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Simple Summary: Fish meal and fish oil represent the optimal ingredients for aquafeed formulation.
However, their partial or complete substitution with more sustainable alternatives, like insects,
is required for a further development of the aquaculture sector. Nutritional programming through
parental feeding may enhance the ability of the progeny to utilize insect-based diets. In the present
study, five experimental diets characterized by increasing fish meal substitution levels with full-fat
Black Soldier Fly (Hermetia illucens; BSF) prepupae meal (0%, 25%, 50%, 75% and 100%), used for
zebrafish broodstock rearing, were provided to the progeny (first filial generation, F1). The effects of
BSF-based diets on F1 zebrafish larvae were investigated through a multidisciplinary approach. No sig-
nificant differences among the experimental groups were observed in terms of growth, hepatic lipid
accumulation and gut health. Furthermore, increasing fish meal substitution levels with BSF prepupae
meal resulted in a positive modulation of both stress and immune response. Results demonstrated that
nutritional programming via broodstock nutrition should be considered a valuable solution to increase
the use of insect meal in aquafeeds formulation and improve fish culture sustainability.

Abstract: Insects represent a valuable and sustainable alternative ingredient for aquafeed formulation.
However, insect-based diets have often highlighted controversial results in different fish species,
especially when high inclusion levels were used. Several studies have demonstrated that nutritional
programming through parental feeding may allow the production of fish better adapted to use sub-
optimal aquafeed ingredients. To date, this approach has never been explored on insect-based diets.
In the present study, five experimental diets characterized by increasing fish meal substitution levels
with full-fat Black Soldier Fly (Hermetia illucens; BSF) prepupae meal (0%, 25%, 50%, 75% and 100%)
were used to investigate the effects of programming via broodstock nutrition on F1 zebrafish larvae
development. The responses of offspring were assayed through biometric, gas chromatographic,
histological, and molecular analyses. The results evidenced that the same BSF-based diets provided
to adults were able to affect F1 zebrafish larvae fatty acid composition without impairing growth
performances, hepatic lipid accumulation and gut health. Groups challenged with higher BSF
inclusion with respect to fish meal (50%, 75% and 100%) showed a significant downregulation of
stress response markers and a positive modulation of inflammatory cytokines gene expression.
The present study evidences that nutritional programming through parental feeding may make it
possible to extend the fish meal substitution level with BSF prepupae meal in the diet up to almost
100% without incurring the well-known negative side effects of BSF-based diets.
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1. Introduction

The partial or complete replacement of fish meal (FM) and fish oil (FO) in aquafeed
formulations represents an ongoing challenge in the aquaculture sector [1,2]. For this
reason, improvements in the use of low-cost and more sustainable alternative ingredients
are considered a priority for the further development of fish culture [3]. In light of the
circular economy concept and the importance of by-product reuse, insects have gained great
attention as a promising aquafeed ingredient due to their nutritional value, bio-converting
efficiency and their low environmental requirements [4,5].

In particular, the Black Soldier Fly (Hermetia illucens; BSF) is able, during its larval
development, to grow on organic by-products, converting them into valuable biomass with
a nutritional composition dependent on the quantity and the quality of feed offered [6-8].
Due to its promising protein content and essential amino acid pattern, the use of different
BSEF dietary inclusion levels has been widely investigated in several farmed fish species,
including rainbow trout (Oncorhynchus mykiss) [9,10], Atlantic Salmon (Salmo salar) [11,12]
and Siberian sturgeon (Acipenser baerii) [13,14], as well as in experimental models like
zebrafish (Danio rerio) [8,15,16]. In addition, as recently reviewed by Zarantoniello and
collaborators [17], different diets in terms of BSF dietary inclusions, developmental stage
(larvae or prepupae) and lipid content (full-fat, partially or totally defatted) have been tested
in recent years on several fish species. However, the BSF fatty acid profile (characterized
by high content of medium-chain saturated—SFA—and monounsaturated—MUFA—fatty
acids, rather than long-chain polyunsaturated—PUFA—ones) [18] on fish growth, welfare
and quality still deserve a deeper investigation, especially over a long-term period.

Only a small number of studies have been performed considering the effects of BSF-
based diets on the whole life cycle of fish [15,19] and, to our knowledge, none on the
progeny. It has been demonstrated that parental diet, especially in terms of #-3 and n-6
PUFA profile, can affect oocyte composition, embryonic development as well as progeny
health in different vertebrate species [20-22], including teleost fishes [19,23,24]. In this
regard, there is evidence that the environmental factors experienced by parents, including
nutrient availability during growth and reproduction, can have long-lasting effects on
offspring metabolism [25,26]. In particular, in fish, maternally derived nutrients have
direct impacts on the progeny during embryogenesis, endogenous feeding period and
beyond yolk exhaustion [27-29]. Differently from mammals which encounter fluctuations
in maternal nutrients, hormones and metabolites during gestation and lactation the early
nutritional environment of fish larvae (from fertilization to yolk absorption) is fixed before
tertilization [30]. For that reason, parental feeding is very effective for nutritional program-
ming in fish, showing substantial effects on progeny metabolism, growth, survival and
transcriptional profile [31-33]. The exposure to dietary stimulus during critical fish life
cycle stages can lead to long-term changes in metabolic processes, in a phenomenon called
nutritional programming [27].

In aquaculture, nutritional programming can be useful to produce fish that are more
adapted to the farming conditions and better accustomed to use alternative dietary ingre-
dients lacking specific macronutrients [34,35]. In this regard, it has been demonstrated
that partial replacement (60%) of FO with linseed oil in gilthead seabream (Sparus aurata)
broodstock diets induced long-term persistent effects on the progeny, which showed higher
ability to use low FM- and FO-based diets even after 16 months post hatching [36,37].
This adaptation was dependent on the regulation of hepatic lipid metabolism which,
in turn, induced positive and persistent changes in the progeny PUFA profile [26,37,38].
In this sense, given the importance of long-chain PUFA for human health [39], as well as
the increasingly limited availability of aquafeed ingredients rich in these fatty acids [40],
nutritional programming may adjust fish metabolism to maximize the ability of farmed
fish to use specific ingredients, with an emphasis on dietary fatty acids [36-38].

The present study aimed to investigate, for the first time, whether nutritional program-
ming exists in larval zebrafish fed on diets including increasing dietary levels of full-fat
BSF prepupae meal, with emphasis on fish growth, health and fatty acid composition.
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Even though zebrafish is a widely used model organism, information about its dietary
predilections and nutritional requirements is mostly unknown [41]. The natural diet of wild
zebrafish is composed of a wide variety of benthic and planktonic crustaceans, worms and
insect larvae [42]. However, the analysis of wild zebrafish gut contents evidenced that
insects, mostly of terrestrial origin, represent their main prey [43,44]. In this regard,
a previous study by Vargas and collaborators [45] pointed out that a 100% BSF meal
diet did not affect zebrafish larval development over the course of a 21-day experiment.
However, in laboratory conditions, zebrafish are known to be regularly fed on commercial
diets (i.e., Zebrafeed, Sparos ltd, Olhao, Portugal).

Since zebrafish represents an extraordinary experimental model for aquaculture stud-
ies, contributing to our understanding of how mechanisms involved in fish nutrition,
welfare and growth take place in farmed fish species [46], testing new dietary formula-
tions with the inclusion of insect meal is necessary for the further development of the
aquaculture industry. Finally, due to its complete genome availability and relatively short
life cycle, zebrafish allow us to investigate possible dietary effects, and their eventual
persistence, throughout the whole life of the fish and across generations, in a relatively
short time [31,46,47].

2. Materials and Methods
2.1. Insect Rearing

The BSF larvae feeding substrate, consisting mainly of coffee silverskin (a coffee
industry by-product), was prepared according to Zarantoniello et al. [8]. Briefly, before
the feeding substrate preparation, coffee by-product (Saccaria Caffé S.R.L., Marina di
Montemarciano, AN, Italy; moisture 44%) was ground in an Ariete 1769 food processor
(De’Longhi Appliances Srl, Treviso, Italy) to a particle size of 0.4 £ 0.2 mm. The feeding
substrate was formulated including a 10% (w/w) of Schizochytrium sp. (provided freeze-
dried by Alghltaly Societa Agricola S.R.L., Sommacampagna, VR, Italy) to the coffee
by-product. To reach a final moisture of ~70% in the feeding substrate [48], distilled water
was added.

Six-day-old BSF larvae (Smart Bugs s.s. Ponzano Veneto, Treviso, Italy) were di-
vided into groups of 640 specimens per replicate (1 = 65 for a total of 41'600 BSF larvae).
Each replicate consisted of a plastic box (57 x 38 x 16 cm) screened with fine-mesh cotton
gauze and covered with a lid with 90 ventilation holes of 0.05 cm diameter [49]. BSF larvae
were reared in a climatic chamber at a temperature of 27 & 1 °C and relative humidity of
65 £ 5% [49], at a density of 0.3/ cm? [50], in continuous darkness. The feeding rate per
larva was 100 mg/day [51], achievable by adding new feeding substrate once a week (448 g
for each box). At the prepupal stage, identified by the change in tegument color from white
to black [52], insects were collected, washed, freeze-dried and stored at —80 °C.

2.2. Fish Diets

Freeze-dried full-fat BSF prepupae were ground with a Retsch Centrifugal Grinding
Mill ZM 1000 (Retsch GmbH, Haan, Germany) for experimental diet preparation. Five ex-
perimental diets were prepared as previously described in Zarantoniello et al. [8]. Briefly,
diets were formulated to be grossly iso-nitrogenous (50% of CP, N x 6.25, on dry mat-
ter) and iso-lipidic (13% on dry matter). A control diet (Hi0) containing fish meal (FM),
a vegetable protein mixture (wheat gluten and pea protein concentrates) and fish oil (FO)
as major ingredients was prepared and used as the basal diet formulation for the tested
BSF-based diets. BSF-based diets were prepared by including graded levels of full-fat BSF
prepupae meal (approximatively 25, 50, 75 and 100% named Hi25 and Hi50, Hi75 and
Hi100, respectively) in the Hi0 formulation to replace the marine sources (both FM and
FO). To maintain the diets’ iso-nitrogenous and iso-lipidic condition, the vegetable protein
mixture was adjusted accordingly.

In summary, all the ground ingredients (0.5 mm) were thoroughly blended (Kenwood
kMix KMX53 stand Mixer; Kenwood, De’Longhi S.p.a., Treviso, Italy) for 20 min, adding
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water to obtain an appropriate consistency for pelleting. Pellets were obtained through the
use of a 1-mm-die meat grinder, dried at 40 °C for 48-72 h and then ground, sieved and
stored in vacuum bags at —20 °C until use. Ingredients and proximate composition of the
test diets are reported in Table 1.

Table 1. Ingredients (as g/Kg) and proximate composition (g/100 g) of the experimental diets used in the present study
according to Zarantoniello et al. [8].

Hi0 Hi25 Hi50 Hi75 Hi100
Ingredients (g/kg)
Fish meal ! 470 400 250 110 -
Vegetable protein mix 2 220 230 298 385 440
BSF prepupae meal - 115 235 350 460
Wheat flour 3 198 172 120 110 72
Fish oil 80 51 25 10 -
Soy lecithin 8 8 8 11 4
Mineral and Vitamin supplements 4 14 14 14 14 14
Binder 10 10 10 10 10
Proximate composition (%)
Moisture 29401 42401 51+0.1 6.5+ 0.1 73+0.1
Crude protein, CP 51.6 + 0.1 50.7 + 2.6 50.4 + 0.3 512+ 15 50.5 + 3.1
Crude lipid, CL 144 + 0.6 13.1+ 04 12.9 + 0.4 132+ 05 13.0 £ 0.5
Nitrogen-free extract 21.3£03 208 £1.0 20.6 £0.5 19.0 £ 0.7 185+1.3
Ash 9.8 +0.2 11.1+ 0.01 11.0 £ 0.00 10.1 £ 0.1 10.7 £ 0.1
Fatty acid content (as % of total FA)
SFA 278+132 409 +0.7°¢ 400+20¢ 3594 0.7P 37.6+2.8P
MUFA 247 + 064 19.8 +£ 03P 19.0 £ 092 215+02¢ 200+ 1.0P
PUFA 474 +14¢ 393+1.02 41.0+1.03b 426+03P 424 +32P
n3 388+ 14¢ 276+ 094 208 +£09°¢ 15.6 £ 03P 11.1+3.12
né 86+012 11.7 £ 03P 202 +04¢ 269 +0.14 31.3+09°¢
n9 139+ 03¢ 10.7 £ 0.2 12.1+£0.7b 14.6 +£0.24 152 4+ 0.7¢
n6/n3 0.22 +0.052 042 +0.10b 1.00 £0.10¢ 1.70 £ 0.104 2.80+0.20¢

! Raw ingredient kindly supplied by Skretting Italia. 2 Vegetable protein mix (pea protein concentrate: wheat gluten, 0.6:1 w/w in all the
experimental diets) provided by Lombarda trading srl (Casale Belvedere, CR, Italy) and Sacchetto spa (Lagansco, CN, Italy). 3 Consorzio
Agrario (PN, Italy); 4 Mineral and Vitamin supplement composition (% mix): CaHPO42H,0, 78.9; MgO, 2.725; KCl, 0.005; NaCl, 17.65;
FeCO;3, 0.335; ZnSO4.H,0, 0.197; MnSO4.H,0, 0.094; CuSO4.5H,0, 0.027; NaySeO3, 0.067; thiamine hydrochloride (vitamin B1), 0.16;
riboflavin (vitamin B2), 0.39; pyridoxine hydrochloride (vitamin B6), 0.21; cyanocobalamin (vitamin B12), 0.21; niacin (vitamin PP or
B3), 2.12; calcium pantothenate, 0.63; folic acid, 0.10; biotin (vitamin H), 1.05; myo-inositol (vitamin B7), 3.15; stay C Roche (vitamin C),
4.51; tocopherol (vitamin E), 3.15; menadione (vitamin K3), 0.24; retinol (vitamin A 2500 Ul/kg diet), 0.026; cholecalciferol (vitamin D3
2400 UI/kg diet), 0.05; choline chloride, 83.99. For proximate composition and fatty acid content, values reported as mean + SD (1 = 3).
a=¢ Different letters show statistically significant differences among experimental groups compared within the same FA class (p < 0.05).
SFA-saturated fatty acid; MUFA-monounsaturated fatty acid; PUFA-polyunsaturated fatty acid; n3, n6, n9-omega 3, omega 6 and omega 9

fatty acid, respectively.

2.3. Broodstock Rearing and FO Production

Zebrafish AB strain adults (broodstock; 1.2 £ 0.4 g), fed on a commercial diet (Blue
Line, Macerata, Italy), were laboratory spawned and zebrafish AB embryos (F0) were
maintained 48 h in a Techniplast system (Varese, Italy) at 28 °C, pH 7.0, NO, and NHjs
concentrations < 0.01 mg/L, NO3 concentration < 10 mg/L and photoperiod 12 h light/12 h
dark. After this first period, embryos were gently collected, counted under a stereomicro-
scope and randomly assigned to the different experimental groups: FOHi0, FOHi25, FOHi50,
FOHi75 and FOHi100 (Figure 1). Fish were initially kept in 15 tanks (20 L, three tanks per
dietary group with 500 fish per tank), the sides of which were covered with black panels to
reduce light reflection [53]. The water in the F0 larval tanks had the same chemical-physical
characteristics of the broodstock’s tank and was gently replaced 10 times a day by a drip-
ping system. Starting from 5 days post fertilization (dpf), fish from each dietary group were
fed the same experimental diet (Hi0, Hi25, Hi50, Hi75 and Hi00 diets, respectively; 2% body
weight) twice a day and, in addition, from 5 to 10 dpf, rotifer Brachionus plicatilis (five
individuals per mL) were provided to all dietary groups (one feeding in the morning). At
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21 days dpf, the required FO larvae (for details, please see Zarantoniello et al. [8]) from each
experimental group (FOHi0, FOHi25, FOHi50, FOHi75 and FOHi00, respectively) were sam-
pled, euthanized with a lethal dose of MS222 (1g/L; Merck KGaA, Darmstadt, Germany)
and properly stored until further analysis as reported in Zarantoniello et al. [8]. Finally,
at 30 dpf, the remaining FO zebrafish (~200 fish per tank, ~600 per dietary group) were
transferred, according to each experimental group, into 15 bigger tanks (80 L; three tanks
per dietary group) equipped with mechanical and biological filtration (Panaque, Rome,
Italy) until 180 dpf. Feed particle sizes were <100 pm from 5 to 15 dpf, 101-200 um from 16
to 30 dpf, 201400 pum from 31 to 60 dpf and 401-600 um from 61 to 180 dpf. After 180 dpf,
adult FO zebrafish were spawned and progeny embryos (F1; Figure 1) were obtained from
each dietary group.

— Broodstock

l FO embryos

N

48h |wggms— = e — B Eg==—| X3

Zarantoniello et al. [8]

FOHi0 FOHi25 FOHi50 FOHi75  FOHil00

L 2] dpt// // | \\ \\ FO - sampling
=_ = = == _— 3
R —_— —_— B —_—
FOHi0 FOHi25 FOHi50 FOHi75 FOHi100
g F1 embryos
} } l ! |
Py TG g PGy == 3
F1Hi0 F1Hi25 F1Hi50 F1Hi75 F1Hi100
l l } | |
21 dpf F1 - sampling

Figure 1. Schematic representation of the experimental design. Fish-fed diets including 0%, 25%,
50%, 75% and 100% of BSF meal respect to FM (FOHi0, FOHi25, FOHi50, FOHi75 and FOHi100 for FO
zebrafish and F1Hi0, F1Hi25, F1Hi50, FiHi75 and F1Hi100 for F1 zebrafish larvae). dpf-days post
fertilization; FO-parental generation; F1-first filial generation.

2.4. F1 Zebrafish Larvae

First filial generation (F1) embryos, obtained from each experimental group (F1Hi0,
F1Hi25, F1Hi50, F1Hi75 and F1Hi00, respectively) were gently collected, counted under a
stereomicroscope and transferred to 20 L tanks (three tanks per dietary group). Each exper-
imental group, in triplicate, was composed of 1500 larvae (500 larvae per tank). Starting
from 5 to 20 dpf, F1 larvae were fed on the same parental diet twice a day (2% body
weight; 100-200 pm particle size) and were named as: (i) F1Hi0 (control) group: F1 larvae
fed parental diet with 0% of full-fat BSF prepupae meal; (ii) F1Hi25, F1Hi50, F1Hi75 and
F1Hi100 groups: F1 larvae fed parental diet including 25%, 50%, 75% and 100% of full-fat
BSF prepupae meal respect to FM, respectively. Furthermore, from 5 to 10 dpf, all groups
were fed (one feeding in the morning) on the rotifer Brachionus plicatilis (5 ind/mL). All the



Animals 2021, 11, 751

6 of 18

tanks were siphoned 30 min after feeding (two times a day) to remove possible feed ex-
cess and dead larvae which were counted to estimate the survival rate. The required F1
larvae (for details, please see further sections) were sampled at 20 dpf, euthanized with a
lethal dose of MS222 (1 g/L; Merck KGaA, Darmstadt, Germany) and properly stored for
further analyses.

2.5. Biometry

Ten F1 zebrafish larvae (30 per dietary group) were randomly collected from each
tank at hatching (3 dpf) and at 21 dpf. Excess water was removed by means of a syringe,
and wet weight was determined by an analytical balance (precision: 0.1 mg) by measuring
five larva pools at 3 dpf and single specimens at 21 dpf. For each experimental group,
specific growth rate (SGR) was calculated as follows: SGR% = (InWf — InWi)/t) x 100,
where Wf is the final wet weight, Wi, the initial wet weight, and t, the number of days (17).
Survival rate was evaluated by subtracting the number of dead larvae at 21 dpf to the
initial number (500 per tank).

2.6. Fatty Acid Composition

Experimental diets and F1 zebrafish larvae samples were analyzed (in triplicate) for
fatty acid composition according to Zarantoniello et al. [8]. Briefly, samples were minced
and homogenized (homogenizer MZ 4110, DCG Eltronic, Monza, Italy), and larvae were
also freeze-dried (Edwards EF4, Crawley, Sussex, UK). Aliquots of 200 mg of each sample
(three aliquots per sample) were added with 100 pL of Internal Standard (methyl ester
of nonadecanoic acid, 99.6%, Dr. Ehrenstorfer GmbH, Augsburg, Germany), and lipid
extraction was carried out on lyophilized powders following a microwave-assisted ex-
traction (MAE) [54]. All lipid extracts were evaporated under laminar flow inert gas (IN»)
until constant weight and re-suspended in 0.5 mL of n-epthane. Fatty acid methyl esters
(FAMESs) were prepared according to Canonico et al. [55] and were determined using an
Agilent-6890 GC System (Milano, Italy) coupled to an Agilent-5973 N quadrupole Mass
Selective Detector (MSD) (Milano, Italy) and separated through a CPS ANALITICA CC-
wax-MS (30 m x 0.25 mm ID, 0.25 um film thickness) capillary column [56]. For each
analyzed aliquot of sample, at least three runs were performed on the GCMS.

2.7. Histology

Five F1 zebrafish larvae (15 per dietary group) were randomly collected from each tank
at 21 dpf, fixed by immersion in Bouin’s solution (Merck KGaA, Darmstadt, Germany) and
then stored at 4 °C for 24 h. Samples were washed three times with ethanol (70%) for 15 min
and preserved in a new 70% ethanol solution. After dehydration through graded ethanol
solution (80%, 95% and 100%), samples were washed with xylene (Bio-Optica, Milano,
Italy) and embedded in paraffin (Bio-Optica). Solidified paraffin blocks were cut with a
microtome (Leica RM2125 RTS). Sections (5 um) were stained with Mayer hematoxylin and
eosin Y (Merck KGaA; H&E, Darmstadt, Germany) in order to study hepatic parenchyma
and intestinal morphology and to measure the perivisceral tissue area or with Alcian blue
(Bio-optica) for Alcian blue positive (Ab +) goblet cells detection. Sections were observed
using a Zeiss Axio Imager.A2 (Zeiss, Oberkochen, Germany) microscope and images were
acquired by a digital camera Axiocam 503 (Zeiss).

To ascertain the degree of hepatic fat accumulation, a quantitative analysis was per-
formed on three section per fish (15 zebrafish larvae per dietary group F1) collected at
50 um intervals and stained with H&E. The percentage of fat fraction (PFF) was calculated
by mean of Image]J software setting a homogeneous threshold value. Not evaluable areas,
such as blood vessels and bile ducts, were not considered. Perivisceral adipose tissue
area was measured using ZEN 2.3 software (Zeiss) on three section per fish (15 fish per
dietary group) collected at 50 um intervals and stained with H&E. The semi-quantitative
evaluation of histological indexes in the intestine was performed on three transversal
sections per fish (15 fish per dietary group; 50 pm intervals) stained with H&E for mucosal
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folds length and enterocyte supranuclear vacuolization abundance or with Alcian blue
for Ab+ goblet cells detection. Specifically, for the morphometric evaluation of mucosal
folds height, all the undamaged and non-oblique folds were measured using ZEN 2.3
software (Zeiss). Regarding the semi-quantitative analysis of supranuclear vacuoles and
Ab + goblet cells, an arbitrary unit was assigned as described in Panettieri et al. [57]. Scores
were assigned as follows: supranuclear vacuoles + = scattered, ++ = abundant; Ab+ goblet
cells: + =0 to 3 per villus, ++ =4 to 6 per villus, + + + = more than 6 per villus.

2.8. Total RNA Extraction and cDNA Synthesis

Total RNA extraction from five F1 zebrafish larvae collected from each tank at 21 dpf
(15 per dietary group) was performed using RNAzol RT reagent (Merck KGaA, Darmstadt,
Germany) following the manufacturer’s protocol. The final RNA concentration was deter-
mined by a NanoPhotometer P-Class (Implen, Miinchen, Germany) and the RNA integrity
was verified by GelRed™ staining of 285 and 18S ribosomal RNA bands on 1% agarose gel.
The cDNA synthesis was performed using the LunaScript RT SuperMix Kit (New England
Biolabs, Ipswich, Massachusetts, USA) using 1 ug of total RNA.

2.9. Real-Time PCR

PCRs were performed in an iQ5 iCycler thermal cycler (Bio-Rad, Hercules, CA, USA).
Reactions were set on a 96-well plate by mixing, for each sample, 1 uL ¢cDNA diluted
1:10, 5 pL of 2x concentrated iQ™ Sybr Green (Bio-Rad) as fluorescent intercalating agent,
0.3 uM of forward primer and 0.3 uM of reverse primer. The thermal profile for all re-
actions was 3 min at 95 °C and then 45 cycles of 20 s at 95 °C, 20 s at 60 °C, and 20 s at
72 °C. At the end of each cycle, florescence was monitored, and the melting curve analyses
showed in all cases one single peak. Relative quantification of the expression of genes
involved in fish growth (insulin-like growth factor 1, igf1; insulin-like growth factor 2a,
igf2a; myostatin, mstnb), stress response (glucocorticoid receptor, nr3c1; heat shock protein
70, hsp70.1), long-chain polyunsaturated fatty acids biosynthesis (fatty acid elongase 2,
elovl2; fatty acid elongase 5, elovl5; fatty acid desaturase 2, fads2), appetite response (ghrelin,
ghrl; neuropeptide y npy; cannabinoid receptor 1, cnrl; leptin a, lepa), immune response
(interleukin 183, i/1b; interleukin i/10; tumor necrosis factor a, tnfa) and enzymatic hydroly-
sis of chitin (chitinase 2, chia.2; chitinase 3, chia.3) was performed. Actin-related protein
2/3 complex, subunit 1A (arpcla) and ribosomal protein, large, 13 (rpl13) were used as
internal standards in each sample in order to standardize the results by eliminating varia-
tion in mRNA and cDNA quantity and quality. Amplification products were sequenced,
and homology was verified. No amplification products were observed in negative controls
and no primer—dimer formations were observed in the control templates. Data obtained
were analyzed using the iQ5 optical system software version 2.0 (Bio-Rad) including Ge-
neEx Macro iQ5 Conversion and GeneEx Macro iQ5 files. The same primer sequences
designed using Primer3 (starting from zebrafish sequences available in ZFIN) and reported
in Zarantoniello et al. [8] were used in the present study (Table 2).

2.10. Statistical Analyses

All data were analyzed by one-way ANOVA, with diet as the explanatory variable.
All ANOVA tests were followed by Tukey’s post-hoc test. The statistical software package
Prism5 (GraphPad Software, 6.01 version) was used. Significance was set at p < 0.05 and all
the results are presented as mean =+ SD.
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Table 2. Primer sequences used in the present study and ZFIN IDs reported in previous studies.

Gene Forward Primer (5'-3') Reverse Primer (5'-3') References
arpcla CTGAACATCTCGCCCTTCTC TAGCCGATCTGCAGACACAC [8,16]
rpll3 TCTGGAGGACTGTAAGAGGTATGC AGACGCACAATCTTGAGAGCAG [8,16]
igf1 GGCAAATCTCCACGATCTCTAC CGGTTTCTCTTGTCTCTCTCAG [8,16,45]
igf2a GAGTCCCATCCATTCTGTTG GTGGATTGGGGTTTGATGTG [8,16,45]
mstnb GGACTGGACTGCGATGAG GATGGGTGTGGGGATACTTC [8,16,45]
nr3cl AGACCTTGGTCCCCTTCACT CGCCTTTAATCATGGGAGAA [8,16,45]
hsp70.1 TGTTCAGTTCTCTGCCGTTG AAAGCACTGAGGGACGCTAA [8,16,45]
elovl? CACTGGACGAAGTTGGTGAA GTTGAGGACACACCACCAGA [8,16,45]
elovl5 TGGATGGGACCGAAATACAT GTCTCCTCCACTGTGGGTGT [8,16,45]
fads2 CATCACGCTAAACCCAACA GGGAGGACCAATGAAGAAGA [8,16]
ghrl CAGCATGTTTCTGCTCCTGTG TCTTCTGCCCACTCTTGGTG [8,16]
npy GTCTGCTTGGGGACTCTCAC CGGGACTCTGTTTCACCAAT [8]
cnrl AGCAAAAGGAGCAACAGGCA GTTGGTCTGGTACTTTCACTTGAC [8,16]
lepa CTCCAGTGACGAAGGCAACTT GGGAAGGAGCCGGAAATGT [8,16]
il1b GCTGGGGATGTGGACTTC GTGGATTGGGGTTTGATGTG [8,16]
il10 ATTTGTGGAGGGCTTTCCTT AGAGCTGTTGGCAGAATGGT [8,16]
tnfa TTGTGGTGGGGTTTGATG TTGGGGCATTTTATTTTGTAAG [8,16]
chia.2 GGTGCTCTGCCACCTTGCCTT GGCATGGTTGATCATGGCGAAAGC [8,16,45]
chia.3 TCGACCCTTACCTTTGCACACACCT’ ACACCATGATGGAGAACTGTGCCGA [8,16,45]

3. Results
3.1. F1 Zebrafish Larvae—Growth and Survival

Considering SGR%, no significant differences were detected among experimental
groups (22.9 +1.0,22.7 £ 0.9, 23.0 £ 1.1, 22.5 £ 0.8 and 22.7 & 0.9% for F1Hi0, F1Hi25,
F1Hi50, F1Hi75 and F1Hi100, respectively). Survival rate did not show significant differ-
ences among experimental groups (89 £ 5,86 + 6, 85 - 4, 81 & 5 and 78 + 6% for F1Hi0,
F1Hi25, F1Hi50, F1Hi75 and F1Hi100, respectively).

3.2. F1 Zebrafish Larvae—Fatty Acid Content and Composition

The increasing dietary inclusion level of full-fat BSF prepupae meal resulted in a
significant (p < 0.05) increase of SFA (Figure 2a). Fish fed BSF-based diets showed signifi-
cantly (p < 0.05) higher percentages of MUFA and 1-9 compared to F1Hi0 group (Figure 2a).
With regard to PUFA content, F1Hi0 and F1Hi25 groups were characterized by a signifi-
cantly (p < 0.05) higher percentage compared to the other experimental groups, which did
not show significant differences among them (Figure 2a). Finally, the increasing inclusion
levels of BSF prepupae meal in the experimental diets resulted in a significant (p < 0.05)
dose-dependent n-3 decrease and a parallel slight but significant (p < 0.05) dose-dependent
n-6 increase in F1 zebrafish larvae (Figure 2a). Accordingly, the n-6/n-3 ratio (Figure 2b)
evidenced a significant (p < 0.05) increase from F1Hi0 to F1Hi100 groups.

Considering the FA composition of F1 zebrafish larvae (Table 3), the most represented
SFA in all the dietary treatments was palmitic acid (16:0), followed by stearic (18:0) and
myristic (14:0) acids. The percentage of both palmitic and myristic acids was significantly
(p < 0.05) lower in F1Hi0 group compared to F1Hi50, FiHi75 and F1Hi100 ones, which did
not evidence significant differences among them. In addition, the percentage of lauric
acid (12:0) significantly (p < 0.05) increased according to the increasing BSF prepupae meal
dietary inclusion. With regard to MUFA, the predominant fatty acid in all the dietary
treatments was oleic acid (18:1n9), which was significantly (p < 0.05) higher in all the
groups fed BSF-based diets compared to F1Hi0. The increasing dietary BSF prepupae
meal level resulted in a significant (p < 0.05) increase in both 7-hexadecenoic (16:1n9)
and vaccenic (18:1n7) acids percentages, while no significant differences were detected
among experimental groups considering palmitoleic (16:1n7) acid. Finally, docosahexaenoic
(22:6n3, DHA) and linoleic (18:2n6) acids represented the most abundant PUFA in all the
dietary treatments. In particular, linoleic acid levels did not show significant differences
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among the experimental groups. Conversely, the increasing dietary inclusion level of
BSF prepupae meal resulted in a significant (p < 0.05) increase in «-linolenic (18:3n3) and
arachidonic (20:4n6) acids percentages and in a significant (p < 0.05) decrease in DHA and
eicosapentaenoic acid (20:5n3, EPA) percentages. Considering the DHA /EPA ratio, F1Hi0
and F1Hi25 groups were characterized by significantly (p < 0.05) lower values compared to
the other experimental groups which did not evidence significant differences among them.

(a) F1 zebrafish larvae
507 O PO o Fiirs
|
g ; O FIHIZS o FiHi100
d
2 40- Y . @ F1Hi50 !
—_ i .
NE ceco |llz2e @ (b) n6/n3 ratio
: : c |
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-.nc-, 20 aba 4 2 Cccp
[ bbS
@ 104 H
0_____
e e e & © @
‘-:JQ § Q\§( < & o

Figure 2. (a) Content of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid
(PUFA) (as % of total fatty acids ) and omega 3 (1-3), omega 6 (1-6), omega 9 (n-9) fatty acid contribution to lipid profile and
(b) n6/n3 ratio of F1 zebrafish larvae fed the different experimental diets (F1Hi0, F1Hi25, F1Hi50, F1Hi75 and F1Hi100).
a7¢ Different letters show statistically significant differences among experimental groups compared within the same FA

class (p < 0.05). Values are reported as mean =+ standard deviation (1 = 3).

Table 3. Fatty acid composition (as % of total FA) and DHA /EPA ratio of F1 zebrafish larvae.

F1 Zebrafish Larvae
F1Hi0 F1Hi25 F1Hi50 F1Hi75 F1Hi100
10:0 0.010 + 0.001  0.023 £0.001  0.047 & 0.004 0.052 + 0.003  0.080 % 0.009
12:0 029+0.012 270+0.10> 480+030¢ 570+0309 6.40 + 0.50
13:0 0.051 +0.002 0.067 +0.002 0.084 &+ 0.005 0.088 + 0.002  0.092 + 0.008
14:0 45+032 524033 55+05P 54 +05b 55+05P
14:1n5 0.09 &+ 0.01 0.17 4+ 0.02 0.28 +0.03 0.29 +0.03 0.26 £+ 0.03
15:0 0.78 + 0.02 0.90 + 0.03 0.98 + 0.04 0.98 &+ 0.06 0.99 + 0.07
16:0 182+082 196+1.0® 203+1.0Pb 202+ 0.7P 199 +09b
16:1n9 090 +£0.052 1104004 140+010¢ 130+0.10°¢ 130+ 0.10¢
16:1n7 70+052 75+0432 75+062 724062 72+052
16:2n7 0.19 + 0.02 0.20 + 0.01 0.22 + 0.02 0.29 &+ 0.03 0.28 + 0.03
17:0 0.80+0.042 090+0.052 1204005 1.3040.07° 1.20 £ 0.09P
17:1n7 0.09 & 0.01 0.29 + 0.02 0.46 + 0.04 0.54 + 0.04 0.54 & 0.04
18:0 6.6 +032 62+042 63+052 61+052 61+042
18:1n9 124+ 062 1444+ 1.0Pb 149 +1.0°b 147 £1.2P 146 +11Pb
18:1n7 3.1+022 3.6+022 44 +03Pb 47 4+ 0.4bc 51+04¢
18:2n6 87+ 0.62 9.0+ 052 81+ 0.6 88+ 0.72 9.0+ 0.6
18:3n3 13+0.12 13+0.12 1.7+01Pb 1.9+ 02P 1.7 +02P
20:0 0.32 £+ 0.02 0.30 & 0.02 0.28 & 0.02 0.29 + 0.02 0.33 £+ 0.03
20:1n9 1.06 & 0.06 1.01 £ 0.07 0.68 =+ 0.04 0.60 =+ 0.04 0.40 £ 0.03
20:2n6 0.31 +0.03 0.30 & 0.02 0.30 + 0.03 0.37 & 0.04 0.37 +0.03
20:3n6 0.42 + 0.04 0.56 =+ 0.05 0.82 + 0.08 0.92 + 0.07 1.00 + 0.10
20:4n6 204012 23+012 29402P 3.1 +£0.2bc 334+02¢
20:3n3 0.11 4 0.01 0.10 + 0.01 0.11 4+ 0.01 0.10 & 0.01 0.11 4 0.01
20:5n3 86+05¢ 50+04Pb 3.1+032 28+032 274022
22:0 017 £0.02¢ 024 +003> 030+0032 02540.032 0.28 +0.032
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Table 3. Cont.
F1 Zebrafish Larvae
F1Hi0 F1Hi25 F1Hi50 F1Hi75 F1Hi100
22:1n9 0.48 £+ 0.05 0.47 4+ 0.04 0.21 4+ 0.03 0.15 £ 0.03 0.03 4 0.01
22:6n3 2154+1.0°¢ 16.6+1.1Pb 13.1+£1.02 12.0£092 11.3+0.842
DHA /EPA 254022 33+04b 424+05¢ 434+05¢ 42+04¢

=%
N :’ P4

®
|

J., “

o t.
a8

Hepatic PFF (%)

Fish fed diets including 0%, 25%, 50%, 75% and 100% of BSF meal respect to fish meal (F1Hi0, F1Hi25, F1Hi50,
F1Hi75 and F1Hi100). Means within rows bearing different letters (*~¢) are significantly different (p < 0.05). Values
are reported as mean = standard deviation (n = 9). Statistical analysis was performed only for fatty acids > 1%.
FA with a percentage < 1% were excluded from any statistical analyses because their concentrations were close to
the limit of detection. DHA-docosahexaenoic acid; EPA-eicosapentaenoic acid.

3.3. F1 Zebrafish Larvae—Histology

With respect to the liver, histological analyses were performed to evaluate lipid accu-
mulation or steatosis. Results evidenced a modest fat liver parenchima with a widespread
presence of hepatocytes with cytoplasm filled with fat, interspersed with normal hepato-
cytes in all the experimental groups highlighting a similar degree of lipid accumulation
(Figure 3a—e). These results were confirmed by PFF quantification, which did not show
significant differences among the experimental groups (Figure 3f).

F1H125 F1Hi50 FlHi75 F1Hi100

¥

20

Perivisceral adipose tissue

(=}
o
(=}

& &
<& « &

“
«’3\&

<&
Q\

7
%%

o N » o
S 9 Q &
& ((.;?‘\ ((@\ Q@\

Figure 3. (a—e) Example of hepatic parenchima histomorphology, (f) percentage of fat fraction (PFF) in liver tissue and
(g) perivisceral adipose tissue area (mm?) of F1 zebrafish larvae fed diets including 0%, 25%, 50%, 75% and 100% of BSF
prepupae meal respect to FM (F1Hi0, F1Hi25, F1Hi50, F1Hi75 and F1Hi100 groups). Scale bars: 20 um. For PFF and
perivisceral adipose tissue area, values are shown as mean =+ standard deviation (n = 15). ns: no significant differences.

No significant differences were detected among the experimental groups even with
regard to the perivisceral adipose tissue area (Figure 3g).

Finally, with regard to medium intestine (Figure 4a—j), no morphological alterations
or signs of inflammation were evident in any of the experimental groups. In addition,
no significant differences were observed among the experimental groups in terms of
mucosal folds length and supranuclear vacuoles and Ab+ goblet cell abundance (Figure 4k).
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(k)

F1Hi25 F1Hi50 F1Hi75 F1Hi100

F1Hi0 F1Hi25 F1Hi50 F1Hi75 F1Hi100
Mucosal folds length (um) 113.5+17.3  110.0+6.9 112.4+15.1  105.8+10.5 114.9+9.1
Supramuclear vacuoles ++ ++ ++ ++ ++
Ab+ goblet cells ++ ++ —+ ++ ++

Figure 4. (a—j) Example of medium intestine histomorphology and (k) histological indexes (mucosal folds length, supranu-
clear vacuoles and Ab+ goblet cell abundance) measured in this gut tract of F1 zebrafish larvae fed diets including 0, 25, 50,
75 and 100% of BSF prepupae meal respect to fish meal (F1Hi0, F1Hi25, F1Hi50, F1Hi75 and F1Hi100 groups). Scale bars and
staining: (a—e) 50 um, H&E; (f—j) 20 um, Ab. Letters: gc = Ab+ goblet cells. For histological indexes (k), values of mucosal
folds length are shown as mean =+ standard deviation (1 = 15). Scores: supranuclear vacuoles + = scattered, ++ = abundant;

Ab+ goblet cells + = 0 to 3 per villus, ++ = 4 to 6 per villus, + + + = more than 6 per villus. No significant differences were

detected among the experimental groups.

3.4. F1 Zebrafish Larvae—Real-Time PCR

Growth factors. Considering igfl, igf2a and mstnb gene expression (Figure 5a—c),
no significant differences were detected among experimental groups.

Stress response. Regarding genes involved in the stress response (nr3c1 and hsp70.1;
Figure 5d,e), groups fed the lowest BSF prepupae meal inclusion levels (F1Hi0 and F1Hi25)
showed a significant (p < 0.05) upregulation compared to F1Hi50, F1Hi75 and F1Hi100,
which did not evidence significant differences among them.

Lipid metabolism. Considering elovl2 and elovl5 gene expression (Figure 5f,g), FIHi100
group shown the highest gene expression (p < 0.05) with respect to the other experimental
groups, while no significant differences were observed among them (except for elovi2 gene
expression which was significantly downregulated in F1Hi50 compared to F1Hi75; p < 0.05).
With regard to fads.2 gene expression (Figure 5h), all groups fed on BSF-based diets showed
a significant (p < 0.05) upregulation compared to F1Hi0 group.

Appetite. Regarding gene expression of ghrl, npy and cnr1 (Figure 5i-k), the experi-
mental groups fed BSF-based diets showed a significantly (p < 0.05) downregulation with
respect to F1Hi0 group. With regard to lepa gene expression (Figure 51), a significantly
(p < 0.05) BSF dose-dependent decreasing trend was evident among the experimental
groups, with F1Hi0 that was characterized by a significant upregulation compared to
F1Hi75 and F1 Hil00 groups.

Immune response. Considering il1b and il10 gene expression (Figure 5m,n), no sig-
nificant differences were observed among experimental groups. Differently, groups fed
the highest BSF inclusion levels (F1Hi75 and F1Hi100) showed a significant (p < 0.05)
downregulation in tnfa gene expression (Figure 50) compared to F1Hi0, F1Hi25 and F1Hi50
groups that did not evidence significant differences among them.

Chitinase. Regarding chia.2 and chia.3 gene expression (Figure 5p,q), F1Hi75 and
F1Hi100 groups were characterized by a significant (p < 0.05) upregulation compared to the
other groups which did not show significant differences among them (except for chia.2 gene
expression in F1Hi50 group).
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Figure 5. Relative mRNA abundance of genes analyzed in F1 zebrafish larvae fed diets including 0%, 25%, 50%, 75% and
100% of BSF prepupae meal respect to FM (F1Hi0, F1Hi25, F1Hi50, F1Hi75 and F1Hi100 groups). (a) igf1, (b) igf2a, (c) mstnb,
(d) nr3ci, (e) hsp70.1, (f) elovi2, (g) elovl5, (h) fads2, (i) ghrl, (j) npy, (k) cnrl, (1) lepa, (m) il1b, (n) il10, (o) tnfa, (p) chia.2 and
(q) chia.3. ¢ Different letters specify statistically significant differences among experimental groups (p < 0.05). Values are
shown as mean =+ standard deviation (1 = 5). ns: no significant differences.

4. Discussion

Nutritional programming covers the metabolic adaptations to a dietary stimulus ap-
plied in pre- or post-natal stages that persist later in life, possibly improving health and
survival [58-60]. In this way, parental diet may have effects on the offspring, especially
during the early developmental stages characterized by organogenesis, establishment of
metabolic pathways and high metabolic plasticity [27]. In the light of FM and FO substi-
tution with more sustainable aquafeed ingredients, several studies have been published
highlighting the possibility to nutritionally programming fish offspring via broodstock

nutrition to plant-based diets [36,38,61-63]; however, no studies have been performed
using insect-based diets.
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The present study aimed to evaluate the possible cross-generation effects of BSF-based
diets on F1 larval development using zebrafish as an experimental model. Results are
discussed with a comparison to FO zebrafish larvae that were fed on the same BSF-based
diets used in the present study, but that were not nutritionally programmed through
parental feeding, as reported in Zarantoniello et al. [8].

The experimental diets used in in the present study, as well as in Zarantoniello
et al. [8], were formulated to be iso-nitrogenous and iso-lipidic, despite a progressive
reduction of marine resources and a parallel increase of BSF prepupae meal. To maintain
the dietary protein and lipid intake at a constant level, some vegetable ingredients were
included. To relate all the results obtained to the dietary BSF prepupae meal inclusion
with respect to FM wheat flour and a mixture of highly digestible wheat gluten and pea
protein concentrates were used. In this regard, wheat flour is a common dietary filler due
to its low nutritional value [64,65]. Furthermore, wheat- and pea protein-based diet have
already been demonstrated to not affect zebrafish growth and gene expression compared
to a control diet based on FM [66].

In recent years, it has been demonstrated that a nutritional stimulus during broodstock
reproduction, represented by up to 70% of FO dietary replacement by a combination of
vegetable oils, was able to promote growth performance in gilthead seabream offspring
juveniles [36-38,67]. Accordingly, the BSF-based diets used in the present study have
been shown to improve zebrafish SGR% and to upregulate igfs gene expression in FOHi50,
FOHi75 and FOHi100 groups compared to a control group [8]. Conversely, the F1 zebrafish
larvae analyzed in the present study did not show these differences. This result could be
related to the fact that feeding broodstock with experimental diets characterized by different
dietary fatty acid profiles can markedly affect offspring lipid metabolism, with particular
emphasis on highly energy demanding PUFA biosynthesis [27,36,67,68]. PUFA delivered
from parental diet are considered regulators of embryonic gene expression [33,69,70].
As reported by Zarantoniello et al. [8], in FO zebrafish larvae, an increasing dietary BSF
prepupae meal dietary inclusion resulted in a parallel decrease in their PUFA content.
In contrast, in the present study, F1 zebrafish larvae from F1Hi50, F1Hi75 and F1Hi100
groups showed a lower PUFA content respect to F1Hi0 and F1Hi25, but they did not
evidence significant differences among them. Several studies on farmed fish species
reported that providing diets poor in long-chain PUFA to broodstock enhanced offspring
ability to synthesize these fundamental FA, as denoted by the upregulation of genes (like
elovl5 and fads.2) involved in this process [36-38,61,62,71]. In particular, fads.2 codifies the
A6-desaturase enzyme, a strong marker for document nutritional programming effects
from broodstock to offspring, since it is considered the rate limiting step in long-chain
PUFA biosynthesis [72-75]. As reported in Zarantoniello et al. [8], only the zebrafish larvae
fed the highest BSF prepupae meal dietary inclusion (FOHi100) showed a significant elovl5
and fads.2 upregulation compared to the other experimental groups. In the present study,
this trend was evident for both elovi2 and elovl5, but not for fads.2, expression of which,
differently from the FO study, was significantly higher in all the groups fed BSF-based diets.
This upregulation can be correlated with the reduction of differences in PUFA content
among zebrafish larvae from F1Hi50, F1Hi75 and F1Hi100 groups. Furthermore, nutritional
programming, besides acting on genes involved in lipid metabolism that promote a better
use of low FM and FO diets by the offspring, can reduce the risk to develop hepatic
steatosis, often evidenced in fish fed both plant- and BSF-based diets [15,16,37]. In this
regard, Zarantoniello et al. [8] reported that FO zebrafish larvae fed the highest BSF dietary
inclusion levels (75% and 100%) were characterized by a severe condition of hepatic
steatosis that, in turn, was addressed as the potential cause of the overexpression of stress
markers (nr3c1 and hsp70.1). Conversely, in the present study, the histological analyses
of F1 zebrafish larvae revealed no signs of hepatic steatosis. The same degree of hepatic
lipid accumulation was evident among all the experimental groups, despite a dietary
BSF dose-dependent increase in n-6/n-3 ratio that was previously related to steatosis
onset [8,16]. Accordingly, the PFF analyses did not show significant differences among
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the F1 experimental groups, which all evidenced lower values compared to FOHi75 and
FOHi100 [8]. Furthermore, the expression of genes involved in the stress response (nr3c1
and hsp70.1) was lower in F1Hi50, F1Hi75 and F1Hi100 groups compared to the other
ones. These results are in accord with a previous study in which it was demonstrated that
stress-related genes can also be modulated in nutritionally programmed offspring from
broodstock fed diets with increased substitution of FO with linseed oil [38]. Furthermore,
the downregulation of stress markers in F1Hi75 and F1Hi100 could explain the lower
leptin (lepa) gene expression detected in these groups. In fish, increased cortisol levels
result in a synergic increase in hepatic leptin mRNA levels due to the necessity to mobilize
energy reserves in response to a stress condition [76,77]. Conversely, this correlation
cannot be applicable to F1Hi50 group, which showed a high lepa gene expression despite
a downregulation of stress markers. However, F1 zebrafish larvae from F1Hi50 were
characterized by the highest (even if not significantly) perivisceral adipose tissue area,
which could explain the lepa gene expression of this group, since the amount of adipose
tissue is positively correlated with the circulating leptin levels [78,79].

Considering the orexigenic signals analyzed in the present study, all the groups fed
BSE-based diets showed a significant ghrl, npy and cnrl downregulation compared to
F1Hi0. These results are in line with the biometric ones and with a previous study in which
nutritionally programmed zebrafish were found to be in a satiated state compared to the
control groups [80]. Conversely, the higher orexigenic signals gene expression found in all
FO zebrafish larvae fed on BSF-based diets was related to a compensatory mechanism that
increased food intake with a consequent faster growth rate, possibly in relation to dietary
deficiency of important nutrients, like DHA [8,30].

Nutritional programming may make it possible to obtain fish better adapted to use
specific dietary ingredients, also by acting on the gastrointestinal tract which, in fish,
is able to adapt to rapid shifts in environmental conditions, including diet [80-82]. In the
present study, no specific inflammatory events and no differences in histopathological
indexes were detected through the histological analyses on F1 zebrafish larvae intestine
from any of the dietary treatments. The absence of negative effects on gut health was also
observed in FO zebrafish larvae, which, however, presented an upregulation of molecular
markers involved in the immune response when fed on 50%, 75% and 100% BSF FM
substitution, possibly suggesting future development of inflammation [8]. Conversely,
in the present study, neither i/1b nor il10 gene expression showed significant differences
among the experimental groups, and tnfa was downregulated in F1Hi75 and F1Hi100.
Accordingly, it was demonstrated that both anti- and proinflammatory cytokine gene
expression can be positively programmed by early nutrition in zebrafish juveniles to better
face a dietary challenge later in life [83]. No differences in proinflammatory cytokine gene
expression were evidenced also in adult zebrafish fed BSF-based diets (0%, 25% and 50%
with respect to FM) over the whole life cycle [15]. The positive effects of BSF-based diets
on gut health can be attributed to the properties of lauric acid (12:0) and chitin, which are
addressed as immune-boosting molecules [3,84]. The long-term experience with BSF-based
diets, potentially also across generations through nutritional programming, could led to
a more extended effect of these BSF dietary components, resulting both in the absence of
visible inflammatory events in the intestine and to a positive modulation of the molecular
markers involved in the immune response. Accordingly, the chitinases (chia.2 and chia.3)
upregulation in F1Hi75 and F1Hi100 groups could have possibly increased chitin digestion
enhancing its use as prebiotic, having a positive effect on gut microbial communities and,
thus, on overall gut health [85-87].

5. Conclusions

The present study highlighted that nutritional programming through broodstock
feeding can have positive effects on the offspring when insects are included in the diets.
The results demonstrated that, using nutritional programming, the fish meal substitution
level with BSF prepupae meal in the diet can be extended by up to almost 100% during ze-
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brafish larval development without negative effects on fish growth and welfare. Nutritional
programming should thus be considered as one of the potential solutions for counteracting
the recurring negative side effects of high BSF prepupae meal dietary inclusion levels.
The results obtained in the present study, which used the experimental model zebrafish,
may represent a starting point for their application to finfish culture.
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