R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Immunofluorescence (IF) for Paraffin-Embedded Sections
2.3. Oocytes Collection and IVM
2.4. Fluorescence Staining for Assessment of Nuclear Maturation
2.5. Gene Expression Analysis Quantitative Polymerase Chain Reaction (qPCR)
2.6. Cumulus Cell Culture
2.7. In Vitro Fertilization (IVF) and In Vitro Culture (IVC)
2.8. Statistical Analysis
2.9. Experimental Design
2.9.1. Experiment I. Localization and Expression of RSPO2-Related Genes under Normal Conditions
2.9.2. Experiment II. The Effect of R-Spondin 2 in IVM with Porcine Oocytes According to Different Concentrations
2.9.3. Experiment III. Confirmation of the Mechanism of R-Spondin 2 IVM of Porcine Cumulus-Oocyte Complexes
2.9.4. Experiment IV. Confirmation of the Mechanism of R-Spondin 2 in Porcine Cumulus Cells
3. Results
3.1. Identification and Localization of RSPO2 Related Factors in Ovarian Tissues According to Follicle Size
3.2. Expression of mRNA in Cumulus Cells and Oocytes According to Maturation Time
3.3. Effect of RSPO2, WNT Inhibitor, or WNT Activator Treatment during IVM on Nuclear Maturation
3.4. Effects of RSPO2, WNT Inhibitor, or WNT Activator Treatment on Gene Expression in Cumulus Cells and Oocytes during IVM
3.5. Effect of RSPO2 on Embryo Development before Implantation
3.6. Effect of RSPO2, WNT Inhibitor, or WNT Activator on mRNA Expression during Cumulus Cell Culture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsueh, A.J.; Kawamura, K.; Cheng, Y.; Fauser, B.C. Intraovarian control of early folliculogenesis. Endocr. Rev. 2015, 36, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Li, Q.; Wigglesworth, K.; Rangarajan, A.; Kattamuri, C.; Peterson, R.T.; Eppig, J.J.; Thompson, T.B.; Matzuk, M.M. Growth differentiation factor 9: Bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc. Natl. Acad. Sci. USA 2013, 110, E776–E785. [Google Scholar] [CrossRef] [Green Version]
- De Cian, M.-C.; Gregoire, E.P.; Le Rolle, M.; Lachambre, S.; Mondin, M.; Bell, S.; Guigon, C.J.; Chassot, A.-A.; Chaboissier, M.-C. R-spondin2 signaling is required for oocyte-driven intercellular communication and follicular growth. Cell Death Differ. 2020, 27, 2856–2871. [Google Scholar] [CrossRef]
- Kim, K.-A.; Wagle, M.; Tran, K.; Zhan, X.; Dixon, M.A.; Liu, S.; Gros, D.; Korver, W.; Yonkovich, S.; Tomasevic, N. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol. Biol. Cell 2008, 19, 2588–2596. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-A.; Zhao, J.; Andarmani, S.; Kakitani, M.; Oshima, T.; Binnerts, M.E.; Abo, A.; Tomizuka, K.; Funk, W.D. R-Spondin proteins: A novel link to β-catenin activation. Cell Cycle 2006, 5, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Kawamura, K.; Takae, S.; Deguchi, M.; Yang, Q.; Kuo, C.; Hsueh, A.J. Oocyte-derived R-spondin2 promotes ovarian follicle development. FASEB J. 2013, 27, 2175–2184. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.-Y.; O’connor, A.; Shitanaka, M.; Shimada, M.; Liu, Z.; Richards, J.S. β-Catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol. Endocrinol. 2010, 24, 1529–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapp, A.D.; Gómez, B.I.; Gifford, C.A.; Hallford, D.M.; Gifford, J.A.H. Canonical WNT signaling inhibits follicle stimulating hormone mediated steroidogenesis in primary cultures of rat granulosa cells. PLoS ONE 2014, 9, e86432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadim, E.J.; Al Wasiti, E.; Qader, H.A. Concentration of R-spondin 2 in the Follicular Fluid is Correlated with Oocyte Number and Metaphase II Oocytes in Iraqi Women Undergo ICSI. Int. J. Sci. Res. 2017, 61, 65–68. [Google Scholar] [CrossRef]
- Alok, A.; Lei, Z.; Jagannathan, N.S.; Kaur, S.; Harmston, N.; Rozen, S.G.; Tucker-Kellogg, L.; Virshup, D.M. Wnt proteins synergize to activate β-catenin signaling. J. Cell Sci. 2017, 130, 1532–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minde, D.P.; Anvarian, Z.; Rüdiger, S.G.; Maurice, M.M. Messing up disorder: How do missense mutations in the tumor suppressor protein APC lead to cancer? Mol. Cancer 2011, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minde, D.P.; Radli, M.; Forneris, F.; Maurice, M.M.; Rüdiger, S.G. Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations. PLoS ONE 2013, 8, e77257. [Google Scholar]
- Janda, C.Y.; Waghray, D.; Levin, A.M.; Thomas, C.; Garcia, K.C. Structural basis of Wnt recognition by Frizzled. Science 2012, 337, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004, 20, 781–810. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, M.; Mendoza-Topaz, C.; Rutherford, T.J.; Mieszczanek, J.; Bienz, M. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc. Natl. Acad. Sci. USA 2011, 108, 1937–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, M.D.; Nusse, R. Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 2006, 281, 22429–22433. [Google Scholar] [CrossRef] [Green Version]
- Schuijers, J.; Mokry, M.; Hatzis, P.; Cuppen, E.; Clevers, H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J. 2014, 33, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.; Boerboom, D.; Shimada, M.; Lo, Y.; Parlow, A.F.; Luhmann, U.F.O.; Berger, W.; Richards, J.S. Mice Null for Frizzled4 (Fzd4−/−) Are Infertile and Exhibit Impaired Corpora Lutea Formation and Function1. Biol. Reprod. 2005, 73, 1135–1146. [Google Scholar] [CrossRef]
- Chassot, A.-A.; Ranc, F.; Gregoire, E.P.; Roepers-Gajadien, H.L.; Taketo, M.M.; Camerino, G.; de Rooij, D.G.; Schedl, A.; Chaboissier, M.-C. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 2008, 17, 1264–1277. [Google Scholar] [CrossRef] [Green Version]
- Boyer, A.; Lapointe, É.; Zheng, X.; Cowan, R.G.; Li, H.; Quirk, S.M.; DeMayo, F.J.; Richards, J.S.; Boerboom, D. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J. 2010, 24, 3010–3025. [Google Scholar] [CrossRef] [Green Version]
- Lapointe, E.; Boyer, A.; Rico, C.; Paquet, M.; Franco, H.L.; Gossen, J.; DeMayo, F.J.; Richards, J.S.; Boerboom, D. FZD1 regulates cumulus expansion genes and is required for normal female fertility in mice. Biol. Reprod. 2012, 87, 104. [Google Scholar] [CrossRef]
- Li, L.; Ji, S.-Y.; Yang, J.-L.; Li, X.-X.; Zhang, J.; Zhang, Y.; Hu, Z.-Y.; Liu, Y.-X. Wnt/β-catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components. Mol. Cell. Endocrinol. 2014, 382, 915–925. [Google Scholar] [CrossRef]
- Wang, H.-X.; Li, T.Y.; Kidder, G.M. WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol. Reprod. 2010, 82, 865–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-X.; Gillio-Meina, C.; Chen, S.; Gong, X.-Q.; Li, T.Y.; Bai, D.; Kidder, G.M. The canonical WNT2 pathway and FSH interact to regulate gap junction assembly in mouse granulosa cells. Biol. Reprod. 2013, 89, 39. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; Tekpetey, F.R.; Kidder, G.M. Identification of Wnt/β-catenin signaling pathway components in human cumulus cells. Mol. Hum. Reprod. 2008, 15, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.T.; Gupta, M.K.; Lee, S.H.; Jung, Y.H.; Han, D.W.; Lee, H.T. Possible involvement of Wnt/β-catenin signaling pathway in hatching and trophectoderm differentiation of pig blastocysts. Theriogenology 2013, 79, 284–290.e2. [Google Scholar] [CrossRef]
- Spate, L.D.; Brown, A.N.; Redel, B.K.; Whitworth, K.M.; Murphy, C.N.; Prather, R.S. Dickkopf-related protein 1 inhibits the WNT signaling pathway and improves pig oocyte maturation. PLoS ONE 2014, 9, e95114. [Google Scholar] [CrossRef]
- Lafky, J.M.; Wilken, J.A.; Baron, A.T.; Maihle, N.J. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim. Biophys. Acta Rev. Cancer 2008, 1785, 232–265. [Google Scholar] [CrossRef] [PubMed]
- Sibilia, M.; Kroismayr, R.; Lichtenberger, B.M.; Natarajan, A.; Hecking, M.; Holcmann, M. The epidermal growth factor receptor: From development to tumorigenesis. Differentiation 2007, 75, 770–787. [Google Scholar] [CrossRef]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef]
- Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004, 117, 1281–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelman, J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer 2009, 9, 550–562. [Google Scholar] [CrossRef]
- Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 2005, 1, 2005.0010. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, R.B. Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod. Fertil. Dev. 2010, 23, 23–31. [Google Scholar] [CrossRef]
- Richani, D.; Gilchrist, R.B. The epidermal growth factor network: Role in oocyte growth, maturation and developmental competence. Hum. Reprod. Update 2018, 24, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Cui, H.; Liu, S.; Qian, Y.; Wu, H.; Li, L.; Guan, Y.; Guan, X.; Zhang, L.; Fan, H.-Y. Lgr4 gene regulates corpus luteum maturation through modulation of the WNT-mediated EGFR-ERK signaling pathway. Endocrinology 2014, 155, 3624–3637. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔδCt Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hwang, S.-U.; Jeon, Y.; Yoon, J.D.; Cai, L.; Kim, E.; Yoo, H.; Kim, K.-J.; Park, K.M.; Jin, M.; Kim, H. Effect of ganglioside GT1b on the in vitro maturation of porcine oocytes and embryonic development. J. Reprod. Dev. 2015, 61, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, K.; Suzuki, C.; Tanaka, A.; Anas, I.M.-K.; Iwamura, S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 2002, 66, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.H.; Taweechaipaisankul, A.; Ridlo, M.R.; Kim, G.A.; Lee, B.C. Effect of Klotho protein during porcine oocyte maturation via Wnt signaling. Aging 2020, 12, 23808. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yan, H.; Zheng, H.; Shi, Y.; Sun, L.; Wang, C.; Sun, J. Antiviral effect of lithium chloride on infection of cells by porcine parvovirus. Arch. Virol. 2015, 160, 1015–1020. [Google Scholar] [CrossRef]
- Salustri, A.; Garlanda, C.; Hirsch, E.; De Acetis, M.; Maccagno, A.; Bottazzi, B.; Doni, A.; Bastone, A.; Mantovani, G.; Peccoz, P.B. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development 2004, 131, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Huels, D.J.; Sansom, O.J. R-spondin Is More Than Just Wnt’s Sidekick. Dev. Cell 2017, 41, 456–458. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Yi, H.; Wang, L.; Wu, W.; Wu, X.; Yu, L. R-spondin 2 promotes proliferation and migration via the Wnt/β-catenin pathway in human hepatocellular carcinoma. Oncol. Lett. 2017, 14, 1757–1765. [Google Scholar] [CrossRef] [Green Version]
- Han, X.H.; Jin, Y.-R.; Seto, M.; Yoon, J.K. A WNT/β-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis. J. Biol. Chem. 2011, 286, 10649–10659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmon, K.S.; Gong, X.; Lin, Q.; Thomas, A.; Liu, Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA 2011, 108, 11452–11457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Tranguch, S.; Jia, X.; Zhang, H.; Das, S.K.; Dey, S.K.; Kuo, C.J.; Wang, H. Inactivation of nuclear Wnt-β-catenin signaling limits blastocyst competency for implantation. Development 2008, 135, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Han, X.H.; Jin, Y.-R.; Tan, L.; Kosciuk, T.; Lee, J.-S.; Yoon, J.K. Regulation of the follistatin gene by RSPO-LGR4 signaling via activation of the WNT/β-catenin pathway in skeletal myogenesis. Mol. Cell. Biol. 2014, 34, 752–764. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-Y.; Su, Y.-Q.; Ariga, M.; Law, E.; Jin, S.-L.C.; Conti, M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 2004, 303, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.M.; Daniel, S.A.; Eppig, J.J. Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: Evidence for a positive stimulus of somatic cell origin. J. Exp. Zool. 1988, 245, 86–96. [Google Scholar] [CrossRef]
- de Vries, W.N.; Evsikov, A.V.; Haac, B.E.; Fancher, K.S.; Holbrook, A.E.; Kemler, R.; Solter, D.; Knowles, B.B. Maternal β-catenin and E-cadherin in mouse development. Development 2004, 131, 4435–4445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Qiu, S.; Lu, L.; Zou, J.; Li, W.-F.; Wang, O.; Zhao, H.; Wang, H.; Tang, J.; Chen, L. RSPO2–LGR5 signaling has tumour-suppressive activity in colorectal cancer. Nat. Commun. 2014, 5, 3149. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-Q.; Sugiura, K.; Li, Q.; Wigglesworth, K.; Matzuk, M.M.; Eppig, J.J. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol. Endocrinol. 2010, 24, 1230–1239. [Google Scholar] [CrossRef]
- El-Hayek, S.; Demeestere, I.; Clarke, H.J. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle. Proc. Natl. Acad. Sci. USA 2014, 111, 16778–16783. [Google Scholar] [CrossRef] [Green Version]
Name | Host | Dilution | Cat # |
---|---|---|---|
Anti-RSPO2 | Mouse | 1:200 | MABS1709 |
Anti-CTNNB1 | Rabbit | 1:200 | PA5-19469 |
Anti-LGR4 | Rabbit | 1:200 | ab137480 |
Anti-LGR5 | Mouse | 1:200 | ab273092 |
Alexa Fluor 594 | Anti-Mouse | 1:400 | A11032 |
Alexa Fluor 594 | Anti- Rabbit | 1:400 | A21207 |
mRNA | Primer Sequences | Product Size (bp) | GenBank Accession Number |
---|---|---|---|
RN18s | F: 5′-CGCGGTTCTATTTTGTTGGT-3′ R: 5′-AGTCGGCATCGTTTATGGTC-3′ | 219 | AY265350 |
LGR4 | F: 5′-GTGGGAGGGATTTATTTACAG-3′ R: 5′-TGAATGCAGTGAAAGTACTCAG-3′ | 188 | XM_013994475 |
LGR5 | F: 5′-CAAGATCCAAACACACAAGC-3′ R: 5′-TAGAGACATGGGACAAATGC-3′ | 199 | KP717080 |
RSPO2 | F: 5′-GCTTTGAGGAATGTCCAGAT-3′ R: 5′-TGGTTGGACATGGTATCGTA-3′ | 198 | NM_001293141 |
Follistatin | F: 5′-TCCTGTGAAGACATCCAGTG-3′ F: 5′-CTTTACTTCCAGCAGCACAC-3′ | 204 | NM_001003662 |
Wnt3a | F: 5′-CAGCCAGACTTCTCCTCACT-3′ F: 5′-TGGTGGATATAGCAGCATCA-3′ | 220 | XM_003123621 |
B-catenin (CTNNB1) | F: 5′-CAATGGCTTGGAATGAGACT-3′ F: 5′-CAGCCCATCAACTGGATAGT-3′ | 200 | NM_214367 |
EGFR | F: 5′-ATCGGTTTAGGCTACTCACG-3′ R: 5′-GCACAAGGCTGTCCTTATTT-3′ | 193 | NM_214007 |
Has2 | F: 5′-TTACAATCCTCCTGGGTGGT-3′ R: 5′-TCAAGCACCATGTCGTACTG-3′ | 199 | NM_214053 |
PTX3 | F: 5′-AGACTTTATGCCATGGTGCT-3′ R: 5′-TGACAGTGAGCAATGAACAA-3′ | 195 | NM_001244783 |
PCNA | F: 5′-CCTGTGCAAAAGATGGAGTG-3′ R: 5′-GGAGAGAGTGGAGTGGCTTT-3′ | 187 | XM_003359883 |
POU5F1 | F: 5′-GCGGACAAGTATCGAGAACC-3′ R: 5′-CCTCAAAATCCTCTCGTTGC-3′ | 200 | NM_001113060 |
BAX | F: 5′-TGCCTCAGGATGCATCTACC-3′ R: 5′-AAGTAGAAAAGCGCGACCAC-3′ | 199 | XM_003127290 |
BCL2 | F: 5′-AATGACCACCTAGAGCCTTG-3′ R: 5′-GGTCATTTCCGACTGAAGAG-3′ | 182 | NM_214285 |
Group | Oocytes Cultured for Maturation, N * | Number of Oocytes at the Stage of | |||||||
---|---|---|---|---|---|---|---|---|---|
Germinal Vesicle (%) | Metaphase I (%) | Anaphase and Telophase I (%) | Metaphase II (%) | ||||||
RSPO2 (0 ng/mL) | 211 | 29 | (13.7 ± 2.5) | 16 | (7.63 ± 3.0) | 17 | (8.1 ± 1.0) a,b | 149 | (70.6 ± 4.1) a |
RSPO2 (0.5 ng/mL) | 203 | 20 | (9.9 ± 1.7) | 16 | (7.9 ± 2.9) | 17 | (8.4 ± 0.9) a | 150 | (73.9 ± 5.0) a |
RSPO2 (5 ng/mL) | 204 | 21 | (10.3 ± 1.0) | 8 | (3.9 ± 2.5) | 13 | (6.4 ± 1.6) a,b | 162 | (79.4 ± 1.3) a,b |
RSPO2 (10 ng/mL) | 199 | 21 | (10.6 ± 3.3) | 11 | (5.5 ± 2.8) | 9 | (4.5 ± 0.5) b | 158 | (79.4 ± 5.8) a,b |
RSPO2 (100 ng/mL) | 207 | 14 | (6.8 ± 1.3) | 2 | (1.0 ± 0.5) | 12 | (5.8 ± 1.3) a,b | 179 | (86.5 ± 2.0) b |
Group | Oocytes Cultured for Maturation, N * | Number of Oocytes at the Stage of | |||||||
---|---|---|---|---|---|---|---|---|---|
Germinal Vesicle (%) | Metaphase I (%) | Anaphase and Telophase I (%) | Metaphase II (%) | ||||||
RSPO2 (0 ng/mL) | 183 | 7 | (3.8 ± 1.4) | 8 | (4.4 ± 1.0) b,c | 5 | (2.7±1.1) a | 163 | (89.1±1.3) b |
RSPO2 (100 ng/mL) | 179 | 5 | (2.8 ± 0.5) | 1 | (0.6 ± 0.6) a | 5 | (2.8±1.1) a | 168 | (93.9±1.2) c |
Dkk1 (200 ng/mL) | 182 | 7 | (3.8 ± 1.0) | 3 | (1.6 ± 0.6) a,b | 10 | (5.5±0.6) a,b | 162 | (89.0±1.8) b |
LiCl (15 mM) | 185 | 9 | (4.9 ± 1.3) | 13 | (7.0 ± 1.6) c | 11 | (5.9±0.7) b | 152 | (82.2±0.8) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-U.; Yoon, J.D.; Kim, M.; Cai, L.; Choi, H.; Oh, D.; Kim, E.; Hyun, S.-H. R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation. Animals 2021, 11, 709. https://doi.org/10.3390/ani11030709
Hwang S-U, Yoon JD, Kim M, Cai L, Choi H, Oh D, Kim E, Hyun S-H. R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation. Animals. 2021; 11(3):709. https://doi.org/10.3390/ani11030709
Chicago/Turabian StyleHwang, Seon-Ung, Junchul David Yoon, Mirae Kim, Lian Cai, Hyerin Choi, Dongjin Oh, Eunhye Kim, and Sang-Hwan Hyun. 2021. "R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation" Animals 11, no. 3: 709. https://doi.org/10.3390/ani11030709
APA StyleHwang, S. -U., Yoon, J. D., Kim, M., Cai, L., Choi, H., Oh, D., Kim, E., & Hyun, S. -H. (2021). R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation. Animals, 11(3), 709. https://doi.org/10.3390/ani11030709