Detection of Polymorphisms in the MTNR1A Gene and Their Association with Reproductive Performance in Awassi Ewes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals and Management
2.3. Reproductive Data Collection
2.4. Genotyping
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bittman, E.L.; Karsch, F.J.; Hopkins, J.W. Role of the pineal gland in ovine photoperiodism: Regulation of seasonal breeding and negative feedback effects of estradiol upon luteinizing hormone secretion. Endocrinology 1983, 113, 329–336. [Google Scholar] [CrossRef]
- Reiter, R.J. The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev. 1980, 1, 109–131. [Google Scholar] [CrossRef] [PubMed]
- Carcangiu, V.; Mura, M.C.; Parmeggiani, A.; Piccione, G.; Bini, P.P.; Cosso, G.; Luridiana, S. Daily rhythm of blood melatonin concentrations in sheep of different ages. Biol. Rhythm Res. 2013, 44, 908–915. [Google Scholar] [CrossRef]
- Mura, M.C.; Luridiana, S.; Farci, F.; Di Stefano, M.V.; Daga, C.; Pulinas, L.; Starič, J.; Carcangiu, V. Melatonin treatment in winter and spring and reproductive recovery in Sarda breed sheep. Anim. Reprod. Sci. 2017, 185, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Malpaux, B.; Daveau, A.; Maurice-Mandon, F.; Duarte, G.; Chemineau, P. Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: Presence of binding sites and stimulation of luteinizing hormone secretion by in situ microimplant delivery. Endocrinology 1998, 139, 1508–1516. [Google Scholar] [CrossRef]
- Sliwowska, J.H.; Billings, H.J.; Goodman, R.L.; Coolen, L.M.; Lehman, M.N. The premammillary hypothalamic area of the ewe: Anatomical characterization of a melatonin target area mediating seasonal reproduction. Biol. Reprod. 2004, 70, 1768–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubocovich, M.L.; Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2005, 27, 101–110. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R.; Ebisawa, T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 1994, 13, 1177–1185. [Google Scholar] [CrossRef]
- Messer, L.A.; Wang, L.; Tuggle, C.K.; Yerle, M.; Chardon, P.; Pomp, D.; Womack, J.E.; Barendse, W.; Crawford, A.M.; Notter, D.R.; et al. Mapping of the melatonin receptor 1a (MTNR1A) gene in pigs, sheep, and cattle. Mamm. Genome 1997, 8, 368–370. [Google Scholar] [CrossRef]
- Pelletier, J.; Bodin, L.; Hanocq, E.; Malpaux, B.; Teyssier, J.; Thimonier, J.; Chemineau, P. Association between expression of reproductive seasonality and alleles of the gene for Mel(1a) receptor in the ewe. Biol. Reprod. 2000, 62, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Carcangiu, V.; Mura, M.C.; Vacca, G.M.; Pazzola, M.; Dettori, M.L.; Luridiana, S.; Bini, P.P. Polymorphism of the melatonin receptor MT1 gene and its relationship with seasonal reproductive activity in the Sarda sheep breed. Anim. Reprod. Sci. 2009, 116, 65–72. [Google Scholar] [CrossRef]
- Chu, M.X.; He, Y.Q.; Cheng, D.X.; Ye, S.C.; Fang, L.; Wang, J.Y. Association between expression of reproductive seasonality and alleles of melatonin receptor 1A in goats. Anim. Reprod. Sci. 2007, 101, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Carcangiu, V.; Vacca, G.M.; Mura, M.C.; Dettori, M.L.; Pazzola, M.; Luridiana, S.; Bini, P.P. Relationship between MTNR1A melatonin receptor gene polymorphism and seasonal reproduction in different goat breeds. Anim. Reprod. Sci. 2009, 110, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Luridiana, S.; Mura, M.C.; Pazzola, M.; Paludo, M.; Cosso, G.; Dettori, M.L.; Bua, S.; Vacca, G.M.; Carcangiu, V. Association between melatonin receptor 1A (MTNR1A) gene polymorphism and the reproductive performance of Mediterranean Italian buffaloes. Reprod. Fertil. Dev. 2012, 24, 983–987. [Google Scholar] [CrossRef]
- Carcangiu, V.; Mura, M.C.; Vacca, G.M.; Dettori, M.L.; Pazzola, M.; Daga, C.; Luridiana, S. Characterization of the melatonin receptor gene MT1 in mouflon (Ovis Gmelini Musimon) and its relationship with reproductive activity. Mol. Reprod. Dev. 2010, 77, 196. [Google Scholar] [CrossRef] [PubMed]
- Trecherel, E.; Batailler, M.; Chesneau, D.; Delagrange, P.; Malpaux, B.; Chemineau, P.; Migaud, M. Functional characterization of polymorphic variants for ovine MT1 melatonin receptors: Possible implication for seasonal reproduction in sheep. Anim. Reprod. Sci. 2010, 122, 328–334. [Google Scholar] [CrossRef]
- Mura, M.C.; Luridiana, S.; Pulinas, L.; Di Stefano, M.V.; Carcangiu, V. Reproductive response to male joining with ewes with different allelic variants of the MTNR1A gene. Anim. Reprod. Sci. 2019, 200, 67–74. [Google Scholar] [CrossRef]
- Calvo, J.H.; Serrano, M.; Martinez-Royo, A.; Lahoz, B.; Sarto, P.; Ibañez-Deler, A.; Folch, J.; Alabart, J.L. SNP rs403212791 in exon 2 of the MTNR1A gene is associated with reproductive seasonality in the Rasa aragonesa sheep breed. Theriogenology 2018, 113, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyazoglu, J.; Morand-Fehr, P. Mediterranean dairy sheep and goat products and their quality. A critical review. Small Rumin. Res. 2001, 40, 1–11. [Google Scholar] [CrossRef]
- Faigl, V.; Árnyasi, M.; Kerestes, M.; Kulcsár, M.; Reiczigel, J.; Jávor, A.; Cseh, S.; Huszenicza, G. Seasonality of reproduction and MT1 receptor gene polymorphism in Awassi sheep. In Proceedings of the International Symposium on Sustainable Improvement of Animal Production and Health (FAO/IAEA 2009), Vienna, Austria, 8–11 June 2009; pp. 94–95. [Google Scholar]
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Luridiana, S.; Cosso, G.; Pulinas, L.; Di Stefano, M.V.; Curone, G.; Carcangiu, V.; Mura, M.C. New polymorphisms at MTNR1A gene and their association with reproductive resumption in Sarda breed sheep. Theriogenology 2020, 158, 438–444. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 December 2020).
- Sinnwell, J.P.; Schaid, D.J. Haplo.stats: Statistical Analysis of Haplotypes with Traits and Covariates when Linkage Phase Is Ambiguous. R Package Version 1.7.9. 2018. Available online: https://CRAN.R-project.org/package=haplo.stats (accessed on 15 March 2019).
- Saxena, V.K.; Jha, B.K.; Meena, A.S.; Naqvi, S.M. Characterization of MTNR1A gene in terms of genetic variability in a panel of subtemperate and subtropical Indian sheep breeds. J. Genet. 2015, 94, 715–721. [Google Scholar] [CrossRef]
- Starič, J.; Farci, F.; Luridiana, S.; Mura, M.C.; Pulinas, L.; Cosso, G.; Carcangiu, V. Reproductive performance in three Slovenian sheep breeds with different alleles for the MTNR1A gene. Anim. Reprod. Sci. 2020, 216, 106352. [Google Scholar] [CrossRef]
- Barrett, P.; Schuster, C.; Mercer, J.; Morgan, P.J. Sensitization: A mechanism for melatonin action in the pars tuberalis. J. Neuroendocrinol. 2003, 15, 415–421. [Google Scholar] [CrossRef]
- Conway, S.; Canning, S.J.; Barrett, P.; Guardiola-Lemaitre, B.; Delagrange, P.; Morgan, P.J. The roles of valine 208 and histidine 211 in ligand binding and receptor function of the ovine Mel(1αβ) melatonin receptor. Biochem. Biophys. Res. Commun. 1997, 239, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Kokkola, T.; Watson, M.-A.; White, J.; Dowell, S.; Foord, S.M.; Laitinen, J.T. Mutagenesis of human Mel(1a) melatonin receptor expressed in yeast reveals domains important for receptor function. Biochem. Biophys. Res. Commun. 1998, 249, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Nakamura, Y.; Korkmaz, A.; Manchester, L.C.; Tan, D.-X.; Sugino, N.; Reiter, R.J. Melatonin and the ovary: Physiological and pathophysiological implications. Fertil. Steril. 2009, 92, 328–343. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, W.J.; Wu, C.J.; Ma, F.H.; Ahmad, S.; Liu, B.R.; Han, L.; Jiang, X.-P.; Zhang, S.-J.; Yang, L.G. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2). Theriogenology 2012, 78, 1517–1526. [Google Scholar] [CrossRef]
- Itoh, M.T.; Ishizuka, B.; Kuribayashi, Y.; Amemiya, A.; Sumi, Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol. Hum. Reprod. 1999, 5, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Tamura, H.; Takasaki, A.; Miwa, I.; Taniguchi, K.; Maekawa, R.; Asada, H.; Taketani, T.; Matsuoka, A.; Yamagata, Y.; Shimamura, K.; et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal. Res. 2008, 44, 280–287. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Deng, H.; Jiang, Z.; Li, Q.; Shi, M.; Chen, H.; Han, Z. Effects of melatonin on follicular atresia and granulose cell apoptosis in the porcine. Mol. Reprod. Dev. 2016, 83, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, S.M.; Lee, E.; Kim, J.H.; Jeong, Y.I.; Lee, J.Y.; Park, S.-W.; Kim, H.-S.; Hossein, M.H.; Jeong, Y.-W.; et al. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol. Reprod. Dev. 2008, 75, 1127–1135. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, W.J.; Wang, L.K.; Pang, X.S.; Yang, L.G. The role of melatonin receptor MTNR1A in the action of melatonin on bovine granulosa cells. Mol. Reprod. Dev. 2017, 84, 1140–1154. [Google Scholar] [CrossRef] [PubMed]
- Arosh, J.A.; Banu, S.K.; Chapdelaine, P.; Madore, E.; Sirois, J.; Fortier, M.A. Prostaglandin biosynthesis, transport, and signaling in corpus luteum: A basis for autoregulation of luteal function. Endocrinology 2004, 145, 2551–2560. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Tozer, A.J.; Li, D.; Docherty, S.M.; Al-Shawaf, T.; Iles, R.K. Human granulosa-lutein cell in vitro production of progesterone, inhibin A, inhibin B, and activin A are dependent on follicular size and not the presence of the oocyte. Fertil. Steril. 2008, 89, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, T.A.; Sharma, R.K.; Phulia, S.K.; Balhara, A.K.; Ghuman, S.S.; Singh, I. Manipulation of reproductive performance of lactating buffaloes using melatonin and controlled internal drug release device treatment during out-of-breeding season under tropical conditions. Theriogenology 2016, 86, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Asada, H.; Yamagata, Y.; et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr. J. 2013, 60, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzezinski, A.; Fibich, T.; Cohen, M.; Schenker, J.G.; Laufer, N. Effects of melatonin on progesterone production by human granulosa lutein cells in culture. Fertil. Steril. 1992, 58, 526–529. [Google Scholar] [CrossRef]
- Notter, D.R.; Cockett, N.E. Opportunities for detection and use of QTL influencing seasonal reproduction in sheep: A review. Genet. Sel. Evol. 2005, 37, S39–S53. [Google Scholar] [CrossRef] [Green Version]
- Mateescu, R.G.; Lunsford, A.K.; Thonney, M.L. Association between melatonin receptor 1A gene polymorphism and reproductive performance in Dorset ewes. J. Anim. Sci. 2009, 87, 2485–2488. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, X.; Bodin, L.; Chesneau, D.; Guillaume, D.; Allain, D.; Chemineau, P.; Malpaux, B.; Migaud, M. Relationship between MT1 melatonin receptor gene polymorphism and seasonal physiological responses in Ile-de-France ewes. Reprod. Nutr. Dev. 2005, 45, 151–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Alias | SNP ID | Position on Oar_rambouillet_v1.0 | Genotype | Genotype Frequency | Allele | Allele Frequency | Hardy–Weinberg | MTNR1A Region | AA Change |
---|---|---|---|---|---|---|---|---|---|
SNP1 | rs409468184 | 17379432 | GG | 62.9 | G | 0.815 | 0.023 | Promoter | - |
GA | 37.1 | A | 0.185 | ||||||
AA | 0 | ||||||||
SNP2 | rs428941001 | 17379252 | CC | 61.2 | C | 0.806 | 0.016 | Promoter | - |
CA | 38.8 | A | 0.194 | ||||||
AA | 0 | ||||||||
SNP3 | rs419424336 | 17379237 | GG | 66.6 | G | 0.833 | 0.045 | Promoter | - |
GA | 33.4 | A | 0.167 | ||||||
AA | 0 | ||||||||
SNP4 | rs429917252 | 17379178 | CC | 65.1 | C | 0.825 | 0.035 | Promoter | - |
CT | 34.9 | T | 0.175 | ||||||
TT | 0 | ||||||||
SNP5 | rs405080439 | 17379097 | GG | 61.9 | G | 0.809 | 0.019 | Promoter | - |
GA | 38.1 | A | 0.191 | ||||||
AA | 0 | ||||||||
SNP6 | rs428880789 | 17379083 | GG | 64.8 | G | 0.824 | 0.033 | Promoter | - |
GA | 35.2 | A | 0.176 | ||||||
AA | 0 | ||||||||
SNP7 | rs415456480 | 17379037 | GG | 62.1 | G | 0.811 | 0.019 | Promoter | - |
GA | 37.9 | A | 0.189 | ||||||
AA | 0 | ||||||||
SNP8 | rs406184829 | 17378992 | CC | 0 | C | 0.349 | 0.000 | Promoter | - |
CT | 69.8 | T | 0.651 | ||||||
TT | 30.2 | ||||||||
SNP9 | rs411931887 | 17378874 | CC | 63.0 | C | 0.778 | 0.152 | Promoter | - |
CT | 29.6 | T | 0.222 | ||||||
TT | 7.4 | ||||||||
SNP10 | rs402949406 | 17378871 | CC | 0 | C | 0.175 | 0.035 | Promoter | - |
CA | 34.9 | A | 0.825 | ||||||
AA | 65.1 | ||||||||
SNP11 | rs426266687 | 17378842 | CC | 66.8 | C | 0.834 | 0.047 | Promoter | - |
CT | 33.2 | T | 0.166 | ||||||
TT | 0 | ||||||||
SNP12 | rs399461430 | 17378769 | CC | 0 | C | 0.343 | 0.000 | Promoter | - |
CT | 68.5 | T | 0.657 | ||||||
TT | 31.5 | ||||||||
SNP13 | rs400561563 | 17378728 | CC | 55.5 | C | 0.703 | 0.004 | Promoter | - |
CT | 29.6 | T | 0.297 | ||||||
TT | 14.9 | ||||||||
SNP14 | rs419743392 | 17378706 | GG | 67.9 | G | 0.840 | 0.056 | Promoter | - |
GA | 32.1 | A | 0.160 | ||||||
AA | 0 | ||||||||
SNP15 | rs406334919 | 17378624 | CC | 0 | G | 0.176 | 0.033 | Promoter | - |
CT | 35.1 | A | 0.824 | ||||||
TT | 64.9 | ||||||||
SNP16 | ss213714057 | 17377903 | GG | 66.6 | G | 0.814 | 0.822 | exon 1 | - |
GA | 29.6 | A | 0.186 | ||||||
AA | 3.8 | ||||||||
SNP17 | - | 17377662 | GG | 3.2 | G | 0.187 | 0.854 | intron 1 | - |
GC | 30.9 | C | 0.813 | ||||||
CC | 65.9 | ||||||||
SNP18 | rs419680097 | 17355611 | CC | 48.1 | C | 0.685 | 0.564 | Exon 2 | - |
CA | 40.7 | A | 0.315 | ||||||
AA | 11.2 | ||||||||
SNP19 | rs406779174 | 17355458 | GG | 74.1 | G | 0.852 | 0.231 | Exon 2 | - |
GA | 22.2 | A | 0.148 | ||||||
AA | 3.7 | ||||||||
SNP20 | rs430181568 | 17355452 | CC | 49.2 | C | 0.691 | 0.476 | Exon 2 | - |
CT | 39.7 | T | 0.309 | ||||||
TT | 11.1 | ||||||||
SNP21 | rs407388227 | 17355358 | CC | 49.2 | C | 0.691 | 0.476 | Exon 2 | Ile/Val |
CT | 39.7 | T | 0.309 | ||||||
TT | 11.1 | ||||||||
SNP22 | rs404378206 | 17355190 | CC | 92.5 | C | 0.963 | 0.697 | Exon 2 | Ile/Val |
CT | 7.5 | T | 0.037 | ||||||
TT | 0 | ||||||||
SNP23 | rs429718221 | 17355173 | GG | 44.4 | G | 0.666 | 0.984 | Exon 2 | - |
GA | 44.4 | A | 0.334 | ||||||
AA | 11.2 | ||||||||
SNP24 | rs403212791 | 17354971 | GG | 73.0 | G | 0.865 | 0.119 | Exon 2 | Cys/Arg |
GA | 27.0 | A | 0.135 | ||||||
AA | 0 | ||||||||
SNP25 | rs426523476 | 17354963 | GG | 50.1 | G | 0.702 | 0.695 | Exon 2 | - |
GA | 40.2 | A | 0.298 | ||||||
AA | 9.7 | ||||||||
SNP26 | rs413084140 | 17354943 | CC | 11.9 | C | 0.335 | 0.761 | Exon 2 | His/Arg |
CT | 43.2 | T | 0.665 | ||||||
TT | 44.9 | ||||||||
SNP27 | rs403826495 | 17354935 | CC | 13.8 | C | 0.344 | 0.384 | Exon 2 | Ile/Val |
CT | 41.2 | T | 0.656 | ||||||
TT | 45.0 | ||||||||
SNP28 | rs423194759 | 17354883 | CC | 41.3 | C | 0.661 | 0.272 | 3′Utr | - |
CT | 49.7 | T | 0.339 | ||||||
TT | 9.0 | ||||||||
SNP29 | rs414185743 | 17354835 | CC | 14.2 | C | 0.370 | 0.827 | 3′Utr | - |
CT | 45.6 | T | 0.630 | ||||||
TT | 40.2 | ||||||||
SNP30 | rs400830807 | 17354827 | GG | 74.2 | G | 0.871 | 0.139 | 3′Utr | - |
GA | 25.8 | A | 0.129 | ||||||
AA | 0 | ||||||||
SNP31 | rs410686330 | 17354746 | GG | 85.3 | C | 0.927 | 0.428 | 3′Utr | - |
GA | 14.7 | T | 0.073 | ||||||
AA | 0 |
Genotype | Litter Size | Lambing Rate (%) | DTL |
---|---|---|---|
C/C | 1.2 | 88 | 164 ± 18.1 a |
C/T | 1.1 | 87 | 170 ± 18.2 a |
T/T | 1.1 | 87 | 184 ± 22.4 b |
Haplocode | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Haplotype Frequency |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | A | A | A | T | A | A | A | C | T | C | T | C | C | A | C | A | G | A | G | T | T | C | A | G | A | C | C | T | C | G | A | 0.05470 |
2 | A | A | A | T | A | A | A | C | T | C | T | C | C | A | C | A | G | C | A | C | C | C | G | A | G | T | T | C | C | A | G | 0.05470 |
3 | G | C | G | C | G | G | G | T | C | A | C | T | C | G | T | G | C | C | G | C | C | C | G | G | G | T | T | C | C | G | G | 0.27695 |
4 | G | C | G | C | G | G | G | T | C | A | C | T | C | G | T | G | C | C | G | C | C | C | G | G | G | T | T | C | T | G | G | 0.14733 |
5 | G | C | G | C | G | G | G | T | C | A | C | T | T | G | T | G | C | A | G | T | T | C | A | G | A | C | C | T | C | G | G | 0.20156 |
Haplocode | Litter Size | Fertility Rate (%) | DTL |
---|---|---|---|
1 | 1.1 | 82 | 183 ± 22.6 b |
2 | 1.0 | 84 | 166 ± 18.3 a |
3 | 1.1 | 87 | 161 ± 18.2 a |
4 | 1.0 | 88 | 167 ± 19.1 a |
5 | 1.0 | 81 | 182 ± 20.4 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosso, G.; Nehme, M.; Luridiana, S.; Pulinas, L.; Curone, G.; Hosri, C.; Carcangiu, V.; Mura, M.C. Detection of Polymorphisms in the MTNR1A Gene and Their Association with Reproductive Performance in Awassi Ewes. Animals 2021, 11, 583. https://doi.org/10.3390/ani11020583
Cosso G, Nehme M, Luridiana S, Pulinas L, Curone G, Hosri C, Carcangiu V, Mura MC. Detection of Polymorphisms in the MTNR1A Gene and Their Association with Reproductive Performance in Awassi Ewes. Animals. 2021; 11(2):583. https://doi.org/10.3390/ani11020583
Chicago/Turabian StyleCosso, Giovanni, Michella Nehme, Sebastiano Luridiana, Luisa Pulinas, Giulio Curone, Chadi Hosri, Vincenzo Carcangiu, and Maria Consuelo Mura. 2021. "Detection of Polymorphisms in the MTNR1A Gene and Their Association with Reproductive Performance in Awassi Ewes" Animals 11, no. 2: 583. https://doi.org/10.3390/ani11020583
APA StyleCosso, G., Nehme, M., Luridiana, S., Pulinas, L., Curone, G., Hosri, C., Carcangiu, V., & Mura, M. C. (2021). Detection of Polymorphisms in the MTNR1A Gene and Their Association with Reproductive Performance in Awassi Ewes. Animals, 11(2), 583. https://doi.org/10.3390/ani11020583