Effects of Milk Storage Temperature at the Farm on the Characteristics of Parmigiano Reggiano Cheese: Chemical Composition and Proteolysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Sampling Procedure and Classification of Cheese Batches
2.2. Cheese-Making Process
2.3. Analytical Methods
- –
- MRS agar (Oxoid) at 21 °C, for 5 days, for the count of mesophilic lactic acid bacteria [48].
- –
- PCA (Oxoid) at 6.5 °C, for 10 days, for enumeration of psychrotrophic bacteria [49].
- –
- Litmus milk (BD Diagnostics, Sparks, MD, USA) at 30 °C for 48 h for the enumeration of proteolytic bacteria.
- –
- Tributyrin agar (Oxoid) at 30 °C, for 7 days, for lipolytic bacteria [50].
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect on Milk and Cheese Chemical Composition
3.2. Effect of the of Milk Storage Temperature on Cheese Proteolysis and Organic Acids Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Council Regulation (EEC) No 510/2006 of 20 March 2006 on the Protection of Geographical Indications and Designations of Origin for agricultural products and foodstuffs. Off. J. Eur. Union 2006, L93, 12–25. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0510&from=en (accessed on 2 April 2020).
- Summer, A.; Franceschi, P.; Formaggioni, P.; Malacarne, M. Characteristics of raw milk produced by free-stall or tie-stall cattle herds in the Parmigiano-Reggiano cheese production area. Dairy Sci. Technol. 2014, 94, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Formaggioni, P.; Summer, A.; Malacarne, M.; Franceschi, P.; Mucchetti, G. Italian and Italian-style hard cooked cheeses: Predictive formulas for Parmigiano-Reggiano 24 h cheese yield. Int. Dairy J. 2015, 51, 52–58. [Google Scholar] [CrossRef]
- Malacarne, M.; Summer, A.; Formaggioni, P.; Franceschi, P.; Sandri, S.; Pecorari, M.; Vecchia, P.; Mariani, P. Dairy maturation of milk used in the manufacture of Parmigiano-Reggiano cheese: Effects on chemical characteristics, rennet coagulation aptitude and rheological properties. J. Dairy Res. 2008, 75, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Righi, F.; Summer, A. Chemical composition, hygiene characteristics, and coagulation aptitude of milk for Parmigiano Reggiano cheese from herds yielding different milk levels. Rev. Bras. Zootec. 2020, 49, e20180113. [Google Scholar] [CrossRef]
- Franceschi, P.; Summer, A.; Sandri, S.; Formaggioni, P.; Malacarne, M.; Mariani, P. Effects of the full cream milk somatic cell content on the characteristics of vat milk in the manufacture of Parmigiano-Reggiano cheese. Vet. Res. Commun. 2009, 33 (Suppl. 1), 281–283. [Google Scholar] [CrossRef]
- Summer, A.; Franceschi, P.; Formaggioni, P.; Malacarne, M. Influence of milk somatic cell content on Parmigiano-Reggiano cheese yield. J. Dairy Res. 2015, 82, 222–227. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Faccia, M.; Rossoni, A.; Santus, E.; Formaggioni, P.; Summer, A. New insights in cheese yield capacity of the milk of Italian Brown and Italian Friesian cattle in the production of high-moisture mozzarella. Food Technol. Biotechnol. 2020, 58, 91–97. [Google Scholar] [CrossRef]
- Urech, E.; Puhan, Z.; Schällibaum, M. Changes in milk protein fraction as affected by subclinical mastitis. J. Dairy Sci. 1999, 82, 2402–2411. [Google Scholar] [CrossRef]
- Somers, J.; O’Brien, B.; Meany, W.; Kelly, A.L. Heterogeneity of proteolytic enzyme activities in milk samples of different somatic cell count. J. Dairy Res. 2003, 70, 45–50. [Google Scholar] [CrossRef]
- Franceschi, P.; Malacarne, M.; Formaggioni, P.; Cipolat-Gotet, C.; Stocco, G.; Summer, A. Effect of season and factory on cheese-making efficiency in Parmigiano Reggiano manufacture. Foods 2019, 8, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, P.; Faccia, M.; Malacarne, M.; Formaggioni, P.; Summer, A. Quantification of cheese yield reduction in manufacturing Parmigiano Reggiano from milk with non-compliant somatic cells count. Foods 2020, 9, 212–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malacarne, M.; Summer, A.; Franceschi, P.; Formaggioni, P.; Pecorari, M.; Panari, G.; Vecchia, P.; Sandri, S.; Fossa, E.; Scotti, C.; et al. Effects of storage conditions on physico-chemical characteristics, salt equilibria, processing properties and microbial development of raw milk. Int. Dairy J. 2013, 29, 36–41. [Google Scholar] [CrossRef]
- Franciosi, E.; Settanni, L.; Cologna, N.; Cavazza, A.; Poznanski, E. Microbial analysis of raw cows’ milk used for cheese-making: Influence of storage treatments on microbial composition and other technological traits. World J. Microbiol. Biotechnol. 2011, 27, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Hicks, C.L.; Onuorah, C.; O’Leary, J.; Langlois, B.E. Effect of milk quality and low temperature storage on cheese yield: A summation. J. Dairy Sci. 1986, 69, 649–657. [Google Scholar] [CrossRef]
- Barbano, D.M.; Rasmussen, R.R.; Lynch, J.M. Influence of milk somatic cell count and milk age on cheese yield. J. Dairy Sci. 1991, 74, 369–388. [Google Scholar] [CrossRef]
- Celestino, E.L.; Iyer, M.; Roginski, H. The effects of refrigerated storage on the quality of raw milk. Aust. J. Dairy Technol. 1996, 51, 59–63. [Google Scholar]
- Leitner, G.; Silanikove, N.; Jacobi, S.; Weisblit, L.; Bernstein, S.; Merin, U. The influence of storage on the farm and in dairy silos on milk quality for cheese production. Int. Dairy J. 2008, 18, 109–113. [Google Scholar] [CrossRef]
- De Dea Lindner, J.; Bernini, V.; De Lorentiis, A.; Pecorari, A.; Neviani, E.; Gatti, M. Parmigiano–Reggiano cheese: Evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening. Dairy Sci. Technol. 2008, 88, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Carafa, I.; Stocco, G.; Franceschi, P.; Summer, A.; Tuohy, K.M.; Bittante, G.; Franciosi, E. Evaluation of autochthonous lactic acid bacteria as starter and non-starter cultures for the production of traditional Mountain cheese. Food Res. Int. 2019, 115, 209–218. [Google Scholar] [CrossRef]
- Beresford, T.P.; Fitzsimons, N.A.; Brennan, N.L.; Cogan, T.M. Recent advances in cheese microbiology. Int. Dairy J. 2011, 11, 59–274. [Google Scholar] [CrossRef]
- Zannoni, M.; Nanni, M.; Mora, R. Influence of different conditions of natural creaming on milk and cheese characteristics. Scienza e Tecnica Lattiero-Casearia 1984, 35, 541–556. [Google Scholar]
- Battistotti, B.; Corradini, C. Italian cheese. In Cheese: Chemistry, Physics and Microbiology; Fox, P.F., Ed.; Chapman & Hall: London, UK, 1993; Volume 2, pp. 221–243. [Google Scholar]
- Franceschi, P.; Sandri, S.; Pecorari, M.; Vecchia, P.; Sinisi, F.; Mariani, P. Effects of milk storage temperature at the herd on cheesemaking losses in the manufacture of Parmigiano-Reggiano cheese. Vet. Res. Commun. 2008, 32 (Suppl. 1), 339–341. [Google Scholar] [CrossRef]
- Mc Sweeney, P.L.H. Biochemistry of cheese ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Tosi, F.; Sandri, S.; Tedeschi, G.; Malacarne, M.; Fossa, E. Variazioni di composizione e proprietà fisico-chimiche del Parmigiano-Reggiano durante la maturazione e in differenti zone della forma. Scienza e Tecnica Lattiero-Casearia 2008, 59, 507–528. [Google Scholar]
- Sousa, M.J.; Ardo, Y.; McSweeney, P.L.H. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
- Mammi, L.M.E.; Grazia, L.; Palmonari, A.; Canestrari, G.; Mordenti, A.; Vecchi, M.; Formigoni, A. Does the dry cow treatment with monensin controlled release capsule affect Parmigiano Reggiano cheese production? J. Dairy Sci. 2018, 101, 8847–8859. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, L.; Battelli, G.; Resmini, P.; Ferranti, P.; Barone, F.; Addeo, F. Effects of heat load gradient occurring in moulding on characterization and ripening of Grana Padano. Le Lait 1997, 77, 217–228. [Google Scholar] [CrossRef]
- Pecorari, M.; Gambini, G.G.; Reverberi, P.; Caroli, A. The influence of some technological factors on the glycolysis of Parmigiano-Reggiano. Scienza e Tecnica Lattiero-Casearia 2003, 54, 287–299. [Google Scholar]
- Malacarne, M.; Summer, A.; Franceschi, P.; Formaggioni, P.; Pecorari, M.; Panari, G.; Mariani, P. Free fatty acid profile of Parmigiano–Reggiano cheese throughout ripening: Comparison between the inner and outer regions of the wheel. Int. Dairy J. 2009, 19, 637–641. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists [AOAC]. Nitrogen (total) in milk, method No. 991.20. In Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 10–12. [Google Scholar]
- Gripon, J.C.; Desmazeaud, M.J.; Le Bars, D.; Bergère, J.L. Study of the role of microorganisms and enzymes in cheese ripening. II. Influence of commercial pressure. Le Lait 1975, 55, 502–516. [Google Scholar] [CrossRef] [Green Version]
- Savini, E. Analysis of Milk and Dairy Products; Hoepli: Milan, Italy, 1946; p. 1072. [Google Scholar]
- IDF Standard. Milk and Milk Products, Determination of Fat Content, General Guidance on the Use of Butyrometric Methods; International Dairy Federation Standard 152/ISO11870; IDF Standard: Brussels, Belgium, 2009. [Google Scholar]
- IDF Standard. Cheese and Processed Cheese Products, Determination of Chloride Content, Potentiometric Titration Method; International Dairy Federation Standard 88/ISO5943; IDF Standard: Brussels, Belgium, 2006. [Google Scholar]
- IDF Standard. Cheese and Processed Cheese, Determination of the Total Solids Content (Reference Method); International Dairy Federation Standard 4/ISO5534; IDF Standard: Brussels, Belgium, 2004. [Google Scholar]
- IDF Standard. Determination of Ash Content of Processed Cheese Products; International Dairy Federation Standard 27: Brussels, Belgium, 1964. [Google Scholar]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Tumino, S.; Bordonaro, S.; Di Frangia, F.; Marletta, D.; Summer, A. Distribution of Ca, P and Mg and casein micelle mineralisation in donkey milk from the second to ninth month of lactation. Int. Dairy J. 2017, 66, 1–5. [Google Scholar] [CrossRef]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Bordonaro, S.; Formaggioni, P.; Marletta, D.; Summer, A. New insights into chemical and mineral composition of donkey milk throughout nine months of lactation. Animals 2019, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Careri, M.; Spagnoli, S.; Panari, G.; Zannoni, M.; Barbieri, G. Chemical parameters of the Non-volatile fraction of ripened Parmigiano-Reggiano cheese. Int. Dairy J. 1996, 6, 147–155. [Google Scholar] [CrossRef]
- Giudici, P.; Masini, G.; Caggia, C. The role of galactose fermenting yeast in plain yogurt spoilage. Ann. Microbiol. Enzymol. 1996, 46, 11–19. [Google Scholar]
- Santarelli, M.; Bottari, B.; Malacarne, M.; Lazzi, C.; Sforza, S.; Summer, A.; Neviani, E.; Gatti, M. Variability of lactic acid production, chemical and microbiological characteristics in 24-hour Parmigiano Reggiano cheese. Dairy Sci. Technol. 2013, 93, 605–621. [Google Scholar] [CrossRef] [Green Version]
- IDF Standard. Milk and Liquid Milk Products, Guidelines for the Application of Mid- Infrared Spectrometry; International Dairy Federation Standard 141/ISO9622; IDF Standard: Brussels, Belgium, 2013. [Google Scholar]
- Petrera, F.; Catillo, G.; Napolitano, F.; Malacarne, M.; Franceschi, P.; Summer, A.; Abeni, F. New insights into the quality characteristics of milk from Modenese breed compared with Italian Friesian. Ital. J. Anim. Sci. 2016, 15, 559–567. [Google Scholar] [CrossRef] [Green Version]
- IDF Standard. Milk, Enumeration of Somatic Cells, Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters; International Dairy Federation Standard 148-2/ISO13366-2: Brussels, Belgium, 2006. [Google Scholar]
- IDF Standard. Milk Bacterial Count: Protocol for the Evaluation of Alternative Methods; International Dairy Federation Standard 161/ISO16297; IDF Standard: Brussels, Belgium, 2013. [Google Scholar]
- IDF Standard. Milk, Milk Products and Mesophilic Starter Cultures, Enumeration of Citrate-Fermenting Lactic Acid Bacteria, Colony-Count Technique at 25 Degrees C; International Dairy Federation Standard 180/ISO17792; IDF Standard: Brussels, Belgium, 2006. [Google Scholar]
- IDF Standard. Milk, Enumeration of Colony-Forming Units of Psychrotrophic Microorganisms, Colony-Count Technique at 6.5 Degrees C; International Dairy Federation Standard 101/ISO6730; IDF Standard: Brussels, Belgium, 2005. [Google Scholar]
- Fryer, T.F.; Lawrence, R.C.; Reiter, B. Methods for isolation and enumeration of lipolytic organisms. J. Dairy Sci. 1967, 50, 477–484. [Google Scholar] [CrossRef]
- IDF Technical Specification. Milk and Milk Product—General Guidance for the Preparation of Test Samples Initial Suspension and Decimal Dilutions for Microbiological Examination; International Dairy Federation Standard 122/ISO/8261; IDF Standard: Brussels, Belgium, 2001. [Google Scholar]
- IDF Technical Specification. Enumeration of the Specially Thermoresistant Spores of Thermophilic Bacteria; International Dairy Federation Technical Specification 228/ISO/TS 27265; IDF Standard: Brussels, Belgium, 2009. [Google Scholar]
- Oliveria, J.S.; Parmelee, C.E. 1976. Rapid enumeration of psychrotrophic bacteria in raw and pasteurized milk. J. Milk Food Technol. 1976, 39, 269–272. [Google Scholar] [CrossRef]
- Cousin, M.A. Presence and activity of psychrotrophic microorganisms in milk and dairy products: A review. J. Food Prot. 1982, 45, 172–207. [Google Scholar] [CrossRef]
- Yuan, L.; Sadiq, F.A.; Burmølle, M.; Wang, N.I.; He, G. Insights into psychrotrophic bacteria in raw milk: A review. J. Food Prot. 2019, 82, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Coloretti, F.; Chiavari, C.; Nocetti, M.; Reverberi, P.; Bortolazzo, E.; Musi, V.; Grazia, L. Whey starter addition during maturation of evening milk: Effects on some characteristics of cheese milk and Parmigiano–Reggiano cheese. Dairy Sci. Technol. 2016, 96, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Formaggioni, P.; Franceschi, P.; Di Frangia, F.; Righi, F.; Malacarne, M. Cheese as functional food: The example of Parmigiano Reggiano and Grana Padano. Food Technol. Biotechnol. 2017, 55, 277–289. [Google Scholar] [CrossRef]
- D’Incecco, P.; Limbo, S.; Hogenboom, J.; Rosi, V.; Gobbi, S.; Pellegrino, L. Impact of extending hard-cheese ripening: A multiparameter characterization of Parmigiano Reggiano cheese ripened up to 50 months. Foods 2020, 9, 268–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecorari, M.; Fossa, E.; Sandri, S.; Mariani, P. Trend of proteolysis during the ripening of Parmigiano-Reggiano. Scienza e Tecnica Lattiero-Casearia 1997, 48, 61–72. [Google Scholar]
Parameter | Unit | MC9 n 1 = 6 | MC20 n 1 = 6 | SE 2 | p3 |
---|---|---|---|---|---|
Lactose | g/100 g | 4.85 | 4.85 | 0.01 | NS |
Fat | g/100 g | 3.55 | 3.51 | 0.01 | NS |
Protein | g/100 g | 3.10 | 3.09 | 0.01 | NS |
Casein | g/100 g | 2.41 | 2.41 | 0.01 | NS |
pH-values | Units | 6.70 | 6.69 | 0.01 | NS |
Titratable acidity | SH/50 mL | 3.24 | 3.28 | 0.01 | NS |
Somatic cell count | Log10(cells/mL) | 5.41 | 5.43 | 0.03 | NS |
Total bacterial count | Log10(CFU/mL) | 4.44 | 4.38 | 0.07 | NS |
Mesophilic lactic bacteria | Log10(CFU/mL) | 3.15 | 3.20 | 0.06 | NS |
Psychrotrophs bacteria | Log10(CFU/mL) | 2.70 | 3.00 | 0.09 | * |
Proteolytic bacteria | Log10(CFU/mL) | 2.50 | 2.22 | 0.12 | NS |
Lipolytic bacteria | Log10(CFU/mL) | 3.01 | 3.23 | 0.07 | NS |
Clostridia spores | Log10 (Spores/L) | 1.51 | 1.25 | 0.09 | NS |
Parameter | Unit | MC9 n 1 = 6 | MC20 n 1 = 6 | SE 2 | p3 |
---|---|---|---|---|---|
pH | Value | 5.47 | 5.44 | 0.01 | NS |
Moisture | g/100 g | 30.29 | 30.04 | 0.30 | NS |
Fat | g/100 g | 29.67 | 30.40 | 0.33 | * |
Crude protein | g/100 g | 32.94 | 31.93 | 0.37 | * |
Ash | g/100 g | 4.34 | 4.19 | 0.06 | NS |
Salt (NaCl) | g/100 g | 1.33 | 1.34 | 0.05 | NS |
Phosphorus | mg/100 g | 660.86 | 637.13 | 7.86 | NS |
Calcium | mg/100 g | 952.88 | 968.79 | 20.85 | NS |
Magnesium | mg/100 g | 40.15 | 39.46 | 1.46 | NS |
Potassium | mg/100 g | 273.19 | 224.09 | 9.50 | NS |
Fat | g/100 g of dry matter | 42.57 | 43.45 | 0.34 | * |
Crude protein | g/100 g of dry matter | 46.86 | 45.64 | 0.45 | * |
Salt (NaCl) | g/100 g of dry matter | 1.91 | 1.92 | 0.07 | NS |
Parameter | Unit | MC9 n 1 = 6 | MC20 n 1 = 6 | SE 2 | p3 |
---|---|---|---|---|---|
pH | Value | 5.47 | 5.50 | 0.01 | NS |
Moisture | g/100 g | 33.58 | 33.52 | 0.14 | NS |
Fat | g/100 g | 27.97 | 28.62 | 0.26 | * |
Crude protein | g/100 g | 31.59 | 30.81 | 0.23 | * |
Ash | g/100 g | 3.97 | 3.92 | 0.07 | NS |
Salt (NaCl) | g/100 g | 1.28 | 1.25 | 0.05 | NS |
Phosphorus | mg/100 g | 611.68 | 605.60 | 6.05 | NS |
Calcium | mg/100 g | 882.69 | 892.58 | 18.51 | NS |
Magnesium | mg/100 g | 36.06 | 36.32 | 1.10 | NS |
Potassium | mg/100 g | 190.27 | 172.11 | 7.54 | NS |
Fat | g/100 g of dry matter | 42.12 | 43.02 | 0.35 | * |
Crude protein | g/100 g of dry matter | 47.16 | 46.22 | 0.36 | * |
Salt (NaCl) | g/100 g of dry matter | 1.93 | 1.88 | 0.07 | NS |
Parameter | Unit | MC9 n 1 = 6 | MC20 n 1 = 6 | SE 2 | p3 |
---|---|---|---|---|---|
Total N (TN) | g/100 g | 5.16 | 5.01 | 0.06 | * |
Soluble N at pH 4.4 (SN) | g/100 g | 1.59 | 1.49 | 0.02 | * |
Ripening index (SN/TN) | % | 30.71 | 29.76 | 0.35 | NS |
Peptone N | g/100 g | 0.19 | 0.15 | 0.02 | * |
Peptide N | g/100 g | 0.28 | 0.26 | 0.03 | NS |
Amino acid N | g/100 g | 1.00 | 0.97 | 0.02 | NS |
Ammonia N | g/100 g | 0.11 | 0.11 | 0.01 | NS |
Peptone N/TN | % | 3.59 | 2.94 | 0.38 | * |
Peptide N/TN | % | 5.54 | 5.30 | 0.55 | NS |
Amino acid N/TN | % | 19.37 | 19.32 | 0.45 | NS |
Ammonia N/TN | % | 2.21 | 2.12 | 0.08 | NS |
Peptone N/SN | % | 11.73 | 9.91 | 1.29 | * |
Peptide N/SN | % | 18.00 | 17.89 | 1.81 | NS |
Amino acid N/SN | % | 63.06 | 65.04 | 1.07 | NS |
Ammonia N/SN | % | 7.20 | 7.15 | 0.23 | NS |
Lactic acid | g/100 g | 1.52 | 1.57 | 0.05 | NS |
L-lactic acid | g/100 g | 0.76 | 0.80 | 0.04 | NS |
D-lactic acid | g/100 g | 0.76 | 0.78 | 0.02 | NS |
Acetic acid | mg/100 g | 103.62 | 100.44 | 4.30 | NS |
Propionic acid | mg/100 g | 0.41 | 0.65 | 0.11 | NS |
Pyruvic acid | mg/100 g | 16.37 | 11.01 | 3.38 | NS |
Citric acid | mg/100 g | 83.16 | 90.35 | 20.68 | NS |
Malic acid | mg/100 g | 62.06 | 48.88 | 11.80 | NS |
Fumaric acid | mg/100 g | 0.93 | 0.75 | 0.10 | NS |
Pyro-glutamic acid | mg/100 g | 450.25 | 435.12 | 19.99 | NS |
Parameter | Unit | 9 °C (TS) n 1 = 6 | 20 °C (TC) n 1 = 6 | SE 2 | p3 |
---|---|---|---|---|---|
Total N (TN) | g/100 g | 4.95 | 4.83 | 0.04 | * |
Soluble N at pH 4.4 (SN) | g/100 g | 1.54 | 1.47 | 0.03 | * |
Ripening index (SN/TN) | % | 31.13 | 30.50 | 0.51 | NS |
Peptone N | g/100 g | 0.16 | 0.12 | 0.01 | * |
Peptide N | g/100 g | 0.31 | 0.33 | 0.02 | NS |
Amino acid N | g/100 g | 0.96 | 0.91 | 0.03 | NS |
Ammonia N | g/100 g | 0.11 | 0.11 | 0.01 | NS |
Peptone N/TN | % | 3.19 | 2.56 | 0.24 | * |
Peptide N/TN | % | 6.27 | 6.79 | 0.33 | NS |
Amino acid N/TN | % | 19.38 | 18.94 | 0.52 | NS |
Ammonia N/TN | % | 2.23 | 2.17 | 0.10 | NS |
Peptone N/SN | % | 10.27 | 8.43 | 0.80 | * |
Peptide N/SN | % | 20.24 | 22.29 | 1.15 | NS |
Amino acid N/SN | % | 62.34 | 62.16 | 0.96 | NS |
Ammonia N/SN | % | 7.15 | 7.13 | 0.26 | NS |
Lactic acid | g/100 g | 1.47 | 1.47 | 0.02 | NS |
L-lactic acid | g/100 g | 0.80 | 0.78 | 0.03 | NS |
D-lactic acid | g/100 g | 0.68 | 0.69 | 0.03 | NS |
Acetic acid | mg/100 g | 98.36 | 99.67 | 4.43 | NS |
Propionic acid | mg/100 g | 0.19 | 0.21 | 0.02 | NS |
Pyruvic acid | mg/100 g | 7.23 | 5.21 | 1.50 | NS |
Citric acid | mg/100 g | 128.62 | 112.17 | 15.57 | NS |
Malic acid | mg/100 g | 31.25 | 27.74 | 6.56 | NS |
Fumaric acid | mg/100 g | 0.59 | 0.58 | 0.04 | NS |
Pyro-glutamic acid | mg/100 g | 410.05 | 437.25 | 21.71 | NS |
Parameter | Unit | MC9 n 1 = 6 | MC20 n 1 = 6 | SE 2 | p3 |
---|---|---|---|---|---|
Outer zone | Log10(CFU/g) | 4.36 | 4.47 | 0.13 | NS |
Inner zone 4 | Log10(CFU/g) | <2 | <2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franceschi, P.; Malacarne, M.; Formaggioni, P.; Faccia, M.; Summer, A. Effects of Milk Storage Temperature at the Farm on the Characteristics of Parmigiano Reggiano Cheese: Chemical Composition and Proteolysis. Animals 2021, 11, 879. https://doi.org/10.3390/ani11030879
Franceschi P, Malacarne M, Formaggioni P, Faccia M, Summer A. Effects of Milk Storage Temperature at the Farm on the Characteristics of Parmigiano Reggiano Cheese: Chemical Composition and Proteolysis. Animals. 2021; 11(3):879. https://doi.org/10.3390/ani11030879
Chicago/Turabian StyleFranceschi, Piero, Massimo Malacarne, Paolo Formaggioni, Michele Faccia, and Andrea Summer. 2021. "Effects of Milk Storage Temperature at the Farm on the Characteristics of Parmigiano Reggiano Cheese: Chemical Composition and Proteolysis" Animals 11, no. 3: 879. https://doi.org/10.3390/ani11030879
APA StyleFranceschi, P., Malacarne, M., Formaggioni, P., Faccia, M., & Summer, A. (2021). Effects of Milk Storage Temperature at the Farm on the Characteristics of Parmigiano Reggiano Cheese: Chemical Composition and Proteolysis. Animals, 11(3), 879. https://doi.org/10.3390/ani11030879