.; Eras, J.J.C.; Billen, P.; Vandecasteele, C. Environmental assessment of pig production in Cienfuegos, Cuba: Alternatives for manure management. J. Clean. Prod. 2016, 112, 2518–2528. [Google Scholar] [CrossRef]
- Montemayor, E.; Bonmati, A.; Torrellas, M.; Camps, F.; Ortiz, C.; Domingo, F.; Riau, V.; Anton, A. Environmental accounting of closed-loop maize production scenarios: Manure as fertilizer and inclusion of catch crops. Resour. Conserv. Recycl. 2019, 146, 395–404. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Vellinga, T.; Rafiee, S.; Sharifi, M.; Shine, P.; Pishgar-Komleh, S.H. Technical environmental and cost-benefit assessment of manure management chain: A case study of large scale dairy farming. J. Clean. Prod. 2019, 233, 857–868. [Google Scholar] [CrossRef]
- Chinh, N.Q. Dairy Cattle Development: Environmental Consequences and Pollution Control Options in Hanoi Province, North Vietnam. EEPSEA Research Report. 2005. Available online: https://ideas.repec.org/p/eep/report/rr2005122.html#download (accessed on 9 January 2021).
- Wang, X.; Wang, H.; Xu, D. Prospects and countermeasures of commercial financing for large and medium-sized biogas projects. Manag. World 2004, 20, 78–85. [Google Scholar]
- Whalen, J.K.; Thomas, B.W.; Sharifi, M. Novel practices and smart technologies to maximize the nitrogen fertilizer value of manure for crop production in cold humid temperate regions. Adv. Agron. 2018. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhang, T.Y.; Dao, G.H.; Xu, X.Q.; Wang, X.X.; Hu, H.Y. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl. Microbiol. Biotechnol. 2017, 101, 2659–2675. [Google Scholar] [CrossRef]
- NRCS. National Engineering Handbook in: US Department of Agriculture; USDA: Washington, DC, USA, 1999.
- Hanifzadeh, M.; Nabati, Z.; Longka, P.; Malakul, P.; Apul, D.; Kim, D. Life cycle assessment of superheated steam drying technology as a novel cow manure management method. J. Environ. Manag. 2017, 199, 83–90. [Google Scholar] [CrossRef]
- Battini, F.; Agostini, A.; Boulamanti, A.K.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. [Google Scholar] [CrossRef]
- Cherubini, E.; Zanghelini, G.M.; Alvarenga, R.A.F.; Franco, D.; Soares, S.R. Life cycle assessment of swine production in Brazil: A comparison of four manure management systems. J. Clean. Prod. 2015, 87, 68–77. [Google Scholar] [CrossRef]
- Haase, M.; Rosch, C.; Ulrici, O. Feasibility study on the processing of surplus livestock manure into an organic fertilizer by thermal concentration: The case study of Les Plenesses in Wallonia. J. Clean. Prod. 2017, 161, 896–907. [Google Scholar] [CrossRef]
- Pergola, M.; Piccolo, A.; Palese, A.M.; Ingrao, C.; Meo, V.D.; Celano, G. A combined assessment of the energy, economic and environmental issues associated with on-farm manure composting processes: Two case studies in South of Italy. J. Clean. Prod. 2018, 172, 3969–3981. [Google Scholar] [CrossRef]
- Horrillo, A.; Gaspar, P.; Escribano, M. Organic farming as a strategy to reduce carbon footprint in Dehesa agroecosystems: A case study comparing different livestock products. Animals 2020, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Venier, F.; Yabar, H. Renewable energy recovery potential towards sustainable cattle manure management in Buenos Aires Provinces: Site selection based on GIS spatial analysis and statistics. J. Clean. Prod. 2017, 162, 1317–1333. [Google Scholar] [CrossRef] [Green Version]
- Calise, F.; Cremonesi, C.; Vastogirardi, G.D.N.D.; d’ Accadia, M.D. Technical and economic analysis of a cogeneration plant fueled by biogas produced from livestock biomass. Energy Procedia 2015, 82, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Pexas, G.; Mackenize, S.; Wallace, M.; Kyriazakis, I. Environmental impacts of housing conditions and manure management in European pig production systems through a life cycle perspective: A case study in Denmark. J. Clean. Prod. 2020, 253, 120005. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z.; Lelek, L.; Kulczycka, J. Comparative analyses of pig farming management systems using the Life Cycle Assessment method. J. Clean. Prod. 2019, 241, 118305. [Google Scholar] [CrossRef]
- Perry, C. Processes of a case study methodology for postgraduate research in marketing. Eur. J. Marketing 1998, 32, 785–802. [Google Scholar] [CrossRef]
- Rowley, J. Using case studies in research. Manag. Res. News. 2002, 25, 16–27. [Google Scholar] [CrossRef]
- Teenstra, E.D.; Vellinga, T.V.; Aktasaeng, N.; Amatayaku, W.; Ndambi, A.; Pelster, D.; Germer, L.; Jenet, A.; Opio, C.; Andeweg, K. Global Asessment of Manure Management Policies and Practices. (Livestock Research Report; No. 844); Wageningen UR Livestock Research: Wageningen, The Netherlands, 2014; Available online: https://edepot.wur.nl/335445 (accessed on 9 January 2021).
- Backus, G.B.C. Manure Management: An Overview and Assessment of Policy Instruments in the Netherlands; World Bank: Washington, DC, USA, 2017; Available online: https://openknowledge.worldbank.org/handle/10986/29250 (accessed on 9 January 2021).
- Tomich, T.; Brodt, S.B.; Dahlgren, R.A.; Scow, K.M. The California Nitrogen Assessment: Challenges and Solutions for People, Agriculture, and the Environment; University of California Press: Oakland, CA, USA, 2016. [Google Scholar]
- Zhao, Y.R.; Zhang, Y.Y.; Wei, W.X. Quantifying international oil price shocks on renewable energy development in China. Appl. Econ. 2021, 53, 329–344. [Google Scholar] [CrossRef]
- National Energy Administration. Available online: http://www.nea.gov.cn/2020-03/06/c_138850234.htm (accessed on 7 January 2021).
- Tu, Q.; Mo, J.L.; Fan, Y. The evolution and evaluation of China’s renewable energy policies and their implications for future. China Popul. Resour. Environ. 2020, 30, 29–36. [Google Scholar]
- Sun, R. Production of green agriculture: An evaluation of the process of reducing chemical fertilizer and replacing with organic fertilizer. Chongqing Soc. Sci. 2019, 16, 33–43. [Google Scholar]
- Fan, R.; Luo, J.; Gao, Y.; Liu, H.; Yan, S.; Zhang, Z. Advances in utilization of agricultural wastes in soilless growing medium production. Jiangsu J. Agric. Sci. 2014, 30, 442–448. [Google Scholar]
- Petersen, S.O.; Blanchard, M.; Chadwick, D.; Prado, A.D.; Edouard, N.; Mosquera, J.; Sommer, S.G. Manure management for greenhouse gas mitigation. Animals 2013, 7 (Suppl. 2), 266–282. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. China Animal Husbandry and Veterinary Yearbook 2019; Yearbook Editorial Board: Beijing, China, 2019.
- Masse, D.I.; Jarret, G.; Benchaar, C.; Saady, N.M.C. Effect of corn dried distiller grains with solubles (DDGS) in dairy cow diets on manure bioenergy production potential. Animals 2014, 4, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Ayantunde, A.A.; Duncan, A.J.; Wijk, M.T.; Thorne, P. Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa. Animals 2018, 12 (Suppl. 2), S199–S209. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Velthof, G.L.; Case, S.D.C.; Oelofse, M.; Grignani, C.; Balsari, P.; Zavattzro, L.; Gioelli, F.; Berna, M.P.; Fangueiro, D.; et al. Stakeholder perceptions of manure treatment technologies in Denmark, Italy, the Newtherlands and Spain. J. Clean. Prod. 2018, 172, 1620–1630. [Google Scholar] [CrossRef]
- Li, Q.; Wagan, S.A.; Wang, Y.B. An analysis on determinants of farmers’ willingness for resource utilization of livestock manure. Waste Manag. 2021, 120, 708–715. [Google Scholar] [CrossRef]
- Yalcinkaya, S.; Malina, J.F. Model development and evaluation of methane potential from anaerobic co-digestion of municipal waste water sludge and un-dewatered grease trap waste. Waste Manag. 2015, 40, 53–62. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.B. Comments on the choice of government in livestock and poultry waste recycling: Incentive or punish. Rural Econ. 2018, 36, 55–61. [Google Scholar]
- Chen, Q.H.; Zhang, K. The evolution of resource utilization of livestock and poultry breeding waste in the past 70 years since the founding of P.R. China. China Popul. Resour. Environ. 2020, 30, 166–176. [Google Scholar]
- Xue, Y.N.; Luan, W.X.; Yang, J.J.; Yang, W. Evolution characteristics and reflections on pollution control policy system of livestock and poultry breeding in China. Acta Ecol. Anim. Domast. 2020, 41, 51–57. [Google Scholar]
- Li, Q.; Wang, Y.B.; Shi, Z.Z. Evaluation and reflection of the beef cattle improved variety subsidy policy in China. J. China Agric. Univ. 2019, 24, 234–240. [Google Scholar]
- Pratt, C.; Redding, M.M.; Hill, J.; Jensen, P.D. Does manure management affect the latent greenhouse gas emitting potential of livestock manures? Waste Manag. 2015, 46, 568–576. [Google Scholar] [CrossRef]
- Li, F.; Cheng, S.K.; Yu, H.L.; Yang, D.W. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. J. Clean. Prod. 2016, 126, 451–460. [Google Scholar] [CrossRef]
- Thu, C.T.T.; Cuong, P.H.; Hang, L.T.; Chao, N.V.; Anh, L.X.; Trach, N.X.; Sommer, S.G. Manure management practices on biogas and non-biogas pig farms in developing countries: Using livestock farms in Vietnam as an example. J. Clean. Prod. 2012, 27, 64–71. [Google Scholar]
- Sorathiya, L.M.; Fulsoundar, A.B.; Tyagi, K.K.; Patel, M.D.; Singh, R.R. Eco-friendly and modern methods of livestock waste recycling for enhancing farm profitability. Int. J. Recycl. Org. Waste Agric. 2014, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.; Shen, Y.; Shang, X.; Qiao, J. Operating mechanism analysis of centralized treatment models of livestock manure in China. Agric. Econ. Manag. 2019, 10, 86–94. [Google Scholar]
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Cluett, J.; Vander, C.; Zaag, A.; Balde, H.; McGinn, S.; Jenson, E.; Hayes, A.C.; Ekwe, S. Effects of two manure additives on methane emissions from dairy manure. Animals 2020, 10, 807. [Google Scholar] [CrossRef]
Region | Amount | Percentage | Region | Amount | Percentage | Region | Amount | Percentage | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Whole country | 95,935.90 | 100% | Northeast China | Liaoning | 3061.36 | 3.19% | Southwest China | Sichuan | 7999.43 | 8.34% | |
North China | Beijing | 224.46 | 0.23% | Jilin | 2636.11 | 2.75% | Chongqing | 1262.69 | 1.32% | ||
Tianjin | 306.70 | 0.32% | Heilongjiang | 3553.32 | 3.70% | Guizhou | 3120.93 | 3.25% | |||
Hebei | 5046.86 | 5.26% | Total | 9250.80 | 9.64% | Yunnan | 5985.96 | 6.24% | |||
Shanxi | 1900.27 | 1.98% | Central-South Region | Hubei | 2892.61 | 3.02% | Tibet | 4014.26 | 4.18% | ||
Inner Mongolia | 10,580.51 | 11.03% | Hunan | 4134.49 | 4.31% | Total | 22,383.27 | 23.33% | |||
Total | 18058.80 | 18.82% | Henan | 5238.46 | 5.46% | Northwest China | Shaanxi | 1833.74 | 1.91% | ||
East China | Shanghai | 119.90 | 0.12% | Jiangxi | 2090.66 | 2.18% | Gansu | 4070.06 | 4.24% | ||
Jiangsu | 1216.23 | 1.27% | Guangdong | 1671.25 | 1.74% | Qinghai | 3760.17 | 3.92% | |||
Zhejiang | 435.78 | 0.45% | Guangxi | 3126.60 | 3.26% | Ningxia | 1083.33 | 1.13% | |||
Anhui | 1533.88 | 1.60% | Hainan | 489.03 | 0.51% | Xinjiang | 6520.00 | 6.80% | |||
Shandong | 5352.19 | 5.58% | Fujian | 674.63 | 0.70% | Total | 17,267.30 | 18.00% | |||
Total | 8658.80 | 9.03% | Total | 20,317.73 | 21.18% |
Country | Manure Policy | Stocking Rate | Excretion | Storage | Treatment | Digestion | Application | Discharge |
---|---|---|---|---|---|---|---|---|
Latin America | ||||||||
Argentina | Yes | x * | x | x | x | |||
Brazil | Yes | x | x | x | ||||
Mexico | Yes | x | x | x | x | |||
Honduras | No | n ** | n | n | n | n | n | n |
Sub-Saharan Africa | ||||||||
Kenya | Yes | x | x | x | x | |||
Nigeria | Yes | x | x | x | x | x | ||
Rwanda | Yes | x | x | x | x | |||
Ghana | Yes | x | x | x | x | x | x | |
South and East Asia | ||||||||
Bangladesh | Yes | x | x | x | x | x | x | x |
China | Yes | x | x | x | x | x | x | x |
Thailand | Yes | x | x | x | x | x | x | x |
Nepal | No | n | n | n | n | n | n | n |
Netherlands (EU) | Yes | x | x | x | x | x | x | x |
California (US) | Yes | x | x | x | x | x | x | x |
Case | Type | Annual Slaughter (Heads) | Annual Profit (RMB/Head) | Manure Management System |
---|---|---|---|---|
Farm A | Cow–calf cattle | 25 | 3000 | Compost-based |
Farm B | Stocker-finishing | 750 | 2000 | Product-based |
Farm C | Stocker-finishing | 40 | 6000 | Substrate-based (fungiculture); organic fertilizers as a byproduct; digesters abandoned |
Farm D | Stocker-finishing | 1000 | 4000 | Substrate-based (vermiculture); organic fertilizers as a byproduct; digesters are ready but not in use |
Farm E | Cow–calf cattle | 1000 | 1500 | Biogas-based; substrate-based (vermiculture and fungiculture); organic fertilizers as a byproduct |
Case | Construction Cost (RMB) | Operation Cost (RMB/day) | Product Revenue (RMB/day) |
---|---|---|---|
Farm A | 25,000 | 110 | 0 * |
Farm B | 800,000 | 920 | 2000 |
Farm C | 1,150,000 | 1030 | 2.500 |
Farm D | 30,000 | 580 | 774 |
Farm E | 50,000 | 350 | 1774 ** |
Compost-Based | Product-Based | Substrate-Based | Biogas-Based | |
---|---|---|---|---|
Reasons of emergence | Environmental pressure | Environmental pressure; profit-driving; policy guidance | Environmental pressure; profit-driving | Environmental pressure; profit-driving; policy guidance |
Success factors | Easy to implement | Products easy to store and transport; high recycling efficiency | High profit; multiple recycled products | Multiple recycled products |
Risk factors | Invasive grass species; pathogen pollution | Lack of sale channels; high upfront costs | High rent of leasing land; lack of sale channels | Low purity of biogas; regional and weather constraints |
Operation mechanism | Marketization | Marketization; government support | Marketization | Marketization; government support |
Scalability | High | Low | Medium | Low |
Key elements | None | Capital; technology; equipment | Capital; technology; land | Capital; technology; equipment |
Environmental effects | High | Medium | Medium | Low |
Baseline (Direct Disposal) | Applied to Croplands | Compost-Based | Product-Based | Substrate-Based | Biogas-Based | |
---|---|---|---|---|---|---|
Nitrogen loadings (g/head–day) | 65.93 | 39.56–46.15 | 26.37–32.97 | 13.19–26.37 | 13.19–26.37 | 5.27–6.59 |
Nitrogen loadings (%) | 100 | 60–70 | 40–50 | 20–40 | 20–40 | 8–10 |
Nitrogen loading reduction (g/head–day) | 0 | 19.78–26.37 | 32.97–39.56 | 39.56–52.74 | 39.56–52.74 | 59.34–60.66 |
Nitrogen loading reduction (%) | 0 | 30–40 | 50–60 | 60–80 | 60–80 | 90–92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ghimire, S.; Wang, J.; Dong, R.; Li, Q. Alternative Management Systems of Beef Cattle Manure for Reducing Nitrogen Loadings: A Case-Study Approach. Animals 2021, 11, 574. https://doi.org/10.3390/ani11020574
Wang Y, Ghimire S, Wang J, Dong R, Li Q. Alternative Management Systems of Beef Cattle Manure for Reducing Nitrogen Loadings: A Case-Study Approach. Animals. 2021; 11(2):574. https://doi.org/10.3390/ani11020574
Chicago/Turabian StyleWang, Yubin, Suraj Ghimire, Jingjing Wang, Renjie Dong, and Qian Li. 2021. "Alternative Management Systems of Beef Cattle Manure for Reducing Nitrogen Loadings: A Case-Study Approach" Animals 11, no. 2: 574. https://doi.org/10.3390/ani11020574
APA StyleWang, Y., Ghimire, S., Wang, J., Dong, R., & Li, Q. (2021). Alternative Management Systems of Beef Cattle Manure for Reducing Nitrogen Loadings: A Case-Study Approach. Animals, 11(2), 574. https://doi.org/10.3390/ani11020574