Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Raising and Tissue Collection
2.2. NMR Spectroscopy Assay
2.2.1. Chicken Metabolite Extraction
2.2.2. 1H NMR Metabolic Profiling, Data Pre-Processing, and Metabolite Identification
2.2.3. Multivariate Statistical Analysis
2.2.4. Relative Concentrations of Anserine and Anserine/Carnosine Content
2.3. Antioxidant Assay
2.3.1. Breast Extracts Rich in Dipeptides (Anserine and Carnosine)
2.3.2. Antioxidant Effects of Chicken Extracts Containing Dipeptides (Anserine and Carnosine)
3. Results and Discussion
3.1. Global 1H-NMR Metabolic Profiling of Chicken Extract
3.2. Multivariate Statistical Analysis for Distinct Metabolic Fingerprints Reflecting Different Genotyping Traits of Chicken Breeds
3.3. Relative Concentration of Anserine and Anserine/Carnosine Content
3.4. Antioxidant Activity of Dipeptide-Rich Chicken Breast Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tongsiri, S.; Jeyaruban, G.M.; Hermesch, S.; van der Werf, J.H.J.; Li, L.; Chormai, T. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian Australas. J. Anim. Sci. 2019, 32, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Manjula, P.; Park, H.B.; Seo, D.; Choi, N.; Jin, S.; Ahn, S.J.; Heo, K.N.; Kang, B.S.; Lee, J.H. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken. Asian Australas. J. Anim. Sci. 2018, 31, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faruque, S.; Islam, M.; Afroz, M.; Rahman, M. Evaluation of the performance of native chicken and estimation of heritability for body weight. J. Bangladesh Acad. Sci. 2013, 37, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance-A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Supachaturat, S.; Pichyangkura, R.; Chandrachai, A.; Pentrakoon, D. Perspective on functional food commercialization in Thailand. Int. Food Res. J. 2017, 24, 1374–1382. [Google Scholar]
- Roberfroid, M.B. Defining functional foods. Funct. Foods 2000, 9, 9–27. [Google Scholar] [CrossRef]
- Stanton, C.; Ross, R.P.; Fitzgerald, G.F.; Van Sinderen, D. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol. 2005, 16, 198–203. [Google Scholar] [CrossRef]
- Sangsawad, P.; Roytrakul, S.; Yongsawatdigul, J. Angiotensin converting enzyme (ACE) inhibitory peptides derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast. J. Funct. Foods 2017, 29, 77–83. [Google Scholar] [CrossRef]
- Kojima, S.; Saegusa, H.; Sakata, M. Histidine-containing dipeptide concentration and antioxidant effects of meat extracts from silky fowl: Comparison with meat-type chicken breast and thigh meats. Food Sci. Technol. Res. 2014, 20, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Beitz, D.C.; Wu, H.; Reecy, J.M.; Huiatt, T.W. Concentrations of Creatine, Creatinine, Carnosine, and Anserine in Bovine Longissimus Muscle and Their Correlations with Carcass and Palatability Traits; Iowa State University: Ames, IA, USA, 2011. [Google Scholar]
- Mori, M.; Mizuno, D.; Konoha-Mizuno, K.; Sadakane, Y.; Kawahara, M. Quantitative analysis of carnosine and anserine in foods by performing high performance liquid chromatography. Biomed. Res. Trace Elem. 2015, 26, 147–152. [Google Scholar]
- Katakura, Y.; Totsuka, M.; Imabayashi, E.; Matsuda, H.; Hisatsune, T. Anserine/carnosine supplementation suppresses the expression of the inflammatory chemokine CCL24 in peripheral blood mononuclear cells from elderly people. Nutrients 2017, 9, 1199. [Google Scholar] [CrossRef] [Green Version]
- Maemura, H.; Goto, K.; Yoshioka, T.; Sato, M.; Takahata, Y.; Morimatsu, F.; Takamatsu, K. Effects of carnosine and anserine supplementation on relatively high intensity endurance performance. Int. J. Sport Heal. Sci. 2006, 4, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Freund, M.A.; Chen, B.; Decker, E.A. The inhibition of advanced glycation end products by carnosine and other natural dipeptides to reduce diabetic and age-related complications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1367–1378. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Karasawa, N.; Shimizu, M.; Morimatsu, F.; Yamada, R. Safety evaluation of chicken breast extract containing carnosine and anserine. Food Chem. Toxicol. 2008, 46, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Microstructure and thermal characteristics of Thai indigenous and broiler chicken muscles. Poult. Sci. 2005, 84, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to Northern Thailand (Black-Boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult. Sci. 2004, 83, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Bae, Y.S.; Kim, H.J.; Jayasena, D.D.; Lee, J.H.; Park, H.B.; Heo, K.N.; Jo, C. Carnosine, anserine, creatine, and inosine 5 ′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 2013, 92, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Ge, C.; Zhou, G.; Zhang, W.; Liao, G. 1H NMR-based metabolic characterization of Chinese Wuding chicken meat. Food Chem. 2019, 274, 574–582. [Google Scholar] [CrossRef]
- Bertrand, S.; Azzollini, A.; Nievergelt, A.; Boccard, J.; Rudaz, S.; Cuendet, M.; Wolfender, J.L. Statistical correlations between HPLC activity-based profiling results and NMR/MS microfraction data to deconvolute bioactive compounds in mixtures. Molecules 2016, 21, 259. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C.; Ko, Y.-J.; Kim, M.; Choe, J.; Yong, H.I.; Jo, C. Optimization of 1D 1H quantitative NMR (nuclear magnetic resonance) conditions for polar metabolites in meat. Food Sci. Anim. Resour. 2019, 39, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jaturasitha, S.; Kayan, A.; Wicke, M. Carcass and meat characteristics of male chickens between Thai indigenous compared with improved layer breeds and their crossbred. Archiv. Fur. Tierzucht. 2008, 51, 283–294. [Google Scholar] [CrossRef]
- Fathi, F.; Brun, A.; Rott, K.H.; Cobra, P.F.; Tonelli, M.; Eghbalnia, H.R.; Caviedes-Vidal, E.; Karasov, W.H.; Markley, J.L. NMR-based identification of metabolites in polar and non-polar extracts of avian liver. Metabolites 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Cloarec, O.; Dumas, M.-E.; Craig, A.; Barton, R.H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J.C.; Holmes, E.; et al. Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem. 2005, 77, 1282–1289. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User’s Guide; Version 9.4; SAS Inst. Inc.: Cary, NC, USA, 2019. [Google Scholar]
- Sundekilde, U.K.; Rasmussen, M.K.; Young, J.F.; Bertram, H.C. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine. Food Chem. 2017, 217, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, C.I.; Mappley, L.J.; La Ragione, R.M.; Woodward, M.J.; Claus, S.P. NMR-based metabolic characterization of chicken tissues and biofluids: A model for avian research. Metabolomics 2016, 12, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Li, J.L.; Gao, T.; Lin, M.; Wang, X.F.; Zhu, X.D.; Gao, F.; Zhou, G.H. Effects of dietary supplementation with creatine monohydrate during the finishing period on growth performance, carcass traits, meat quality and muscle glycolytic potential of broilers subjected to transport stress. Animal 2014, 8, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Choe, J.H.; Choi, Y.M.; Lee, S.H.; Shin, H.G.; Ryu, Y.C.; Hong, K.C.; Kim, B.C. The relation between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. Meat Sci. 2008, 80, 355–362. [Google Scholar] [CrossRef]
- Tavárez, M.A.; Solis, F. Impact of genetics and breeding on broiler production performance: A look into the past, present, and future of the industry. Anim. Front. 2016, 6, 37–41. [Google Scholar] [CrossRef]
- Tunim, S.; Phasuk, Y.; Aggrey, S.E.; Duangjinda, M. Gene expression of fatty acid binding protein genes and its relationship with fat deposition of Thai native crossbreed chickens. Asian Australas. J. Anim. Sci. 2020. [CrossRef] [Green Version]
- Promwatee, N.; Laopaiboon, B.; Vongpralub, T.; Phasuk, Y.; Kunhareang, S.; Boonkum, W.; Duangjinda, M. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens. Genet. Mol. Res. 2013, 12, 4332–4341. [Google Scholar] [CrossRef]
- Mookprom, S.; Boonkum, W.; Kunhareang, S.; Siripanya, S.; Duangjinda, M. Genetic evaluation of egg production curve in Thai native chickens by random regression and spline models. Poult. Sci. 2017, 96, 274–281. [Google Scholar] [CrossRef]
- Akaboot, P.; Phasuk, Y.; Kaenchan, C.; Chinchiyanond, W. Genetic characterization of Red Junglefowl (Gallus gallus), Thai indigenous chicken (Gallus domesticus), and two commercial lines using selective functional genes compared to microsatellite markers. Genet. Mol. Res. 2012, 11, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Jung, S.; Bae, Y.S.; Park, H.B.; Lee, J.H.; Jo, C. Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from commercial broilers and indigenous chickens. J. Food Compos. Anal. 2015, 37, 20–24. [Google Scholar] [CrossRef]
- Ali, M.; Lee, S.-Y.; Park, J.-Y.; Jung, S.; Jo, C.; Nam, K.-C. Comparison of functional compounds and micronutrients of chicken breast meat by breeds. Food Sci. Anim. Resour. 2019, 39, 632–642. [Google Scholar] [CrossRef]
- Xing, L.; Chee, M.E.; Zhang, H.; Zhang, W.; Mine, Y. Carnosine—A natural bioactive dipeptide: Bioaccessibility, bioavailability and health benefits. J. Food Bioact. 2019, 5, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Jayasena, D.D.; Jung, S.; Kim, S.H.; Kim, H.J.; Alahakoon, A.U.; Lee, J.H.; Jo, C. Endogenous functional compounds in Korean native chicken meat are dependent on sex, thermal processing and meat cut. J. Sci. Food Agric. 2015, 95, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Verdiglione, R.; Cassandro, M. Characterization of muscle fiber type in the pectoralis major muscle of slow-growing local and commercial chicken strains. Poult. Sci. 2013, 92, 2433–2437. [Google Scholar] [CrossRef]
- Intarapichet, K.O.; Maikhunthod, B. Genotype and gender differences in carnosine extracts and antioxidant activities of chicken breast and thigh meats. Meat Sci. 2005, 71, 634–642. [Google Scholar] [CrossRef]
- Dunnett, M.; Harris, R.C.; Soliman, M.Z.; Suwar, A.A. Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Res. Vet. Sci. 1997, 62, 213–216. [Google Scholar] [CrossRef]
- Gkarane, V.; Ciulu, M.; Altmann, B.; Mörlein, D. Effect of alternative protein feeds on the content of selected endogenous bioactive and flavour-related compounds in chicken breast meat. Foods. 2020, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Barbaresi, S.; Maertens, L.; Claeys, E.; Derave, W.; De Smet, S. Differences in muscle histidine-containing dipeptides in broilers. J. Sci. Food Agric. 2019, 99, 5680–5686. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.; Enya, A.; Enomoto, K.; Ding, Q.; Hisatsune, T. Anserine (beta-alanyl-3-methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in aged AβPPswe/PSEN1dE9 Alzheimer’s-model mice. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desmarchelier, C.; Novoa Bermudez, M.J.; Coussio, J.; Ciccia, G.; Boveris, A. Antioxidant and prooxidant activities in aqueous extracts of Argentine plants. Pharm. Biol. 1997, 35, 116–120. [Google Scholar] [CrossRef]
- Kim, S.K.; Kwon, D.; Kwon, D.A.; Paik, I.K.; Auh, J.H. Optimizing carnosine containing extract preparation from chicken breast for anti-glycating agents. Korean J. Food Sci. Anim. Resour. 2014, 34, 127–132. [Google Scholar] [CrossRef] [Green Version]
Metabolite | ppm |
---|---|
Lactate | 1.344 (d); 4.11 (q) |
Alanine | 1.48 (d); 3.79 (q) |
Anserine/carnosine | 2.69 (m); 3.22 (m); 4.51 (m); 7.11 (s) |
Anserine | 3.791 (s) |
Creatine | 3.0 (s); 3.93 (s) |
Inositol monophosphate (IMP) | 4.043 (s); 8.577 (s) |
Inosine | 3.042 (s):8.353 (s) |
Effects | BR | KKU-ONE | KM | CH | PD | SEM | p-Value |
---|---|---|---|---|---|---|---|
Breeds | |||||||
Anserine | 404.37 ± 51.64 B | 691.71 ± 49.85 A | 757.58 ± 49.85 A | 837.50 ± 49.85 A | 780.64 ± 50.53 A | 50.34 | <0.0001 |
Anserine/carnosine | 100.21 ± 11.81 B | 169.93 ± 11.40 A | 177.01 ± 11.40 A | 187.85 ± 11.40 A | 179.20 ± 11.55 A | 11.51 | <0.0001 |
Breed × sex | |||||||
Anserine | 0.2394 | ||||||
Female | 453.27 ± 54.41 | 777.02 ± 76.95 | 759.83 ± 76.95 | 811.37 ± 62.83 | 716.83 ± 88.85 | 72.00 | |
Male | 253.76 ± 108.82 | 629.83 ± 62.83 | 751.06 ± 62.83 | 884.19 ± 76.95 | 807.97 ± 58.17 | 73.92 | |
Anserine/carnosine | 0.1670 | ||||||
Female | 105.65 ± 12.29 | 187.67 ± 17.39 | 177.06 ± 17.39 | 172.29 ± 14.19 | 162.52 ± 20.08 | 16.27 | |
Male | 75.03 ± 24.59 | 158.48 ± 14.19 | 177.35 ± 14.19 | 210.61 ± 17.39 | 186.99 ± 13.14 | 16.70 |
Breeds | BR | KKU-ONE | KM | CH | PD | SEM |
---|---|---|---|---|---|---|
Antioxidant activity (%) | 294.86 C | 421.71 B | 414.08 B | 502.76 A | 406.57 B | 84.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances. Animals 2021, 11, 902. https://doi.org/10.3390/ani11030902
Charoensin S, Laopaiboon B, Boonkum W, Phetcharaburanin J, Villareal MO, Isoda H, Duangjinda M. Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances. Animals. 2021; 11(3):902. https://doi.org/10.3390/ani11030902
Chicago/Turabian StyleCharoensin, Sukanya, Banyat Laopaiboon, Wuttigrai Boonkum, Jutarop Phetcharaburanin, Myra O. Villareal, Hiroko Isoda, and Monchai Duangjinda. 2021. "Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances" Animals 11, no. 3: 902. https://doi.org/10.3390/ani11030902
APA StyleCharoensin, S., Laopaiboon, B., Boonkum, W., Phetcharaburanin, J., Villareal, M. O., Isoda, H., & Duangjinda, M. (2021). Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances. Animals, 11(3), 902. https://doi.org/10.3390/ani11030902