Effects of Feeding Level and Breed Composition on Intake, Digestibility, and Methane Emissions of Dairy Heifers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design, Treatments, Animals, and Diets
2.3. Dry Matter Intake and Digestibility
2.4. Blood Samples
2.5. Animal Performance
2.6. Methane Emission Measurement by the Sulfur Hexafluoride Tracer Technique
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Silva, M.V.G.B.; Martins, M.F.; Cembranelli, M.A.R.; Paiva, L.C.; Panetto, J.C.C.; Machado, M.A.; Verardo, L.L.; Gonçalves, G.S.; Faza, D.R.L.R.; Mendonça Junior, C.F.; et al. Programa de Melhoramento Genético da Raça Girolando; Embrapa Gado de Leite: Juiz de Fora, Brazil, 2017; p. 20. [Google Scholar]
- Oss, D.B.; Machado, F.S.; Tomich, T.R.; Pereira, L.G.R.; Campos, M.M.; Castro, M.M.D.; Castro, M.M.D.; da Silva, T.E.; Marcondes, M.I. Energy and protein requirements of crossbred (Holstein × Gyr) growing bulls. J. Dairy Sci. 2017, 100, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Ventura, R.V.; Silva, F.F.; Yáñez, J.M.; Brito, L.F. Opportunities and challenges of phenomics applied to livestock and aquaculture breeding in South America. Anim. Front. 2020, 10, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Canaza-Cayo, A.W.; Lopes, P.S.; Cobuci, J.A.; Martins, M.F.; da Silva, M.V.G.B.D. Genetic parameters of milk production and reproduction traits of Girolando cattle in Brazil. Italian J. Anim. Sci. 2018, 17, 22–30. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Oliveira Filho, C.A.; Machado, F.S.; Ferreira, A.L.; Tomich, T.R.; Maurício, R.M.; Campos, M.M.; Silva, C.F.P.G.; Azevedo, J.A.Z.; Pereira, L.G.R. Nutritional plans on the intake, digestibility and performance of dairy heifers of different breed compositions. Pesq. Agropec. Bras. 2018, 53, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.H.A.; Borges, A.L.C.C.; Silva, R.R.; Lage, H.F.; Vivenza, P.A.D.; Ruas, J.R.M.; Facury Filho, E.J.; Palhano, R.L.A.; Gonçalves, L.C.; Borges, I.; et al. Energy metabolism and partition of lactating Zebu and crossbred Zebu cows in different planes of nutrition. PLoS ONE 2018, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, M.I.; Silva, A.L. Exigências Nutricionais de Animais Lactentes. Do Campus para o Campo: Tecnologia para Produção de Carne de Bovinos de Origem Leiteira; Neiva, J.N.M., Neiva, A.C.G.R., Restle, J., Pedrico, A., Eds.; Suprema Gráfica e Editora: Araguaína, Brazil, 2015; pp. 59–87. [Google Scholar]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weis, W.P.; Tricarico, J.M. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotta, P.P.; Valadares Filho, S.C.; Detmann, E.; Costa e Silva, L.F.; Paulino, M.F.; Marcondes, M.I.; Lobo, A.A.G.; Villadiego, F.A.C. Digesta sampling sites and marker methods for estimation of ruminal outflow in bulls fed different proportions of corn silage or sugar cane. J. Anim. Sci. 2014, 92, 2996–3006. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Detmann, E.; Valadares Filho, S.C. On the estimation of non-fibrous carbohydrates in feeds and diets. Arq. Bras. de Medicina Veterinaria e Zootecnia 2010, 62, 980–984. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Johnson, K.A.; Huyler, M.T.; Westberg, H.H.; Lamb, B.K.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.O.; Moate, P.J.; Hannah, M.C.; Ribaux, B.E.; Wales, W.J.; Eckard, R.J. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical evaluation of the SF6 procedure. Anim. Feed Sci. Technol. 2011, 170, 265–276. [Google Scholar] [CrossRef]
- Pancoti, C.G. Nutritional requirements of energy in Gir, Holstein and F1 Holstein-Gir heifers. Ph.D. Thesis, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2015. [Google Scholar]
- Rennó, L.N.; Valadares Filho, S.C.; Valadares, R.F.D.; Cecon, P.R.; Backes, A.A.; Rennó, F.P.; Alves, D.D.; Silva, P.A. Níveis de uréia na ração de novilhos de quatro grupos genéticos: Consumo e digestibilidade totais. Rev. Bras. Zootec. 2005, 34, 1775–1785. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, P.C.; Weigel, K.A.; Wernberg, R.M. Evaluation of equations to predict dry matter intake of dairy heifers. J. Dairy Sci. 2008, 91, 3699–3709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, K.M.; McGilliard, M.L.; Meyer, M.J.; Van Amburgh, M.E.; Capuco, A.V.; Akers, R.M. Effects of body weight and nutrition on histological mammary development in Holstein heifers. J. Dairy Sci. 2009, 92, 499–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piantoni, P.; Daniels, K.M.; Everts, R.E.; Rodriguez-Zas, S.L.; Lewin, H.A.; Hurley, W.L.; Akers, R.M.; Loor, J.J. Level of nutrient intake affects mammary gland gene expression profiles in preweaned Holstein heifers. J. Dairy Sci. 2012, 95, 9550–9561. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T.F.; Leblanc, S.J. Interpretation of serum metabolic parameters around the transition period. In Proceedings of the Southwest Nutrition and Management Conference, Tempe, AZ, USA, 26 February 2009; pp. 106–114. [Google Scholar]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J. Dairy Sci. 2010, 93, 3595–3601. [Google Scholar] [CrossRef] [PubMed]
- Charmley, E.; Williams, S.R.O.; Moate, P.J.; Hegarty, R.S.; Herd, R.M.; Oddy, V.H.; Reyenga, P.; Staunton, K.M.; Anderson, A.; Hannah, M.C. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Jonker, A.; Molano, G.; Koolaard, J.; Muetzel, S. Methane emissions from lactating and non-lactating dairy cows and growing cattle fed fresh pasture. Anim. Prod. Sci. 2017, 57, 643–648. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Brit. J. Nutr. 1995, 19, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurihara, M.; Magner, T.; Hunter, R.A.; McCrabb, G.J. Methane production and energy partition of cattle in the tropics. Br. J. Nutr. 1999, 81, 227–234. [Google Scholar] [CrossRef]
- Maciel, I.C.F.; Barbosa, F.A.; Tomich, T.R.; Ribeiro, L.G.P.; Alvarenga, R.C.; Lopes, L.S.; Lana, Â.M.Q. Could the breed composition improve performance and change the enteric methane emissions from beef cattle in a tropical intensive production system? PLoS ONE 2019, 14, e0220247. [Google Scholar] [CrossRef] [PubMed]
- Varel, V.H.; Derohity, B.A. Ruminal cellulolytic bacteria and protozoa from Bison, cattle-bison hybrids and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol. 1989, 55, 148–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinares-Patiño, C.S.; Waghorn, C.G.; Hegarty, R.S.; Hoskin, S.O. Effects of intensification of pastoral farming on greenhouse gas emissions in New Zealand. N. Z. Vet. J. 2009, 57, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Boland, T.M.; Quinlan, C.; Pierce, K.M.; Lynch, M.B.; Kenny, D.A.; Kelly, A.K.; Purcell, P.J. The effect of pasture pregrazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J. Anim. Sci. 2013, 91, 3867–3874. [Google Scholar] [CrossRef] [PubMed]
- Richmond, A.S.; Wylie, A.R.G.; Laidlaw, A.S.; Lively, F.O. Methane emissions from beef cattle grazing on semi-natural upland and improved lowland grasslands. Animal 2015, 9, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Feeding Level | |
---|---|---|
400 g/Day | 800 g/Day | |
Formulation | g/kg DM | |
Corn silage | 851.0 | 806.0 |
Soybean meal | 120.0 | 153.0 |
Ground corn | 0.0 | 18.0 |
Urea | 11.0 | 9.0 |
Ammonium sulfate | 5.0 | 4.0 |
Mineral mix a | 8.0 | 6.0 |
Mineral salt | 5.0 | 4.0 |
Total | 1000 | 1000 |
Composition | g/kg DM | |
Dry matter | 373.6 | 373.2 |
Crude protein | 158.9 | 145.2 |
Ether extract | 28.3 | 27.8 |
Neutral detergent fiber | 400.6 | 404.1 |
Non-fiber carbohydrates | 287.6 | 300.4 |
Energy density | Mcal/kg | |
Gross energy | 4.39 | 4.43 |
Metabolizable energy | 2.62 | 2.73 |
Item | Feeding Level | Breed | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
400 | 800 | F1 | GYR | HOL | FL | BC | Int | ||
DM | 4.21 | 5.60 | 4.92 | 4.80 | 5.00 | 0.587 | 0.001 | 0.780 | 0.157 |
OM | 3.93 | 5.21 | 4.58 | 4.47 | 4.66 | 0.537 | 0.001 | 0.787 | 0.153 |
CP | 0.70 | 0.93 | 0.83 | 0.78 | 0.84 | 0.120 | 0.001 | 0.602 | 0.269 |
NDF | 1.91 | 2.44 | 2.17 | 2.14 | 2.21 | 0.280 | 0.001 | 0.831 | 0.479 |
EE | 0.13 | 0.17 | 0.15 | 0.14 | 0.15 | 0.025 | 0.001 | 0.442 | 0.466 |
NFC | 1.18 | 1.66 | 1.41 | 1.41 | 1.44 | 0.154 | 0.001 | 0.922 | 0.346 |
DM/BW | 1.67 | 2.05 | 1.83 | 1.88 | 1.87 | 0.038 | 0.001 | 0.259 | 0.392 |
NDF/BW | 0.75 | 0.89 | 0.81 | 0.84 | 0.83 | 0.030 | 0.001 | 0.232 | 0.476 |
ME/Mcal, day | 11.36 | 15.20 | 13.4 | 13.04 | 13.41 | 1.782 | 0.001 | 0.913 | 0.162 |
Item | Feeding Level | Breed | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
400 | 800 | F1 | GYR | HOL | FL | BC | Int | ||
DM | 70.24 | 70.73 | 70.40 | 71.08 | 69.98 | 1.032 | 0.515 | 0.552 | 0.751 |
OM | 71.83 | 72.17 | 71.90 | 72.77 | 71.34 | 1.019 | 0.632 | 0.310 | 0.695 |
CP | 75.49 | 75.47 | 75.69 A | 76.7 A | 74.05 B | 1.708 | 0.980 | 0.003 | 0.795 |
NDF | 57.28 | 56.7 | 57.21 | 58.07 | 55.7 | 1.564 | 0.630 | 0.283 | 0.798 |
EE | 83.43 | 80.5 | 82.08 | 82.06 | 81.74 | 3.004 | 0.023 | 0.969 | 0.266 |
NFC | 91.62 | 91.99 | 92.22 | 90.57 | 92.62 | 2.127 | 0.546 | 0.100 | 0.687 |
Item | Feeding Level | Breed | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
400 | 800 | F1 | GYR | HOL | FL | BC | Int | ||
CH4, g/day | 125 | 153 | 148 AB | 117 B | 150 A | 18.1 | 0.006 | 0.073 | 0.823 |
CH4, g/kg DM | 32.6 | 31.0 | 32.8 | 31.2 | 31.5 | 2.58 | 0.376 | 0.935 | 0.586 |
CH4, Mcal/day | 1.55 | 2.37 | 1.97 AB | 1.48 B | 2.43 A | 0.307 | 0.011 | 0.037 | 0.313 |
CH4, g/kg ADG | 245 | 194 | 223 | 232 | 204 | 24.2 | 0.001 | 0.685 | 0.016 |
CH4, g/BW0.75 | 2.15 | 2.57 | 2.21 | 2.48 | 2.39 | 0.195 | 0.014 | 0.714 | 0.651 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestre, T.; Lima, M.A.; Santos, G.B.d.; Pereira, L.G.R.; Machado, F.S.; Tomich, T.R.; Campos, M.M.; Jonker, A.; Rodrigues, P.H.M.; Brandao, V.L.N.; et al. Effects of Feeding Level and Breed Composition on Intake, Digestibility, and Methane Emissions of Dairy Heifers. Animals 2021, 11, 586. https://doi.org/10.3390/ani11030586
Silvestre T, Lima MA, Santos GBd, Pereira LGR, Machado FS, Tomich TR, Campos MM, Jonker A, Rodrigues PHM, Brandao VLN, et al. Effects of Feeding Level and Breed Composition on Intake, Digestibility, and Methane Emissions of Dairy Heifers. Animals. 2021; 11(3):586. https://doi.org/10.3390/ani11030586
Chicago/Turabian StyleSilvestre, Tainá, Marina A. Lima, Gustavo B. dos Santos, Luiz G. R. Pereira, Fernanda S. Machado, Thierry R. Tomich, Mariana M. Campos, Arjan Jonker, Paulo H. M. Rodrigues, Virginia L. N. Brandao, and et al. 2021. "Effects of Feeding Level and Breed Composition on Intake, Digestibility, and Methane Emissions of Dairy Heifers" Animals 11, no. 3: 586. https://doi.org/10.3390/ani11030586
APA StyleSilvestre, T., Lima, M. A., Santos, G. B. d., Pereira, L. G. R., Machado, F. S., Tomich, T. R., Campos, M. M., Jonker, A., Rodrigues, P. H. M., Brandao, V. L. N., & Marcondes, M. I. (2021). Effects of Feeding Level and Breed Composition on Intake, Digestibility, and Methane Emissions of Dairy Heifers. Animals, 11(3), 586. https://doi.org/10.3390/ani11030586