Effects of Corn Silage Inclusion Level and Type of Anabolic Implant on Animal Growth Performance, Apparent Total Tract Digestibility, Beef Production per Hectare, and Carcass Characteristics of Finishing Steers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management, Dietary and Implant Treatments
2.2. Growth Performance Calculations
2.3. Efficiency of Dietary NE Utilization Calculations
2.4. Beef Production per Hectare Calculations
2.5. Apparent Total Tract Digestibility Sampling and Analysis
2.6. Carcass Trait Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Cumulative Growth Performance
3.2. Beef Production per Hectare
3.3. Apparent Total Tract Digestibility
3.4. Carcass Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samuelson, K.L.; Hubbert, M.E.; Galyean, M.L.; Loest, C.A. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef]
- Goodrich, R.; Crawford, D.; Thonney, M.; Meiske, J. Influence of corn silage level on the performance and economic returns of steer calves. MN Cattle Feeder Rep. Univ. of MN, St. Paul, MN. B-195 1974, 14–19. [Google Scholar]
- DiCostanzo, A.; Zehnder, C.; Chester-Jones, H.; Ziegler, D.; Greenwald, R. Effect of dietary com silage proportion on yearling steer performance and economic returns. Univ. of MN, St. Paul, MN. B-442 1997, 14–20. [Google Scholar]
- Rusche, W.C.; Walker, J.A.; Smith, Z.K. Effect of inclusion rate of silage with or without alpha-amylase trait on finishing steer growth performance, carcass characteristics, and agronomic efficiency measures. Transl. Anim. Sci. 2020, 4, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Smith, Z.K.; Johnson, B.J. Mechanisms of steroidal implants to improve beef cattle growth: A review. J. Appl. Anim. Res. 2020, 48, 133–141. [Google Scholar] [CrossRef]
- Johnson, B.; Anderson, P.; Meiske, J.; Dayton, W.R. Effect of a combined trenbolone acetate and estradiol implant on feedlot performance, carcass characteristics, and carcass composition of feedlot steers. J. Anim. Sci. 1996, 74, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Smith, Z.K.; Anderson, P.T.; Johnson, B.J. Finishing Cattle in All-Natural and Conventional Production Systems. Open J. Anim. Sci. 2020, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2012. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W.J., Ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2016; p. 3172. [Google Scholar]
- NASEM. Nutrient Requirements of Beef Cattle, 8 ed.; NASEM: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Goering, H.K.; VanSoest, P.J. Forgae Fiber Analysis (Apparatus, Reagents, Procedures, and Some Application); No. 379; Agricultural Research Service; USDA: Washington, DC, USA, 1970. [Google Scholar]
- NRC. Nutrient Requirements of Beef Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- Preston, R.L. 2016 Feed Composition Table. BEEF Magazine. Available online: https://www.beefmagazine.com/sites/beefmagazine.com/files/2016-feedcomposition-tables-beef-magazine.pdf (accessed on 1 February 2019).
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Guiroy, P.; Fox, D.; Tedeschi, L.; Baker, M.; Cravey, M. Predicting individual feed requirements of cattle fed in groups. J. Anim. Sci. 2001, 79, 1983–1995. [Google Scholar] [CrossRef]
- Zinn, R.; Shen, Y. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J. Anim. Sci. 1998, 76, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R. Influence of lasalocid and monensin plus tylosin on comparative feeding value of steam-flaked versus dry-rolled corn in diets for feedlot cattle. J. Anim. Sci. 1987, 65, 256–266. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis; Association of Analytical Chemists: Washington, DC, USA, 2012; Volume 222. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; AOAC: Arlington, VA, USA, 2016; Volume 20. [Google Scholar]
- USDA. United States Standards for Grades of Carcass Beef; USDA: Washington, DC, USA, 1997. [Google Scholar]
- Guiroy, P.J.; Tedeschi, L.O.; Fox, D.G.; Hutcheson, J.P. The effects of implant strategy on finished body weight of beef cattle. J. Anim. Sci. 2002, 80, 1791–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphey, C.; Hallett, D.; Tyler, W.; Pierce, J., Jr. Estimating yields of retail cuts from beef carcasses. J. Anim. Sci. 1960, 19, 1240. [Google Scholar]
- Smith, Z.K.; Kim, J.; Johnson, B.J. Feedlot performance and biological responses to coated and non-coated steroidal implants containing trenbolone acetate and estradiol benzoate in finishing beef steers123. J. Anim. Sci. 2019, 97, 4371–4385. [Google Scholar] [CrossRef] [PubMed]
- Cleale, R.M.; Bechtol, D.T.; Drouillard, J.S.; Edmonds, J.D.; Edmonds, M.; Hunsaker, B.D.; Kraft, L.A.; Lawrence, T.E.; Brewbaker, S.; Waite, A.R. Synovex Plus implants coated with a polymeric, porous film improve performance of beef steers and heifers fed in confinement for up to 200 days. J. Anim. Sci. 2012, 90, 5056–5066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanili, P.R.B.; Sarturi, J.O.; Ballou, M.A.; Trojan, S.J.; Sugg, J.D.; Ovinge, L.A.; Alrumaih, A.U.; Pellarin, L.A.; Hoffman, A.A. Effects of silage type and inclusion level on ruminal characteristics and feeding behavior of steers fed finishing diets1. J. Anim. Sci. 2017, 95, 4623–4637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Smith, Z.; Johnson, B. Coated and non-coated steroidal implants containing trenbolone acetate and estradiol benzoate on adipogenic gene expression of beef steers. J. Anim. Sci. 2018, 96, 240–241. [Google Scholar] [CrossRef]
- Smith, Z.; Chung, K.; Parr, S.; Johnson, B. Anabolic payout of terminal implant alters adipogenic gene expression of the longissimus muscle in beef steers. J. Anim. Sci. 2017, 95, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Smith, Z.; Renter, D.; Holland, B.; Word, A.; Crawford, G.; Nichols, W.; Nuttelman, B.; Streeter, M.; Walter, L.; Hutcheson, J. A pooled analysis of six large-pen feedlot studies: Effects of a non-coated initial and terminal implant compared with a single initial and delayed-release implant on arrival in feedlot heifers. Transl. Anim. Sci. 2020, 4, txaa109. [Google Scholar] [CrossRef]
- Smith, Z.K.; Johnson, B.J.; Hutcheson, J.P.; Streeter, M.N.; Nuttelman, B.L.; Nichols, W.N.; Crawford, G.I.; Word, A.B.; Holland, B.P. Effects of a single initial and delayed release implant on arrival compared with a non-coated initial implant and a non-coated terminal implant in heifers fed across various days on feed. Transl. Anim. Sci. 2019, 3, 1182–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
d 1 to 98 | d 99 to 132 | |||||||
---|---|---|---|---|---|---|---|---|
Item | CS15 | (sd) 3 | CS30 | (sd) | CS15 | (sd) | CS30 | (sd) |
Samples, n | 15 | 15 | - | 5 | - | 5 | - | |
High moisture corn, % | 36.03 | (0.287) | 28.50 | (0.314) | - | - | - | - |
Dry rolled corn, % | 36.61 | (0.346) | 28.97 | (0.397) | 73.00 | (0.230) | 57.87 | (0.295) |
Corn silage (CS), % | 15.34 | (0.445) | 30.55 | (0.729) | 15.24 | (0.171) | 30.40 | (0.277) |
Suspension supplement 4, % | 5.02 | (0.052) | 5.00 | (0.072) | 4.90 | (0.065) | 4.89 | (0.063) |
Pelleted supplement 5, % | 7.00 | (0.063) | 6.98 | (0.093) | 6.86 | (0.079) | 6.84 | (0.075) |
Dry matter, % | 64.32 | (0.667) | 54.56 | (0.783) | 69.59 | (0.921) | 57.82 | (0.752) |
Crude protein, % | 12.32 | (0.459) | 12.07 | (0.456) | 11.85 | (0.265) | 11.49 | (0.298) |
Neutral Detergent Fiber, % | 13.57 | (0.599) | 18.53 | (1.194) | 14.18 | (0.402) | 19.74 | (0.785) |
Acid Detergent Fiber, % | 6.12 | (0.249) | 9.20 | (0.484) | 6.20 | (0.176) | 9.37 | (0.358) |
Ash, % | 4.87 | (0.115) | 5.34 | (0.150) | 4.83 | (0.194) | 5.29 | (0.254) |
NEm 6, Mcal/kg | 2.08 | (0.002) | 2.01 | (0.003) | 2.05 | (0.001) | 1.96 | (0.002) |
NEg 6, Mcal/kg | 1.40 | (0.002) | 1.33 | (0.003) | 1.38 | (0.001) | 1.31 | (0.001) |
15% Corn Silage (CS15) | 30% Corn Silage (CS30) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Item | PLUS | ONE-F | PLUS | ONE-F | SEM | Silage (S) | Implant (I) | S × I |
Pens, n | 5 | 5 | 5 | 5 | - | - | - | - |
Steers, n | 38 | 37 | 36 | 38 | - | - | - | - |
Live basis 2 | ||||||||
Initial body weight (BW), kg | 370 | 369 | 368 | 368 | - | - | - | - |
Final BW, kg | 589 | 586 | 582 | 587 | 8.0 | 0.62 | 0.86 | 0.51 |
Average daily gain (ADG), kg | 1.70 | 1.65 | 1.62 | 1.66 | 0.054 | 0.46 | 0.89 | 0.22 |
Dry matter intake (DMI), kg | 10.10 | 9.92 | 10.08 | 10.21 | 0.169 | 0.29 | 0.85 | 0.22 |
Gain to feed ratio (G:F) | 0.168 | 0.166 | 0.161 | 0.163 | 0.005 | 0.19 | 1.00 | 0.60 |
Carcass-adjusted basis 3 | ||||||||
BW, kg | 603 | 601 | 589 | 590 | 6.622 | 0.02 | 0.86 | 0.70 |
ADG, kg | 1.81 | 1.75 | 1.67 | 1.68 | 0.044 | 0.01 | 0.54 | 0.30 |
G:F | 0.179 | 0.177 | 0.166 | 0.165 | 0.006 | 0.01 | 0.61 | 0.89 |
Observed dietary NE 4, Mcal/kg | ||||||||
Maintenance | 2.05 | 2.05 | 2.02 | 2.02 | 0.051 | 0.43 | 0.94 | 0.94 |
Gain | 1.39 | 1.39 | 1.36 | 1.36 | 0.045 | 0.43 | 0.94 | 0.94 |
Observed to expected dietary NE 5 | ||||||||
Maintenance | 0.99 | 0.99 | 1.02 | 1.02 | 0.025 | 0.15 | 0.91 | 0.87 |
Gain | 0.99 | 0.99 | 1.03 | 1.03 | 0.032 | 0.23 | 0.90 | 0.85 |
Agronomic return | ||||||||
Live basis beef produced, kg/hectare | 2027.0 | 2011.0 | 2087.0 | 2109.0 | 70.7 | 0.13 | 0.96 | 0.70 |
Carcass-adjusted beef produced, kg/hectare | 2159.0 | 2137.0 | 2146.0 | 2131.0 | 42.3 | 0.76 | 0.56 | 0.92 |
15% Corn Silage | 30% Corn Silage | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
Item | PLUS | ONE-F | PLUS | ONE-F | SEM 2 | Silage (S) | Implant (I) | S × I |
n, Pens | 5 | 5 | 4 | 5 | - | - | - | - |
DMI, kg | 11.89 | 11.64 | 12.17 | 11.74 | 0.329 | 0.41 | 0.16 | 0.71 |
Fecal Output, kg | 2.92 | 3.02 | 4.52 | 3.61 | 0.50 | 0.01 | 0.15 | 0.08 |
Nutrient digestibility, % | ||||||||
Dry Matter | 75.19 | 74.12 | 60.57 | 69.39 | 3.130 | 0.01 | 0.21 | 0.09 |
Organic Matter | 76.95 | 75.86 | 64.96 | 71.30 | 2.923 | 0.01 | 0.20 | 0.08 |
Crude Protein | 67.37 | 61.95 | 49.42 | 58.75 | 6.447 | 0.03 | 0.66 | 0.12 |
15% Corn Silage | 30% Corn Silage | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Item | PLUS | ONE-F | PLUS | ONE-F | SEM | Silage (S) | Implant (I) | S × I |
Pens, n | 5 | 5 | 5 | 5 | - | - | - | - |
Steers, n | 38 | 37 | 36 | 38 | - | - | - | - |
Dress 1, % | 64.56 | 64.48 | 63.69 | 63.25 | 0.501 | 0.01 | 0.48 | 0.62 |
Hot carcass weight (HCW), kg | 380 | 378 | 371 | 372 | 4.17 | 0.02 | 0.86 | 0.70 |
Ribeye area, cm2 | 93.35 | 92.97 | 92.45 | 91.87 | 1.142 | 0.24 | 0.55 | 0.93 |
Rib fat, cm | 1.14 | 1.07 | 1.12 | 0.99 | 0.112 | 0.53 | 0.22 | 0.71 |
Marbling score 2 | 436 | 451 | 429 | 480 | 17.5 | 0.42 | 0.02 | 0.16 |
Yield Grade | 2.67 | 2.61 | 2.62 | 2.52 | 0.139 | 0.50 | 0.43 | 0.87 |
Retail yield 3, % | 50.75 | 50.88 | 50.86 | 51.04 | 0.279 | 0.50 | 0.45 | 0.88 |
Estimated empty body fat (EBF) 4, % | 28.54 | 28.32 | 28.26 | 28.12 | 0.676 | 0.63 | 0.71 | 0.93 |
Final BW at 28% EBF 4, kg | 589 | 590 | 580 | 583 | 8.9 | 0.23 | 0.74 | 0.87 |
Select, % | 31.43 | 19.64 | 34.28 | 19.64 | 8.459 | 0.87 | 0.14 | 0.87 |
Choice, % | 63.21 | 70.00 | 57.03 | 63.57 | 8.369 | 0.46 | 0.44 | 0.99 |
Upper two-thirds Choice, % | 5.36 | 10.36 | 8.69 | 8.58 | 3.827 | 0.84 | 0.53 | 0.51 |
Prime, % | 0.00 | 0.00 | 0.00 | 8.21 | 2.812 | 0.16 | 0.16 | 0.16 |
Yield Grade 1, % | 10.71 | 16.78 | 9.17 | 13.93 | 5.303 | 0.68 | 0.62 | 0.90 |
Yield Grade 2, % | 62.86 | 45.36 | 55.95 | 42.14 | 11.956 | 0.68 | 0.21 | 0.88 |
Yield Grade 3, % | 26.43 | 37.86 | 34.88 | 43.93 | 11.479 | 0.54 | 0.39 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buckhaus, E.M.; Smith, Z.K. Effects of Corn Silage Inclusion Level and Type of Anabolic Implant on Animal Growth Performance, Apparent Total Tract Digestibility, Beef Production per Hectare, and Carcass Characteristics of Finishing Steers. Animals 2021, 11, 579. https://doi.org/10.3390/ani11020579
Buckhaus EM, Smith ZK. Effects of Corn Silage Inclusion Level and Type of Anabolic Implant on Animal Growth Performance, Apparent Total Tract Digestibility, Beef Production per Hectare, and Carcass Characteristics of Finishing Steers. Animals. 2021; 11(2):579. https://doi.org/10.3390/ani11020579
Chicago/Turabian StyleBuckhaus, Elizabeth M., and Zachary K. Smith. 2021. "Effects of Corn Silage Inclusion Level and Type of Anabolic Implant on Animal Growth Performance, Apparent Total Tract Digestibility, Beef Production per Hectare, and Carcass Characteristics of Finishing Steers" Animals 11, no. 2: 579. https://doi.org/10.3390/ani11020579
APA StyleBuckhaus, E. M., & Smith, Z. K. (2021). Effects of Corn Silage Inclusion Level and Type of Anabolic Implant on Animal Growth Performance, Apparent Total Tract Digestibility, Beef Production per Hectare, and Carcass Characteristics of Finishing Steers. Animals, 11(2), 579. https://doi.org/10.3390/ani11020579