Analgesia for Sheep in Commercial Production: Where to Next?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Outcomes of Literature Search
3.2. Pain
3.2.1. Non-Pharmacological Modulators of the Pain Response
3.2.2. Section Summary
3.3. Pain Assessment
3.3.1. Physiological Indictors
3.3.2. Biomarkers
3.3.3. Behaviours
3.3.4. Physical Measures
3.3.5. Cognitive Measures
3.3.6. Neurology
3.3.7. Vocalisation
3.3.8. Grimace Scale/Facial Expression
3.3.9. Section Summary
3.4. Sheep Husbandry Procedures
3.4.1. Tail Docking and Castration
Surgical Methods
Rubber Ring (Ischaemic) Methods
Combined Methods
3.4.2. Mulesing and Its Alternatives
3.4.3. Other Procedures and Conditions
3.4.4. Section Summary
3.5. Analgesic Agents
- Altering transduction, transmission and central modulation of nociception, either by direct disruption of nerve cell membranes, inhibition of the propagation of action potentials along nerve fibres, or through inhibition of one or more of the receptor types involved; or
- Through inhibition of the production of inflammatory mediators such as prostaglandins or leukotrienes; or
- A combination of the above, many agents interacting with a variety of receptors.
- The rate of absorption differs by route of administration, formulation, agent and species;
- The rate of clearance of the agent from the body differs by agent and species (Table 4), which is related to the manner in which the different species metabolize the agent, and that in turn will influence the metabolites and potential residues present in different species;
- The minimum effective concentration of the agent in plasma can differ between species;
- Furthermore, there is large inter-individual variation within species, and age, physiological status and the presence or absence of an injury or insult can in turn affect the pharmacokinetic (time course of drug absorption, distribution, metabolism, and excretion) and pharmacodynamic (biochemical, physiological and toxicological, including dose) properties of an agent.
3.5.1. General Anaesthesia
3.5.2. Local Anaesthetics
Subsection Summary
3.5.3. Non-Steroidal Anti-Inflammatory Agents (NSAIDs)
Salicylates (e.g., Aspirin)
Enolic Acid Derivatives (e.g., Meloxicam and Piroxicam)
Benzones (e.g., Phenylbutazone)
Pyrazolones (e.g., Metamizole)
Propionic Acid Derivatives (e.g., Carprofen, Flurbiprofen, Ibuprofen, Ketoprofen, Naproxen and Vedaprofen)
Acetic Acid Derivatives (e.g., Diclofenac, Eltenac, Etodolac, Indomethacin and Ketorolac)
Fenamic Acid Derivatives (e.g., Meclofenamic Acid and Tolfenamic Acid)
Coxibs (e.g., Deracoxib, Firocoxib, Mavacoxib and Robenacoxib)
Acetaminophen (Paracetamol)
Pyridinemonocarboxylic Acids (e.g., Flunixin)
Hydroxamic Acids (e.g., Tepoxalin)
Subsection Summary
3.5.4. Sedative Agents
α-Agonists
Dissociative Agents
Benzodiazepines
Subsection Summary
3.5.5. Opioids
Subsection Summary
3.5.6. Gabapentinoids
3.6. The Future of Analgesia
3.6.1. Transient Receptor Potential Channels
3.6.2. Vanilloid Receptor Antagonists
3.6.3. Vanilloid Receptor Agonists
3.6.4. Calcium-Channel Blockers
3.6.5. Sodium-Channel Blockers
3.6.6. Acid Sensing Ion Channels (ASIC)
3.6.7. Proteinase Activated Receptors (PAR)
3.6.8. Cholinergic Receptors and Acetylcholinesterase
3.6.9. Cannabinoids
3.6.10. Other Potential Targets
3.6.11. Section Summary
3.7. Multi-Modal Analgesia
3.8. Alternative Analgesic Modalities
3.8.1. TENS
3.8.2. Electroacupuncture (EAP)
3.8.3. Interferential Current Analgesia (IFC)
3.8.4. Transcutaneous Spinal Electroanalgesia (TSE)
3.8.5. Other Electrical Modalities
3.8.6. Photomodulation
3.8.7. Electromagnetic Field Therapy
3.8.8. Cryoanalgesia
3.8.9. Section Summary
3.9. Delivery Systems
4. Conclusions
5. Limitations of This Review
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Molony, V.; Kent, J.E. Assessment of acute pain in farm animals using behavioral and physiological measurements. J. Anim. Sci. 1997, 75, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, L.S. Targeting TRPV1 as an Alternative Approach to Narcotic Analgesics to Treat Chronic Pain Conditions. AAPS J. 2010, 12, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandercock, D.A.; Barnett, M.W.; Coe, J.E.; Downing, A.C.; Nirmal, A.J.; Di Giminiani, P.; Edwards, S.A.; Freeman, T.C. Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes. Front. Vet. Sci. 2019, 6, 314. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.E.; Molony, V.; Jackson, R.E.; Hosie, B.D. Chronic inflammatory responses of lambs to rubber ring castration: Are there any effects of age or size of lamb at treatment? BSAP Occas. Publ. 1999, 23, 160–162. [Google Scholar] [CrossRef] [Green Version]
- Molony, V.; Kent, J.E.; Vinuela-Fernandez, I.; Anderson, C.; Dwyer, C.M. Pain in lambs castrated at 2 days using novel smaller and tighter rubber rings without and with local anaesthetic. Vet. J. 2012, 193, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Petherick, J.C.; Small, A.H.; Mayer, D.G.; Colditz, I.G.; Ferguson, D.M.; Stafford, K.J. A comparison of welfare outcomes for weaner and mature Bos indicus bulls surgically or tension band castrated with or without analgesia: 1. behavioural responses. Appl. Anim. Behav. Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Petherick, J.C.; Small, A.H.; Mayer, D.G.; Colditz, I.G.; Ferguson, D.M.; Stafford, K.J. A comparison of welfare outcomes for weaner and mature Bos indicus bulls surgically or tension band castrated with or without analgesia: 2. responses related to stress, health and productivity. Appl. Anim. Behav. Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Petherick, J.C.; Small, A.H.; Reid, D.J.; Colditz, I.G.; Ferguson, D.M. Welfare outcomes for 3-and 6-month-old beef calves in a tropical environment castrated surgically or by applying rubber rings. Appl. Anim. Behav. Sci. 2015, 171, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Frias, B.; Merighi, A. Capsaicin, Nociception and Pain. Molecules 2016, 21, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guesgen, M.J.; Beausoleil, N.J.; Minot, E.O.; Stewart, M.; Jones, G.; Stafford, K.J. The effects of age and sex on pain sensitivity in young lambs. Appl. Anim. Behav. Sci. 2011, 135, 51–56. [Google Scholar] [CrossRef]
- Janczak, A.M.; Ranheim, B.; Fosse, T.K.; Hild, S.; Nordgreen, J.; Moe, R.O.; Zanella, A.J. Factors affecting mechanical (nociceptive) thresholds in piglets. Vet. Anaesth. Analg. 2012, 39, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.B.; Sylvester, S.P.; Stafford, K.J.; Mitchinson, S.L.; Ward, R.N.; Mellor, D.J. Effects of age on the electroencephalographic response to castration in lambs anaesthetized with halothane in oxygen from birth to 6 weeks old. Vet. Anaesth. Analg. 2009, 36, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Kells, N.J.; Beausoleil, N.J.; Chambers, J.P.; Sutherland, M.A.; Morrison, R.S.; Johnson, C.B. Electroencephalographic responses of anaesthetized pigs (Sus scrofa) to tail docking using clippers or cautery iron performed at 2 or 20 days of age. Vet. Anaesth. Analg. 2017, 44, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- McCracken, L.; Waran, N.; Mitchinson, S.; Johnson, C.B. Effect of age at castration on behavioural response to subsequent tail docking in lambs. Vet. Anaesth. Analg. 2010, 37, 375–381. [Google Scholar] [CrossRef]
- Colditz, I.G.; Paull, D.R.; Lee, C. Social transmission of physiological and behavioural responses to castration in suckling Merino lambs. Appl. Anim. Behav. Sci. 2012, 136, 136–145. [Google Scholar] [CrossRef]
- Guesgen, M.J.; Beausoleil, N.J.; Minot, E.O.; Stewart, M.; Stafford, K.J. Social context and other factors influence the behavioural expression of pain by lambs. Appl. Anim. Behav. Sci. 2014, 159, 41–49. [Google Scholar] [CrossRef]
- Guesgen, M.J.; Beausoleil, N.J.; Stewart, M. Effects of early human handling on the pain sensitivity of young lambs. Vet. Anaesth. Analg. 2013, 40, 55–62. [Google Scholar] [CrossRef]
- Ijichi, C.; Collins, L.M.; Elwood, R.W. Pain expression is linked to personality in horses. Appl. Anim. Behav. Sci. 2014, 152, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Lush, J.; Ijichi, C. A preliminary investigation into personality and pain in dogs. J. Vet. Behav. Clin. Appl. Res. 2018, 24, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Richter, S.H.; Hintze, S. From the individual to the population-and back again? Emphasising the role of the individual in animal welfare science. Appl. Anim. Behav. Sci. 2019, 212, 1–8. [Google Scholar] [CrossRef]
- Fidan, A.F.; Pamuk, K.; Ozdemir, A.; Saritas, Z.K.; Tarakci, U. Effects of dehorning by amputation on oxidant-antioxidant status in mature cattle. Rev. Med. Vet. 2010, 161, 502–508. [Google Scholar]
- Peers, A.; Mellor, D.J.; Wintour, E.M.; Dodic, M. Blood pressure, heart rate, hormonal and other acute responses to rubber-ring castration and tail docking of lambs. N. Z. Vet. J. 2002, 50, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Verkerk, G.A.; Stafford, K.J.; Schaefer, A.L.; Webster, J.R. Noninvasive assessment of autonomic activity for evaluation of pain in calves, using surgical castration as a model. J. Dairy Sci. 2010, 93, 3602–3609. [Google Scholar] [CrossRef] [PubMed]
- Stubsjoen, S.M.; Flo, A.S.; Moe, R.O.; Janczak, A.M.; Skjerve, E.; Valle, P.S.; Zanella, A.J. Exploring non-invasive methods to assess pain in sheep. Physiol. Behav. 2009, 98, 640–648. [Google Scholar] [CrossRef]
- Stubsjoen, S.M.; Bohlin, J.; Skjerve, E.; Valle, P.S.; Zanella, A.J. Applying fractal analysis to heart rate time series of sheep experiencing pain. Physiol. Behav. 2010, 101, 74–80. [Google Scholar] [CrossRef]
- Stubsjoen, S.M.; Knappe-Poindecker, M.; Langbein, J.; Fjeldaas, T.; Bohlin, J. Assessment of chronic stress in sheep (part II): Exploring heart rate variability as a non-invasive measure to evaluate cardiac regulation. Small Rumin. Res. 2015, 133, 30–35. [Google Scholar] [CrossRef]
- Ambriz-Tututi, M.; Sanchez-Gonzalez, V.; Drucker-Colin, R. Transcranial magnetic stimulation reduces nociceptive threshold in rats. J. Neurosci. Res. 2012, 90, 1085–1095. [Google Scholar] [CrossRef]
- Asfaha, S.; Brussee, V.; Chapman, K.; Zochodne, D.W.; Vergnolle, N. Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br. J. Pharmacol. 2002, 135, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Binshtok, A.M.; Gerner, P.; Oh, S.B.; Puopolo, M.; Suzuki, S.; Roberson, D.P.; Herbert, T.; Wang, C.F.; Kim, D.; Chung, G.; et al. Coapplication of Lidocaine and the Permanently Charged Sodium Channel Blocker QX-314 Produces a Long-lasting Nociceptive Blockade in Rodents. Anesthesiology 2009, 111, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Briggs, S.L.; Sneed, K.; Sawyer, D.C. Antinociceptive effects of oxymorphone-butorphanol-acepromazine combination in cats. Vet. Surg. 1998, 27, 466–472. [Google Scholar] [CrossRef]
- Colvin, A.C.; Wang, C.F.; Soens, M.A.; Mitani, A.A.; Strichartz, G.; Gerner, P. Prolonged Cutaneous Analgesia With Transdermal Application of Amitriptyline and Capsaicin. Reg. Anesth. Pain Med. 2011, 36, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Di Giminiani, P.; Petersen, L.J.; Herskin, M.S. Nociceptive responses to thermal and mechanical stimulations in awake pigs. Eur. J. Pain 2013, 17, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Di Giminiani, P.; Sandercock, D.A.; Malcolm, E.M.; Leach, M.C.; Herskin, M.S.; Edwards, S.A. Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails. Physiol. Behav. 2016, 165, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, A.L.; Leach, M.C.; Flecknell, P.A. Influence of early neonatal experience on nociceptive responses and analgesic effects in rats. Lab. Anim. 2009, 43, 11–16. [Google Scholar] [CrossRef]
- Eisenach, J.C.; Lavand’homme, P.; Tong, C.; Cheng, J.K.; Pan, H.L.; Virtanen, R.; Nikkanen, H.; James, R. Antinociceptive and hemodynamic effects of a novel alpha(2)-adrenergic agonist, MPV-2426, in sheep. Anesthesiology 1999, 91, 1425–1436. [Google Scholar] [CrossRef]
- Elfenbein, J.R.; Robertson, S.A.; MacKay, R.J.; KuKanich, B.; Sanchez, L.C. Systemic and anti-nociceptive effects of prolonged lidocaine, ketamine, and butorphanol infusions alone and in combination in healthy horses. BMC Vet. Res. 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Grant, C.; Upton, R.N. The anti-nociceptive efficacy of low dose intramuscular xylazine in lambs. Res. Vet. Sci. 2001, 70, 47–50. [Google Scholar] [CrossRef]
- Grint, N.J.; Beths, T.; Yvorchuk-St Jean, K.; Whay, H.R.; Murrell, J.C. Analysis of Behaviors Observed During Mechanical Nociceptive Threshold Testing in Donkeys and Horses. J. Equine Vet. Sci. 2017, 50, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Grint, N.J.; Whay, H.R.; Beths, T.; Yvorchuk, K.; Murrell, J.C. Challenges of thermal nociceptive threshold testing in the donkey. Vet. Anaesth. Analg. 2015, 42, 205–214. [Google Scholar] [CrossRef]
- Guindon, J.; Desroches, J.; Dania, M.; Beaulieu, P. Pre-emptive antinociceptive effects of a synthetic cannabinoid in a model of neuropathic pain. Eur. J. Pharmacol. 2007, 568, 173–176. [Google Scholar] [CrossRef]
- Hild, S.; Andersen, I.L.; Zanella, A.J. The relationship between thermal nociceptive threshold in lambs and ewe-lamb interactions. Small Rumin. Res. 2010, 90, 142–145. [Google Scholar] [CrossRef]
- Hothersall, B.; Caplen, G.; Nicol, C.J.; Taylor, P.M.; Waterman-Pearson, A.E.; Weeks, C.A.; Murrell, J.C. Development of mechanical and thermal nociceptive threshold testing devices in unrestrained birds (broiler chickens). J. Neurosci. Methods 2011, 201, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.K.; Honore, P.; Hernandez, G.; Schmidt, R.; Gomtsyan, A.; Scanlo, M.; Kort, M.; Jarvis, M.F. Additive Antinociceptive Effects of the Selective Nav1.8 Blocker A-803467 and Selective TRPV1 Antagonists in Rat Inflammatory and Neuropathic Pain Models. J. Pain 2009, 10, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Kakiuchi, Y.; Nagai, J.; Gotoh, M.; Hotta, H.; Murofushi, H.; Ogawa, T.; Ueda, H.; Murakami-Murofushi, K. Antinociceptive effect of cyclic phosphatidic acid and its derivative on animal models of acute and chronic pain. Mol. Pain 2011, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashima, K.; Watanabe, N.; Higashinaka, S.; Maeda, S.; Shiba, R. Changes in sensory and pain perception thresholds after linear polarized near-infrared light radiation in the trigeminal region. Cranio J. Craniomandib. Pract. 2005, 23, 174–178. [Google Scholar] [CrossRef]
- Kongara, K.; Chambers, J.P.; Johnson, C.B. Electroencephalographic responses of tramadol, parecoxib and morphine to acute noxious electrical stimulation in anaesthetised dogs. Res. Vet. Sci. 2010, 88, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Leach, M.C.; Forrester, A.R.; Flecknell, P.A. Influence of preferred foodstuffs on the antinociceptive effects of orally administered buprenorphine in laboratory rats. Lab. Anim. 2010, 44, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Musk, G.C.; Murdoch, F.R.; Tuke, J.; Kemp, M.W.; Dixon, M.J.; Taylor, P.M. Thermal and mechanical nociceptive threshold testing in pregnant sheep. Vet. Anaesth. Analg. 2014, 41, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Nalon, E.; Maes, D.; Piepers, S.; Taylor, P.; van Riet, M.M.J.; Janssens, G.P.J.; Millet, S.; Tuyttens, F.A.M. Factors affecting mechanical nociceptive thresholds in healthy sows. Vet. Anaesth. Analg. 2016, 43, 343–355. [Google Scholar] [CrossRef]
- Pereira, F.C.; Parisi, J.R.; Maglioni, C.B.; Machado, G.B.; Barragan-Iglesias, P.; Silva, J.R.T.; Silva, M.L. Antinociceptive Effects of Low-Level Laser Therapy at 3 and 8 j/cm(2) in a Rat Model of Postoperative Pain: Possible Role of Endogenous Opioids. Lasers Surg. Med. 2017, 49, 844–851. [Google Scholar] [CrossRef]
- Rohrbach, H.; Andersen, O.K.; Zeiter, S.; Wieling, R.; Spadavecchia, C. Repeated electrical stimulations as a tool to evoke temporal summation of nociceptive inputs in healthy, non-medicated experimental sheep. Physiol. Behav. 2015, 142, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukwied, R.; Chizh, B.A.; Lorenz, U.; Obreja, O.; Margarit, S.; Schley, M.; Schmelz, M. Potentiation of nociceptive responses to low pH injections in humans by prostaglandin E2. J. Pain 2007, 8, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Soens, M.; Wang, J.C.F.; Berta, T.; Strichartz, G. Systemic Progesterone Administration in Early Life Alters the Hyperalgesic Responses to Surgery in the Adult: A Study on Female Rats. Anesth. Analg. 2015, 121, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Song, T.Y.; Ma, X.J.; Ma, P.Y.; Gu, K.F.; Zhao, J.H.; Yang, Y.L.; Jiang, B.; Li, Y.X.; Wang, C.P. Administrations of thalidomide into the rostral ventromedial medulla produce antinociceptive effects in a rat model of postoperative pain. J. Neurosci. Res. 2018, 96, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Stubsjoen, S.M.; Valle, P.S.; Zanella, A.J. The use of a hand-held algometer as a method to measure mechanical nociceptive thresholds in sheep. Anim. Welf. 2010, 19, 31–36. [Google Scholar]
- Wang, N.; Zhang, Y.; Wang, J.Y.; Gao, G.; Luo, F. Effects of pentobarbital anesthesia on nociceptive processing in the medial and lateral pain pathways in rats. Neurosci. Bull. 2010, 26, 188–196. [Google Scholar] [CrossRef]
- Castel, D.; Sabbag, I.; Meilin, S. The effect of local/topical analgesics on incisional pain in a pig model. J. Pain Res. 2017, 10, 2169–2175. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y.; Ozaki, N.; Taguchi, T.; Mizumura, K.; Furukawa, K.; Sugiura, Y. TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain 2008, 140, 292–304. [Google Scholar] [CrossRef]
- Lomax, S.; Dickson, H.; Sheil, M.; Windsor, P.A. Topical anaesthesia alleviates short-term pain of castration and tail docking in lambs. Aust. Vet. J. 2010, 88, 67–74. [Google Scholar] [CrossRef]
- Lomax, S.; Sheil, M.; Windsor, P.A. Impact of topical anaesthesia on pain alleviation and wound healing in lambs after mulesing. Aust. Vet. J. 2008, 86, 159–168. [Google Scholar] [CrossRef]
- Muneshige, H.; Toda, K.; Ma, D.L.; Kimura, H.; Asou, T.; Ikuta, Y. Antinociceptive effect of linear polarized 0.6 to 1.6 mu m irradiation of lumbar sympathetic ganglia in chronic constriction injury rats. J. Rehabil. Res. Dev. 2006, 43, 565–571. [Google Scholar] [CrossRef]
- Tucker, C.B.; Mintline, E.M.; Banuelos, J.; Walker, K.A.; Hoar, B.; Drake, D.; Weary, D.M. Effect of a cooling gel on pain sensitivity and healing of hot-iron cattle brands. J. Anim. Sci. 2014, 92, 5666–5673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, C.B.; Mintline, E.M.; Banuelos, J.; Walker, K.A.; Hoar, B.; Varga, A.; Drake, D.; Weary, D.M. Pain sensitivity and healing of hot-iron cattle brands. J. Anim. Sci. 2014, 92, 5674–5682. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Sen Gupta, G.; Singh, P. Remotely Operated Mechanical Nociceptive Device for Sheep: Preliminary Investigations. In Proceedings of the 2017 Institute of Electrical and Electronics Engineers, Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017. [Google Scholar]
- Nalon, E.; Maes, D.; Piepers, S.; van Riet, M.M.J.; Janssens, G.P.J.; Millet, S.; Tuyttens, F.A.M. Mechanical nociception thresholds in lame sows: Evidence of hyperalgesia as measured by two different methods. Vet. J. 2013, 198, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Jongman, E.C.; Morris, J.P.; Barnett, J.L.; Hemsworth, P.H. EEG changes in 4-week-old lambs in response to castration, tail docking and mulesing. Aust. Vet. J. 2000, 78, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Perentos, N.; Nicol, A.U.; Martins, A.Q.; Stewart, J.E.; Taylor, P.; Morton, A.J. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording. J. Neurosci. Methods 2017, 279, 87–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazel, S.; White, P.; Lomax, S.; Fisher, A.; Hutchinson, M. A Systematic Review of Novel Approaches for the Measurement of Pain in Animals; Australian Pork Limited: Canberra, Australia, 2015; p. 48. [Google Scholar]
- Pang, W.Y.; Earley, B.; Murray, M.; Sweeney, T.; Gath, V.; Crowe, M.A. Banding or Burdizzo castration and carprofen administration on peripheral leukocyte inflammatory cytokine transcripts. Res. Vet. Sci. 2011, 90, 127–132. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Arjona, M.; Rubio, C.P.; Martínez-Subiela, S.; Cerón, J.J.; Tecles, F. Application of a score for evaluation of pain, distress and discomfort in pigs with lameness and prolapses: Correlation with saliva biomarkers and severity of the disease. Res. Vet. Sci. 2019, 126, 155–163. [Google Scholar] [CrossRef]
- Busk, P.; Jacobsen, S.; Martinussen, T. Administration of Perioperative Penicillin Reduces Postoperative Serum Amyloid A Response in Horses Being Castrated Standing. Vet. Surg. 2010, 39, 638–643. [Google Scholar] [CrossRef]
- Thornton, P.D.; Waterman-Pearson, A.E. Behavioural responses to castration in lambs. Anim. Welf. 2002, 11, 203–212. [Google Scholar]
- Marti, S.; Devant, M.; Bach, A. Lying time and animal activity after surgical castration of Holstein bulls recorded with pedometers. J. Dairy Sci. 2010, 93, 16–17. [Google Scholar]
- Dinniss, A.S.; Stafford, K.J.; Mellor, D.J.; Bruce, R.A.; Ward, R.N. The behaviour pattern of lambs after castration using a rubber ring and/or castrating clamp with or without local anaesthetic. N. Z. Vet. J. 1999, 47, 198–203. [Google Scholar] [PubMed]
- Dickinson, A.L.; Leach, M.C.; Flecknell, P.A. The analgesic effects of oral paracetamol in two strains of mice undergoing vasectomy. Lab. Anim. 2009, 43, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Lester, S.J.; Mellor, D.J.; Holmes, R.J.; Ward, R.N.; Stafford, K.J. Behavioural and cortisol responses of lambs to castration and tailing using different methods. N. Z. Vet. J. 1996, 44, 45–54. [Google Scholar] [CrossRef]
- Newell, K.; Chitty, J.; Henson, F.M. “Patient reported outcomes” following experimental surgeryusing telemetry to assess movement in experimental ovine models. J. Orthop. Res. 2018, 36, 1498–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currah, J.M.; Hendrick, S.H.; Stookey, J.M. The behavioral assessment and alleviation of pain associated with castration in beef calves treated with flunixin meglumine and caudal lidocaine epidural anesthesia with epinephrine. Can. Vet. J. Rev. Vet. Can. 2009, 50, 375–382. [Google Scholar]
- Safayi, S.; Jeffery, N.D.; Shivapour, S.K.; Zamanighomi, M.; Zylstra, T.J.; Bratsch-Prince, J.; Wilson, S.; Reddy, C.G.; Fredericks, D.C.; Gillies, G.T.; et al. Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury. J. Neurol. Sci. 2015, 358, 107–112. [Google Scholar] [CrossRef]
- Otto, K.A.; Steiner, K.H.S.; Zailskas, F.; Wippermann, B. Comparison of the postoperative analgesic effects of buprenorphine and piritramide following experimental orthopaedic surgery in sheep. J. Exp. Anim. Sci. 2000, 41, 133–143. [Google Scholar] [CrossRef]
- Phythian, C.J.; Michalopoulou, E.; Cripps, P.J.; Duncan, J.S.; Wemelsfelder, F. On-farm qualitative behaviour assessment in sheep: Repeated measurements across time, and association with physical indicators of flock health and welfare. Appl. Anim. Behav. Sci. 2016, 175, 23–31. [Google Scholar] [CrossRef]
- Vindevoghel, T.V.; Fleming, P.A.; Hyndman, T.H.; Musk, G.C.; Laurence, M.; Collins, T. Qualitative Behavioural Assessment of Bos indicus cattle after surgical castration. Appl. Anim. Behav. Sci. 2019, 211, 95–102. [Google Scholar] [CrossRef]
- Guesgen, M.J.; Beausoleil, N.J.; Minot, E.O.; Stewart, M.; Stafford, K.J.; Morel, P.C.H. Lambs show changes in ear posture when experiencing pain. Anim. Welf. 2016, 25, 171–177. [Google Scholar] [CrossRef]
- Lu, Y.T.; Mahmoud, M.; Robinson, P. Estimating Sheep Pain Level Using Facial Action Unit Detection. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 30 May–3 June 2017; pp. 394–399. [Google Scholar]
- Kleinhenz, M.D.; Van Engen, N.K.; Smith, J.S.; Gorden, P.J.; Ji, J.; Wang, C.; Perkins, S.C.B.; Coetzee, J.F. The impact of transdermal flunixin meglumine on biomarkers of pain in calves when administered at the time of surgical castration without local anesthesia. Livest. Sci. 2018, 212, 1–6. [Google Scholar] [CrossRef]
- Colditz, I.; Paull, D.; Lloyd, J.; Johnston, L.; Small, A. Efficacy of meloxicam in a pain model in sheep. Aust. Vet. J. 2019, 97, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colditz, I.G.; Paull, D.R.; Hervault, G.; Aubriot, D.; Lee, C. Development of a lameness model in sheep for assessing efficacy of analgesics. Aust. Vet. J. 2011, 89, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G. Objecthood, Agency and Mutualism in Valenced Farm Animal Environments. Animals 2018, 8, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adcock, S. Case Study; UFAW Science in the Service of Animal Welfare Newsletter: Wheathampstead, UK, 2019. [Google Scholar]
- Neave, H.W.; Daros, R.R.; Costa, J.H.C.; von Keyserlingk, M.A.G.; Weary, D.M. Pain and Pessimism: Dairy Calves Exhibit Negative Judgement Bias following Hot-Iron Disbudding. PLoS ONE 2013, 8, e80556. [Google Scholar] [CrossRef] [Green Version]
- Sanger, M.E.; Doyle, R.E.; Hinch, G.N.; Lee, C. Sheep exhibit a positive judgement bias and stress-induced hyperthermia following shearing. Appl. Anim. Behav. Sci. 2011, 131, 94–103. [Google Scholar] [CrossRef]
- Fan, L.; Sun, Y.B.; Sun, Z.K.; Wang, N.; Luo, F.; Yu, F.; Wang, J.Y. Modulation of auditory sensory memory by chronic clinical pain and acute experimental pain: A mismatch negativity study. Sci. Rep. 2018, 8, 15673. [Google Scholar] [CrossRef]
- Larrondo, C.; Bustamante, H.; Paredes, E.; Gallo, C. Long-term hyperalgesia and traumatic neuroma formation in tail-docked lambs. Anim. Welf. 2019, 28, 443–454. [Google Scholar] [CrossRef]
- Vidondo, B.; Stettler, S.; Stojiljkovic, A.; Mogel, H.; Gaschen, V.; Spadavecchia, C.; Casoni, D.; Stoffel, M.H. Assessment of potential neuropathic changes in cattle after cautery disbudding. Res. Vet. Sci. 2019, 126, 9–16. [Google Scholar] [CrossRef]
- Kluivers-Poodt, M.; Houx, B.B.; Robben, S.R.M.; Koop, G.; Lambooij, E.; Hellebrekers, L.J. Effects of a local anaesthetic and NSAID in castration of piglets, on the acute pain responses, growth and mortality. Animal 2012, 6, 1469–1475. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.D.; Bracci, D.; Dai, F.; Lebelt, D.; Minero, M. Do Different Emotional States Affect the Horse Grimace Scale Score? A Pilot Study. J. Equine Vet. Sci. 2017, 54, 114–117. [Google Scholar] [CrossRef]
- Guesgen, M.J.; Beausoleil, N.J.; Leach, M.; Minot, E.O.; Stewart, M.; Stafford, K.J. Coding and quantification of a facial expression for pain in lambs. Behav. Process. 2016, 132, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Hageri, C.; Biernot, S.; Buettner, M.; Glage, S.; Keubler, L.M.; Held, N.; Bleich, E.M.; Otto, K.; Muller, C.W.; Decker, S.; et al. The Sheep Grimace Scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 2017, 12, e0175839. [Google Scholar] [CrossRef] [Green Version]
- McLennan, K.M.; Miller, A.L.; Dalla Costa, E.; Stucke, D.; Corke, M.J.; Broom, D.M.; Leach, M.C. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl. Anim. Behav. Sci. 2019, 217, 1–15. [Google Scholar] [CrossRef]
- Mellor, D.; Stafford, K. Assessing and minimising the distress caused by painful husbandry procedures in ruminants. Practice 1999, 21, 436–446. [Google Scholar] [CrossRef]
- Mellor, D.J.; Stafford, K.J. Physiological and behavioural assessment of pain in ruminants: Principles and caveats. ATLA Altern. Lab. Anim. 2004, 32, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.R.; Stewart, M.; Beausoleil, N.; Johnson, C.; Stafford, K. Pain Relief during Painful Husbandry Procedures in Livestock; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2010; p. 22. ISBN 978-0-478-36345-6.
- Fitzpatrick, J.; Scott, M.; Nolan, A. Assessment of pain and welfare in sheep. Small Rumin. Res. 2006, 62, 55–61. [Google Scholar] [CrossRef]
- Fisher, A.D. Addressing pain caused by mulesing in sheep. Appl. Anim. Behav. Sci. 2011, 135, 232–240. [Google Scholar] [CrossRef]
- Lee, C.; Fisher, A.D. Welfare consequences of mulesing of sheep. Aust. Vet. J. 2007, 85, 89–93. [Google Scholar] [CrossRef]
- Howard, K.; Beattie, L. A National Producer Survey of Sheep Husbandry Practices; Meat & Livestock Australia: Sydney, Australia, 2018; p. 113. [Google Scholar]
- Sloane, B. Survey of husbandry practices. In AWI Breech Flystrike R&D Update; Australian Wool Innovation: Sydney, Australia, 2018. [Google Scholar]
- Lester, S.J.; Mellor, D.J.; Ward, R.N. Effects of repeated handling on the cortisol responses of young lambs castrated and tailed surgically. N. Z. Vet. J. 1991, 39, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Lester, S.J.; Mellor, D.J.; Ward, R.N.; Holmes, R.J. Cortisol responses of young lambs to castration and tailing using different methods. N. Z. Vet. J. 1991, 39, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Melches, S.; Mellema, S.C.; Doherr, M.G.; Wechsler, B.; Steiner, A. Castration of lambs: A welfare comparison of different castration techniques in lambs over 10 weeks of age. Vet. J. 2007, 173, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Warnock, T.M.; Thrift, T.A.; Irsik, M.; Hersom, M.J.; Yelich, J.V.; Maddock, T.D.; Lamb, G.C.; Arthington, J.D. Effect of castration technique on beef calf performance, feed efficiency, and inflammatory response. J. Anim. Sci. 2012, 90, 2345–2352. [Google Scholar] [CrossRef]
- Coetzee, J.F.; Lubbers, B.V.; Toerber, S.E.; Gehring, R.; Thomson, D.U.; White, B.J.; Apley, M.D. Plasma concentrations of substance P and cortisol in beef calves after castration or simulated castration. Am. J. Vet. Res. 2008, 69, 751–762. [Google Scholar] [CrossRef]
- Molony, V.; Kent, J.E.; Robertson, I.S. Behavioral-responses of lambs of 3 ages in the 1st 3 h after 3 methods of castration and tail docking. Res. Vet. Sci. 1993, 55, 236–245. [Google Scholar] [CrossRef]
- Fisher, A.D.; Crowe, M.A.; delaVarga, M.E.A.; Enright, W.J. Effect of castration method and the provision of local anesthesia on plasma cortisol, scrotal circumference, growth, and feed intake of bull calves. J. Anim. Sci. 1996, 74, 2336–2343. [Google Scholar] [CrossRef] [Green Version]
- Grant, C. Behavioural responses of lambs to common painful husbandry procedures. Appl. Anim. Behav. Sci. 2004, 87, 255–273. [Google Scholar] [CrossRef]
- Dinniss, A.S.; Mellor, D.J.; Stafford, K.J.; Bruce, R.A.; Ward, R.N. Acute cortisol responses of lambs to castration using a rubber ring and/or a castration clamp with or without local anaesthetic. N. Z. Vet. J. 1997, 45, 114–121. [Google Scholar] [CrossRef]
- Mellor, D.J.; Molony, V.; Robertson, I.S. Effects of castration on behavior and plasma-cortisol concentrations in young lambs, kids and calves. Res. Vet. Sci. 1991, 51, 149–154. [Google Scholar] [CrossRef]
- Mellor, D.J.; Murray, L. Effects of tail docking and castration on behavior and plasma-cortisol concentrations in young lambs. Res. Vet. Sci. 1989, 46, 387–391. [Google Scholar] [CrossRef]
- Mellor, D.J.; Murray, L. Changes in the cortisol responses of lambs to tail docking, castration and ACTH injection during the 1st 7 days after birth. Res. Vet. Sci. 1989, 46, 392–395. [Google Scholar] [CrossRef]
- Mellor, D.J.; Stafford, K.J. Acute castration and/or tailing distress and its alleviation in lambs. N. Z. Vet. J. 2000, 48, 33–43. [Google Scholar] [CrossRef]
- Mellor, D.J.; Stafford, K.J.; Todd, S.E.; Lowe, T.E.; Gregory, N.G.; Bruce, R.A.; Ward, R.N. A comparison of catecholamine and cortisol responses of young lambs and calves to painful husbandry procedures. Aust. Vet. J. 2002, 80, 228–233. [Google Scholar] [CrossRef]
- Li, S.F.; Nitsos, I.; Polglase, G.R.; Newnham, J.P.; Challis, J.R.G.; Moss, T.J.M. Effects of tail docking and castration on stress responses in lambs and the influence of prenatal glucocorticoid treatment. Reprod. Fertil. Dev. 2013, 25, 1020–1025. [Google Scholar] [CrossRef]
- Graham, M.J.; Kent, J.E.; Molony, V. Effects of four analgesic treatments on the behaviouraland cortisol responses of 3-week-old lambs to tail docking. Vet. J. 1997, 153, 87–97. [Google Scholar] [CrossRef]
- Devant, M.; Marti, S.; Bach, A. Effects of castration on eating pattern and physical activity of Holstein bulls fed high-concentrate rations under commercial conditions. J. Anim. Sci. 2012, 90, 4505–4513. [Google Scholar] [CrossRef] [Green Version]
- Tom, E.M.; Duncan, I.J.H.; Widowski, T.M.; Bateman, K.G.; Leslie, K.E. Effects of tail docking using a rubber ring with or without anesthetic on behavior and production of lactating cows. J. Dairy Sci. 2002, 85, 2257–2265. [Google Scholar] [CrossRef]
- Cottrell, D.F.; Molony, V. Afferent activity in the superior spermatic nerve of lambs-the effects of application of rubber castration rings. Vet. Res. Commun. 1995, 19, 503–515. [Google Scholar] [CrossRef]
- Barrowman, J.R.; Boaz, T.G.; Towers, K.G. Castration and docking of lambs: Use of the rubber-ring ligature technique at different ages. Emp. J. Exp. Agric. 1954, 22, 189–202. [Google Scholar]
- Sutherland, M.A.; Stafford, K.J.; Mellor, D.J.; Gregory, N.G.; Bruce, R.A.; Ward, R.N. Acute cortisol responses and wound healing in lambs after ring castration plus docking with or without application of a castration clamp to the scrotum. Aust. Vet. J. 2000, 78, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.E.; Molony, V.; Robertson, I.S. Comparison of the Burdizzo and rubber ring methods for castrating and tail docking lambs. Vet. Rec. 1995, 136, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.C.; Nippo, M.M.; Gross, W.A. Stress in lambs (Ovis aries) during a routine management procedure: Evaluation of acute and chronic responses. Comp. Biochem. Physiol. Part A Physiol. 1994, 107, 181–185. [Google Scholar] [CrossRef]
- Edwards, L.E.; Arnold, N.A.; Butler, K.L.; Hemsworth, P.H. Acute effects of mulesing and alternative procedures to mulesing on lamb behaviour. Appl. Anim. Behav. Sci. 2011, 133, 169–174. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Barnett, J.L.; Karlen, G.M.; Fisher, A.D.; Butler, K.L.; Arnold, N.A. Effects of mulesing and alternative procedures to mulesing on the behaviour and physiology of lambs. Appl. Anim. Behav. Sci. 2009, 117, 20–27. [Google Scholar] [CrossRef]
- Small, A.H.; Marini, D.; Dyall, T.; Paull, D.; Lee, C. A randomised field study evaluating the effectiveness of buccal meloxicam and topical local anaesthetic formulations administered singly or in combination at improving welfare of female Merino lambs undergoing surgical mulesing and hot knife tail docking. Res. Vet. Sci. 2018, 118, 305–311. [Google Scholar] [CrossRef]
- Small, A.H.; Marini, D.; le Floch, M.; Paull, D.R.; Lee, C. A pen study evaluation of buccal meloxicam and topical anaesthetic at improving welfare of lambs undergoing surgical mulesing and hot knife tail docking. Res. Vet. Sci. 2018, 118, 270–277. [Google Scholar] [CrossRef]
- Lomax, S.; Sheil, M.; Windsor, P.A. Use of local anaesthesia for pain management during husbandry procedures in Australian sheep flocks. Small Rumin. Res. 2009, 86, 56–58. [Google Scholar] [CrossRef]
- Lomax, S.; Sheil, M.; Windsor, P.A. Duration of action of a topical anaesthetic formulation for pain management of mulesing in sheep. Aust. Vet. J. 2013, 91, 160–167. [Google Scholar] [CrossRef]
- McCarthy, D.; Lomax, S.; Windsor, P.A.; White, P.J. Effect of a topical anaesthetic formulation on the cortisol response to surgical castration of unweaned beef calves. Animal 2016, 10, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Paull, D.R.; Colditz, I.G.; Lee, C.; Atkinson, S.J.; Fisher, A.D. Effectiveness of non-steroidal anti-inflammatory drugs and epidural anaesthesia in reducing the pain and stress responses to a surgical husbandry procedure (mulesing) in sheep. Aust. J. Exp. Agric. 2008, 48, 1034–1039. [Google Scholar] [CrossRef]
- Paull, D.R.; Lee, C.; Colditz, I.G.; Atkinson, S.J.; Fisher, A.D. The effect of a topical anaesthetic formulation, systemic flunixin and carprofen, singly or in combination, on cortisol and behavioural responses of merino lambs to mulesing. Aust. Vet. J. 2007, 85, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G.; Cox, T.; Small, A.H. Trial of human laser epilation technology for permanent wool removal in Merino sheep. Aust. Vet. J. 2015, 93, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G.; Lloyd, J.B.; Paull, D.R.; Lee, C.; Giraudo, A.; Pizzato, C.; Fisher, A.D. Assessment of welfare of suckling lambs following intradermal injection of cetrimide as a non-surgical alternative to conventional mulesing. Aust. Vet. J. 2009, 87, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G.; Lloyd, J.B.; Paull, D.R.; Lee, C.; Giraudo, A.; Pizzato, C.; Fisher, A.D. Effect of the non-steroidal anti-inflammatory drug, carprofen, on weaned sheep following non-surgical mulesing by intradermal injection of cetrimide. Aust. Vet. J. 2009, 87, 19–26. [Google Scholar] [CrossRef]
- Colditz, I.G.; Paull, D.R.; Lee, C.; Fisher, A.D. Physiological and behavioural effects of intradermal injection of sodium lauryl sulfate as an alternative to mulesing in lambs. Aust. Vet. J. 2010, 88, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Small, A.; Lee, C. Welfare Assessments of Analgesic Options in Female Lambs for Surgical Mulesing and Its Alternatives; Australian Wool Innovation: Sydney, Australia, 2018; p. 32. [Google Scholar]
- Leslie, E.; Hernández-Jover, M.; Newman, R.; Holyoake, P. Assessment of acute pain experienced by piglets from ear tagging, ear notching and intraperitoneal injectable transponders. Appl. Anim. Behav. Sci. 2010, 127, 86–95. [Google Scholar] [CrossRef]
- Stafford, K.J.; Chambers, J.P.; Sylvester, S.P.; Kenyon, P.R.; Morris, S.T.; Lizarraga, I.; de Nicolo, G. Stress caused by laparoscopy in sheep and its alleviation. N. Z. Vet. J. 2006, 54, 109–113. [Google Scholar] [CrossRef]
- Borkar, J.; Dave, N. Analgesic efficacy of caudal block versus diclofenac suppository and local anesthetic infiltration following pediatric laparoscopy. J. Laparoendosc. Adv. Surg. Tech. 2005, 15, 415–418. [Google Scholar] [CrossRef]
- Zhang, S.X.; Hao, M.L.; Ma, Y.Z. Comparison of laparoscopic and traditional abomasal cannulation in sheep. J. Vet. Res. 2016, 60, 113–117. [Google Scholar] [CrossRef] [Green Version]
- DeRossi, R.; Carneiro, R.P.B.; Ossuna, M.R.; Zanenga, N.F.; Alves, O.D.; Jorge, T.P.; Costa-e-Silva, E.V.; Vasconcelos, J. Sub-arachnoid ketamine administration combined with or without misoprostol/oxytocin to facilitate cervical dilation in ewes: A case study. Small Rumin. Res. 2009, 83, 74–78. [Google Scholar] [CrossRef]
- Andreev, Y.A.; Kozlov, S.A.; Korolkova, Y.V.; Dyachenko, I.A.; Bondarenko, D.A.; Skobtsov, D.I.; Murashev, A.N.; Kotova, P.D.; Rogachevskaja, O.A.; Kabanova, N.V.; et al. Polypeptide Modulators of TRPV1 Produce Analgesia without Hyperthermia. Mar. Drugs 2013, 11, 5100–5115. [Google Scholar] [CrossRef] [Green Version]
- Bley, K.R. Recent developments in transient receptor potential vanilloid receptor 1 agonist-based therapies. Expert Opin. Investig. Drugs 2004, 13, 1445–1456. [Google Scholar] [CrossRef]
- Brederson, J.D.; Kym, P.R.; Szallasi, A. Targeting TRP channels for pain relief. Eur. J. Pharmacol. 2013, 716, 61–76. [Google Scholar] [CrossRef]
- Cui, M.; Honore, P.; Zhong, C.; Gauvin, D.; Mikusa, J.; Hernandez, G.; Chandran, P.; Gomtsyan, A.; Brown, B.; Bayburt, E.K.; et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 2006, 26, 9385–9393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, C.J.; Naidu, P.S.; Lichtman, A.; Onnis, V. The case for the development of novel analgesic agents targeting both fatty acid amide hydrolase and either cyclooxygenase or TRPV1. Br. J. Pharmacol. 2009, 156, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.H.; Lin, J.P.; Huang, L.E.; Yang, Y.; Chen, C.Q.; Li, N.N.; Su, M.Y.; Zhao, X.; Zhu, S.M.; Yao, Y.X. Silencing of spinal Trpv1 attenuates neuropathic pain in rats by inhibiting CAMKII expression and ERK2 phosphorylation. Sci. Rep. 2019, 9, 2769. [Google Scholar] [CrossRef] [Green Version]
- Jancso, G.; Dux, M.; Oszlacs, O.; Santha, P. Activation of the transient receptor potential vanilloid-1 (TRPV1) channel opens the gate for pain relief. Br. J. Pharmacol. 2008, 155, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Kym, P.R.; Kort, M.E.; Hutchins, C.W. Analgesic potential of TRPV1 antagonists. Biochem. Pharmacol. 2009, 78, 211–216. [Google Scholar] [CrossRef]
- Premkumar, L.S.; Abooj, M. TRP channels and analgesia. Life Sci. 2013, 92, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.A. Transient Receptor Potential Channels in Pain and Inflammation: Therapeutic Opportunities. Pain Pract. 2010, 10, 185–200. [Google Scholar] [CrossRef]
- Benarroch, E.E. Acid-sensing cation channels Structure, function, and pathophysiologic implications. Neurology 2014, 82, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. Ion channels in nociceptors Recent developments. Neurology 2015, 84, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, A.; Gasull, X.; Salinas, M.; Noel, J.; Friend, V.; Lingueglia, E.; Deval, E. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions. Proc. Natl. Acad. Sci. USA 2012, 109, 13124–13129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deval, E.; Lingueglia, E. Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems. Neuropharmacology 2015, 94, 49–57. [Google Scholar] [CrossRef]
- Deval, E.; Noel, J.; Gasull, X.; Delaunay, A.; Alloui, A.; Friend, V.; Eschalier, A.; Lazdunski, M.; Lingueglia, E. Acid-Sensing Ion Channels in Postoperative Pain. J. Neurosci. 2011, 31, 6059–6066. [Google Scholar] [CrossRef]
- Deval, E.; Noel, J.; Lay, N.; Alloui, A.; Diochot, S.; Friend, V.; Jodar, M.; Lazdunski, M.; Lingueglia, E. ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J. 2008, 27, 3047–3055. [Google Scholar] [CrossRef]
- Karczewski, J.; Spencer, R.H.; Garsky, V.M.; Liang, A.; Leitl, M.D.; Cato, M.J.; Cook, S.P.; Kane, S.; Urban, M.O. Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br. J. Pharmacol. 2010, 161, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Mamet, J.; Voilley, N. ASIC pH-sensitive ion channels and inflammatory pain. M S-Med. Sci. 2002, 18, 889–895. [Google Scholar] [CrossRef]
- Osmakov, D.I.; Andreev, Y.A.; Kozlov, S.A. Acid-Sensing Ion Channels and Their Modulators. Biochem. Mosc. 2014, 79, 1528–1545. [Google Scholar] [CrossRef]
- Walder, R.Y.; Rasmussen, L.A.; Rainier, J.D.; Light, A.R.; Wemmie, J.A.; Sluka, K.A. ASIC1 and ASIC3 Play Different Roles in the Development of Hyperalgesia After Inflammatory Muscle Injury. J. Pain 2010, 11, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberson, D.P.; Binshtok, A.M.; Blasl, F.; Bean, B.P.; Woolf, C.J. Targeting of sodium channel blockers into nociceptors to produce long-duration analgesia: A systematic study and review. Br. J. Pharmacol. 2011, 164, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Janus, K.; Grochowina, B.; Antoszek, J.; Suszycki, S.; Muszczynski, Z. The effect of food or water deprivation on paracetamol pharmacokinetics in calves. J. Vet. Pharmacol. Ther. 2003, 26, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Lees, P.; Aliabadi, F.S.; Landoni, M.F. Pharmacodynamics and enantioselective pharmacokinetics of racemic carprofen in the horse. J. Vet. Pharmacol. Ther. 2002, 25, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Leiberich, M.; Krebber, R.; Hewetson, M.; Marais, J.; Naidoo, V. A study of the pharmacokinetics and thromboxane inhibitory activity of a single intramuscular dose of carprofen as a means to establish its potential use as an analgesic drug in white rhinoceros. J. Vet. Pharmacol. Ther. 2018, 41, 605–613. [Google Scholar] [CrossRef]
- Altaher, A.Y.; Alkharfy, K.M.; Al-Hadiya, B.M.; Khan, R.M.A. Pharmacokinetics of diclofenac in sheep following intravenous and intramuscular administration. Vet. Anaesth. Analg. 2006, 33, 241–245. [Google Scholar] [CrossRef]
- Fraccaro, E.; Coetzee, J.F.; Odore, R.; Edwards-Callaway, L.N.; KuKanich, B.; Badino, P.; Bertolotti, L.; Glynn, H.; Dockweiler, J.; Allen, K.; et al. A study to compare circulating flunixin, meloxicam and gabapentin concentrations with prostaglandin E-2 levels in calves undergoing dehorning. Res. Vet. Sci. 2013, 95, 204–211. [Google Scholar] [CrossRef]
- Glynn, H.D.; Coetzee, J.F.; Edwards-Callaway, L.N.; Dockweiler, J.C.; Allen, K.A.; Lubbers, B.; Jones, M.; Fraccaro, E.; Bergamasco, L.L.; Kukanich, B. The pharmacokinetics and effects of meloxicam, gabapentin, and flunixin in postweaning dairy calves following dehorning with local anesthesia. J. Vet. Pharmacol. Ther. 2013, 36, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Marini, D.; Pippia, J.; Colditz, I.G.; Hinch, G.N.; Petherick, C.J.; Lee, C. Palatability and pharmacokinetics of flunixin when administered to sheep through feed. PeerJ 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Borovac, T.; Pelage, J.P.; Kasselouri, A.; Prognon, P.; Guiffant, G.; Laurent, A. Release of ibuprofen from beads for embolization: In vitro and in vivo studies. J. Control. Release 2006, 115, 266–274. [Google Scholar] [CrossRef]
- Arifah, A.K.; Landoni, M.F.; Frean, S.P.; Lees, P. Pharmacodynamics and pharmacokinetics of ketoprofen enantiomers in sheep. Am. J. Vet. Res. 2001, 62, 77–86. [Google Scholar] [CrossRef]
- Arifah, A.K.; Landoni, M.F.; Lees, P. Pharmacodynamics, chiral pharmacokinetics and PK-PD modelling of ketoprofen in the goat. J. Vet. Pharmacol. Ther. 2003, 26, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Igarza, L.; Soraci, A.; Auza, N.; Zeballos, H. Some pharmacokinetic parameters of R-(-)- and S-(+)-ketoprofen: The influence of age and differing physiological status in dairy cattle. Vet. Res. Commun. 2004, 28, 81–87. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Ashraf, M.; Khan, M.A.; Jabbar, M.A.; Rasheed, M.A. Pharmacokinetics of ketoprofen in healthy horses in Pakistan. J. Anim. Plant Sci. 2012, 22, 584–587. [Google Scholar]
- Verde, C.K.; Simpson, M.I.; Frigoli, A.; Landoni, M.F. Enantiospecific pharmacokinetics of ketoprofen in plasma and synovial fluid of horses with acute synovitis. J. Vet. Pharmacol. Ther. 2001, 24, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Lees, P.; Taylor, P.M.; Landoni, F.M.; Arifah, A.K.; Waters, C. Ketoprofen in the cat: Pharmacodynamics and chiral pharmacokinetics. Vet. J. 2003, 165, 21–35. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Ashraf, M.; Khan, M.A.; Jabbar, M.A.; Abbas, M.; Khan, A.M. Pharmacokinetics of ketoprofen in healthy buffalo calves in Pakistan. J. Anim. Plant Sci. 2013, 23, 416–419. [Google Scholar]
- Santos, Y.; Ballesteros, C.; Ros, J.M.; Lazaro, R.; Rodriguez, C.; Encinas, T. Chiral pharmacokinetics of ketorolac in sheep after intravenous and intramuscular administration of the racemate. J. Vet. Pharmacol. Ther. 2001, 24, 443–446. [Google Scholar] [CrossRef]
- Shabbir, A.; Arshad, H.M.; Shahzad, M.; Shamsi, S.; Ashraf, M.I. Immunomodulatory activity of mefenamic acid in mice models of cell-mediated and humoral immunity. Indian J. Pharmacol. 2016, 48, 172–178. [Google Scholar] [CrossRef]
- Woodland, A.N.; Van der Saag, D.; Kimble, B.; White, P.J.; Govendir, M.; Lomax, S. Plasma pharmacokinetic profile and efficacy of meloxicam administered subcutaneously and intramuscularly to sheep. PLoS ONE 2019, 14, e0215842. [Google Scholar] [CrossRef] [PubMed]
- De Vito, V.; Łebkowska-Wieruszewsk, B.; Lavy, E.; Lisowski, A.; Owen, H.; Giorgi, M. Pharmacokinetics of meloxicam in lactating goats (Capra hircus) and its quantification in milk after a single intravenous and intramuscular injection. Small Rumin. Res. 2018, 160, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Shukla, M.; Singh, G.; Sindhura, B.G.; Telang, A.G.; Rao, G.S.; Malik, J.K. Comparative plasma pharmacokinetics of meloxicam in sheep and goats following intravenous administration. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2007, 145, 528–532. [Google Scholar] [CrossRef]
- Stock, M.L.; Coetzee, J.E.; KuKanich, B.; Smith, B.I. Pharmacokinetics of intravenously and orally administered meloxicam in sheep. Am. J. Vet. Res. 2013, 74, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Karademir, U.; Erdogan, H.; Boyacioglu, M.; Kum, C.; Sekkin, S.; Bilgen, M. Pharmacokinetics of meloxicam in adult goats: A comparative study of subcutaneous, oral and intravenous administration. N. Z. Vet. J. 2016, 64, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Al-Taher, A.Y. Comparative pharmacokinetics of meloxicam in the camels and heifers. J. Camel Pract. Res. 2011, 18, 173–178. [Google Scholar]
- Coetzee, J.F.; Mosher, R.A.; KuKanich, B.; Gehring, R.; Robert, B.; Reinbold, J.B.; White, B.J. Pharmacokinetics and effect of intravenous meloxicam in weaned Holstein calves following scoop dehorning without local anesthesia. BMC Vet. Res. 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, J.F.; KuKanich, B.; Mosher, R.; Allen, P. Pharmacokinetics of Intravenous and Oral Meloxicam in Ruminant Calves. Vet. Ther. 2009, 10, E1–E8. [Google Scholar]
- Divers, S.J.; Papich, M.; McBride, M.; Stedman, N.L.; Perpinan, D.; Koch, T.F.; Hernandez, S.M.; Barron, G.H.; Pethel, M.; Budsberg, S.C. Pharmacokinetics of meloxicam following intravenous and oral administration in green iguanas (Iguana iguana). Am. J. Vet. Res. 2010, 71, 1277–1283. [Google Scholar] [CrossRef]
- Kreuder, A.J.; Coetzee, J.F.; Wulf, L.W.; Schleining, J.A.; KuKanich, B.; Layman, L.L.; Plummer, P.J. Bioavailability and pharmacokinetics of oral meloxicam in llamas. BMC Vet. Res. 2012, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Pairis-Garcia, M.D.; Johnson, A.K.; Kukanich, B.; Wulf, L.; Millman, S.T.; Stalder, K.J.; Karriker, L.A.; Coetzee, J.F. Pharmacokinetics of meloxicam in mature swine after intravenous and oral administration. J. Vet. Pharmacol. Ther. 2015, 38, 265–270. [Google Scholar] [CrossRef]
- Khawaja, T.M.; Ashraf, M. Pharmacokinetics of Meloxicam in Healthy Donkeys. Pak. J. Zool. 2011, 43, 897–901. [Google Scholar]
- Meléndez, D.M.; Marti, S.; Pajor, E.A.; Sidhu, P.K.; Gellatly, D.; Janzen, E.D.; Schwinghamer, T.D.; Coetzee, J.F.; Schwartzkopf-Genswein, K.S. Pharmacokinetics of oral and subcutaneous meloxicam: Effect on indicators of pain and inflammation after knife castration in weaned beef calves. PLoS ONE 2019, 14, e0217518. [Google Scholar] [CrossRef] [Green Version]
- Malreddy, P.R.; Coetzee, J.F.; KuKanich, B.; Gehring, R. Pharmacokinetics and milk secretion of gabapentin and meloxicam co-administered orally in Holstein-Friesian cows. J. Vet. Pharmacol. Ther. 2013, 36, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, F.J.; Serrano-Rodriguez, J.M.; Perez-Ecija, A. Pharmacokinetics of meloxicam after oral administration of a granule formulation to healthy horses. J. Vet. Intern. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Giraudel, J.M.; Diquelou, A.; Laroute, V.; Lees, P.; Toutain, P.L. Pharmacokinetic/pharmacodynamic modelling of NSAIDs in a model of reversible inflammation in the cat. Br. J. Pharmacol. 2005, 146, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Mathurkar, S.; Singh, P.; Kongara, K.; Chambers, P. Pharmacokinetics of Salicylic Acid Following Intravenous and Oral Administration of Sodium Salicylate in Sheep. Animals 2018, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Bergamasco, L.; Coetzee, J.F.; Gehring, R.; Murray, L.; Song, T.; Mosher, R.A. Effect of intravenous sodium salicylate administration prior to castration on plasma cortisol and electroencephalography parameters in calves. J. Vet. Pharmacol. Ther. 2011, 34, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.F.; Gehring, R.; Bettenhausen, A.C.; Lubbers, B.V.; Toerber, S.E.; Thomson, D.U.; Kukanich, B.; Apley, M.D. Attenuation of acute plasma cortisol response in calves following intravenous sodium salicylate administration prior to castration. J. Vet. Pharmacol. Ther. 2007, 30, 305–313. [Google Scholar] [CrossRef]
- Kotschwar, J.L.; Coetzee, J.F.; Anderson, D.E.; Gehring, R.; KuKanich, B.; Apley, M.D. Analgesic efficacy of sodium salicylate in an amphotericin B-induced bovine synovitis-arthritis model. J. Dairy Sci. 2009, 92, 3731–3743. [Google Scholar] [CrossRef] [Green Version]
- De Boever, S.; Neirinckx, E.; Baert, K.; De Backer, P.; Croubels, S. Pharmacokinetics of tepoxalin and its active metabolite in broiler chickens. J. Vet. Pharmacol. Ther. 2009, 32, 97–100. [Google Scholar] [CrossRef]
- Giorgi, M.; Cuniberti, B.; Ye, G.S.; Barbero, R.; Sgorbini, M.; Vercelli, C.; Corazza, M.; Re, G. Oral administration of tepoxalin in the horse: A PK/PD study. Vet. J. 2011, 190, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Pollock, C.G.; Carpenter, J.W.; Koch, D.E.; Hunter, R.P. Single and multiple-dose pharmacokinetics of tepoxalin and its active metabolite after oral administration to rabbits (Oryctolagus cuniculus). J. Vet. Pharmacol. Ther. 2008, 31, 171–174. [Google Scholar] [CrossRef]
- de Boever, S.; Neirinckx, E.A.; Meyer, E.; de Baere, S.; Beyaert, R.; de Backer, P.; Croubels, S. Pharmacodynamics of tepoxalin, sodium-salicylate and ketoprofen in an intravenous lipopolysaccharide inflammation model in broiler chickens. J. Vet. Pharmacol. Ther. 2010, 33, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, P.K.; Landoni, M.F.; Lees, P. Pharmacokinetic and pharmacodynamic interactions of tolfenamic acid and marbofloxacin in goats. Res. Vet. Sci. 2006, 80, 79–90. [Google Scholar] [CrossRef]
- Sidhu, P.K.; Landoni, M.F.; Lees, P. Influence of marbofloxacin on the pharmacokinetics and pharmacodynamics of tolfenamic acid in calves. J. Vet. Pharmacol. Ther. 2005, 28, 109–119. [Google Scholar] [CrossRef]
- Morishima, H.O.; Finster, M.; Pedersen, H.; Fukunaga, A.; Ronfeld, R.A.; Vassallo, H.G.; Covino, B.G. Pharmacokinetics of lidocaine in fetal and neonatal lambs and adult sheep. Anesthesiology 1979, 50, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Morishima, H.O.; Pedersen, H.; Finster, M.; Sakuma, K.; Bruce, S.L.; Gutsche, B.B.; Stark, R.I.; Covino, B.G. Toxicity of lidocaine in adult, newborn, and fetal sheep. Anesthesiology 1981, 55, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Arthur, G.R.; Wlody, D.; Dearmas, P.; Morishima, H.O.; Finster, M. Comparative systemic toxicity of ropivacaine and bupivacaine in nonpregnant and pregnant ewes. Anesthesiology 1995, 82, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Pedersen, H.; Morishima, H.O.; Finster, M.; Arthur, G.R.; Covino, B.G. Pharmacokinetics of lidocaine in nonpregnant and pregnant ewes. Anesth. Analg. 1988, 67, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Mather, L.E.; Rutten, A.J.; Plummer, J.L. Pharmacokinetics of bupivacaine enantiomers in sheep-influence of dosage regimen and study design. J. Pharmacokinet. Biopharm. 1994, 22, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Rutten, A.J.; Mather, L.E.; McLean, C.F. Cardiovascular effects and regional clearances of IV bupivacaine in sheep-enantiomeric analysis. Br. J. Anaesth. 1991, 67, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Rutten, A.J.; Mather, L.E.; McLean, C.F.; Nancarrow, C. Tissue distribution of bupivacaine enantiomers in sheep. Chirality 1993, 5, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Rutten, A.J.; Mather, L.E.; Plummer, J.L.; Henning, E.C. Postoperative course of plasma-protein binding of lignocaine, ropivacaine and bupivacaine in sheep. J. Pharm. Pharmacol. 1992, 44, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Arthur, G.R.; Lehning, E.J.; Finster, M. Comparative pharmacokinetics of ropivacaine and bupivacaine in nonpregnant and pregnant ewes. Anesth. Analg. 1997, 85, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.E.; Molony, V.; Graham, M.J. Comparison of methods for the reduction of acute pain produced by rubber ring castration or tail docking of week-old lambs. Vet. J. 1998, 155, 39–51. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Mellor, D.J.; Stafford, K.J.; Gregory, N.G.; Bruce, R.A.; Ward, R.N.; Todd, S.E. Acute cortisol responses of lambs to ring castration and docking after the injection of lignocaine into the scrotal neck or testes at the time of ring application. Aust. Vet. J. 1999, 77, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.D.; Waterman-Pearson, A.E. Quantification of the pain and distress responses to castration in young lambs. Res. Vet. Sci. 1999, 66, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Lizarraga, I.; Janovyak, E.; Beths, T. Comparing lidocaine, bupivacaine and a lidocaine–bupivacaine mixture as a metacarpal block in sheep. Vet. J. 2013, 197, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Pratap, K.; Kinjavdekar, P.; Aithal, H.P.; Singh, G.R. Effects of xylazine, lignocaine and their combination for lumbar epidural analgesia in water buffalo calves (Bubalus bubalis). J. S. Afr. Vet. Assoc. 2005, 76, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.C.; Heath, A.M.; Pugh, D.G.; Trachte, E.A. Comparison of the analgesic effect of clonidine and lidocaine when administered epidurally in cattle. In Bovine Practitioner; Smith, R.A., Ed.; American Association of Bovine Practitioners: Ashland, OH, USA, 2003; Volume 37, pp. 83–88. [Google Scholar]
- Rastabi, H.I.; Guraninejad, S.; Naddaf, H.; Hasani, A. Comparison of the application of lidocaine, lidocaine-dexamethasone and lidocaine-epinephrine for caudal epidural anesthesia in cows. Iran. J. Vet. Res. 2018, 19, 172–177. [Google Scholar]
- De Rossi, R.; Bucker, G.V.; Varela, J.V. Perineal analgesic actions of epidural clonidine in cattle. Vet. Anaesth. Analg. 2003, 30, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Stilwell, G.; Lima, M.S.; Broom, D.M. Effects of nonsteroidal anti-inflammatory drugs on long-term pain in calves castrated by use of an external clamping technique following epidural anesthesia. Am. J. Vet. Res. 2008, 69, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Van der Saag, D.; Lomax, S.; Windsor, P.A.; Hall, E.; White, P.J. Effect of Lignocaine and a Topical Vapocoolant Spray on Pain Response during Surgical Castration of Beef Calves. Animals 2019, 9, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafford, K.J.; Mellor, D.J.; Todd, S.E.; Bruce, R.A.; Ward, R.N. Effects of local anaesthesia or local anaesthesia plus a non-steroidal anti-inflammatory drug on the acute cortisol response of calves to five different methods of castration. Res. Vet. Sci. 2002, 73, 61–70. [Google Scholar] [CrossRef]
- Thüer, S.; Mellema, S.; Doherr, M.G.; Wechsler, B.; Nuss, K.; Steiner, A. Effect of local anaesthesia on short- and long-term pain induced by two bloodless castration methods in calves. Vet. J. 2007, 173, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Herskin, M.S.; Di Giminiani, P.; Thodberg, K. Effects of administration of a local anaesthetic and/or an NSAID and of docking length on the behaviour of piglets during 5 h after tail docking. Res. Vet. Sci. 2016, 108, 60–67. [Google Scholar] [CrossRef]
- Mellema, S.C.; Doherr, M.G.; Wechsler, B.; Thueer, S.; Steiner, A. Influence of local anaesthesia on pain and distress induced by two bloodless castration methods in young lambs. Vet. J. 2006, 172, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.E.; Jackson, R.E.; Molony, V.; Hosie, B.D. Effects of acute pain reduction methods on the chronic inflammatory lesions and behaviour of lambs castrated and tail docked with rubber rings at less than two days of age. Vet. J. 2000, 160, 33–41. [Google Scholar] [CrossRef]
- Kent, J.E.; Molony, V.; Graham, M.J. The effect of different bloodless castrators and different tail docking methods on the responses of lambs to the combined Burdizzo rubber ring method of castration. Vet. J. 2001, 162, 250–254. [Google Scholar] [CrossRef]
- Stewart, M.; Beausoleil, N.J.; Johnson, C.B.; Webster, J.R.; Schutz, K.E.; Cox, N.; Stafford, K.J. Do rubber rings coated with lignocaine reduce the pain associated with ring castration of lambs? Appl. Anim. Behav. Sci. 2014, 160, 56–63. [Google Scholar] [CrossRef]
- Ajadi, R.A.; Owanikin, A.O.; Martins, M.M.; Gazal, O.S. Effect of epidural tramadol and lignocaine on physiological and behavioural changes in goats subjected to castration with a high tension band. N. Z. Vet. J. 2012, 60, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Estebe, J.P.; Gentili, M.E.; Le Corre, P.; Leduc, C.; Moulinoux, J.P.; Ecoffey, C. Contralateral effect of amitriptyline and bupivacaine for sciatic nerve block in an animal model of inflammation. Br. J. Anaesth. 2004, 93, 705–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadirian, S.; Vesal, N.; Maghsoudi, B.; Akhlagh, S.H. Comparison of lidocaine, lidocaine-morphine, lidocaine-tramadol or bupivacaine for neural blockade of the brachial plexus in fat-tailed lambs. Vet. Anaesth. Analg. 2016, 43, 109–116. [Google Scholar] [CrossRef]
- Rostami, M.; Vesal, N. The effects of adding epinephrine or xylazine to lidocaine solution for lumbosacral epidural analgesia in fat-tailed sheep. J. S. Afr. Vet. Assoc. 2012, 83. [Google Scholar] [CrossRef] [PubMed]
- DeRossi, R.; Jardim, P.H.A.; Hermeto, L.C.; Pagliosa, R.C. Comparison of analgesic and systemic effects of bupivacaine, methadone, or bupivacaine/methadone administered epidurally in conscious sheep. Aust. Vet. J. 2015, 93, 164–169. [Google Scholar] [CrossRef] [PubMed]
- DeRossi, R.; Silva-Neto, A.B.; Pompermeyer, C.T.D.; Frazilio, F.O.; Jardim, P.H.A.; de Barros, A.C.L. The efficacy and safety of levobupivacaine administered by lumbosacral epidural route in conscious sheep. Res. Vet. Sci. 2012, 92, 278–282. [Google Scholar] [CrossRef]
- Dadafarid, H.; Najafpour, A. Hematochemical Changes Following Epidural Analgesia by Bupivacaine, Ketamine and Their Combination in Chall Sheep. J. Anim. Vet. Adv. 2008, 7, 1524–1527. [Google Scholar]
- Rose, F.X.; Estebe, J.P.; Ratajczak, M.; Wodey, E.; Chevanne, F.; Dollo, G.; Bec, D.; Malinovsky, J.M.; Ecoffey, C.; Le Corre, P. Epidural, intrathecal pharmacokinetics, and intrathecal bioavailability of ropivacaine. Anesth. Analg. 2007, 105, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak-Enselme, M.; Estebe, J.P.; Rose, F.X.; Wodey, E.; Malinovsky, J.M.; Chevanne, F.; Dollo, G.; Ecoffey, C.; Le Corre, P. Effect of epinephrine on epidural, intrathecal, and plasma pharmacokinetics of ropivacaine and bupivacaine in sheep. Br. J. Anaesth. 2007, 99, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Kashefi, P.; Montazeri, K.; Honarmand, A.; Safavi, M.; Hosseini, H.M. The analgesic effect of midazolam when added to lidocaine for intravenous regional anaesthesia. J. Res. Med. Sci. 2011, 16, 1139–1148. [Google Scholar] [PubMed]
- DeRossi, R.; Almeida, R.G.; Medeiros, U.; Righetto, F.R.; Frazilio, F.O. Subarachnoid butorphanol augments lidocaine sensory anaesthesia in calves. Vet. J. 2007, 173, 658–663. [Google Scholar] [CrossRef] [PubMed]
- DeRossi, R.; Pagliosa, R.; Modolo, T.C.; Maciel, F.B.; Macedo, G.G. Thoracic epidural analgesia via the lumbosacral approach using multiport catheters with a low concentration of bupivacaine and morphine in sheep. Vet. Anaesth. Analg. 2012, 39, 306–314. [Google Scholar] [CrossRef]
- Bouderka, M.A.; Al-Harrar, R.; Bouaggad, A.; Harti, A. Neostigmine added to bupivacaine in axillary plexus block: Which benefit? Ann. Francaises D’anesthesie et de Reanimat. 2003, 22, 510–513. [Google Scholar] [CrossRef]
- Wylie, M.C.; Johnson, V.M.; Carpino, E.; Mullen, K.; Hauser, K.; Nedder, A.; Kheir, J.N.; Rodriguez-Navarro, A.J.; Zurakowski, D.; Berde, C.B. Respiratory, Neuromuscular, and Cardiovascular Effects of Neosaxitoxin in Isoflurane-Anesthetized Sheep. Reg. Anesth. Pain Med. 2012, 37, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Shafford, H.L.; Hellyer, P.W.; Turner, A.S. Intra-articular lidocaine plus bupivacaine in sheep undergoing stifle arthrotomy. Vet. Anaesth. Analg. 2004, 31, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Inglis, L.; Hancock, S.; Laurence, M.; Thompson, A. Behavioural measures reflect pain-mitigating effects of meloxicam in combination with Tri-Solfen® in mulesed Merino lambs. Animal 2019, 1–8. [Google Scholar] [CrossRef]
- Paull, D.R.; Lee, C.; Colditz, I.G.; Fisher, A.D. Effects of a topical anaesthetic formulation and systemic carprofen, given singly or in combination, on the cortisol and behavioural responses of Merino lambs to castration. Aust. Vet. J. 2009, 87, 230–237. [Google Scholar] [CrossRef]
- Barner, A. Review of clinical trials and benefit/risk ratio of meloxicam. Scand. J. Rheumatol. 1996, 25 (Suppl. S102), 29–37. [Google Scholar] [CrossRef]
- Distel, M.; Mueller, C.; Bluhmki, E.; Fries, J. Safety of meloxicam: A global analysis of clinical trials. Br. J. Rheumatol. 1996, 35, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Enberg, T.B.; Braun, L.D.; Kuzma, A.B. Gastrointestinal perforation in five dogs associated with the administration of meloxicam. J. Vet. Emerg. Crit. Care 2006, 16, 34–43. [Google Scholar] [CrossRef]
- Hersh, E.V.; Lally, E.T.; Moore, P.A. Update on cyclooxygenase inhibitors: Has a third COX isoform entered the fray? Curr. Med. Res. Opin. 2005, 21, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, T.; Aparicio, B.; Argentieri, D.C.; Lau, C.Y.; Ritchie, D.M. Effects of tepoxalin, a dual inhibitor of cyclooxygenase/5-lipoxygenase, on events associated with NSAID-induced gastrointestinal inflammation. Prostaglandins Leukot. Essent. Fat. Acids 1997, 56, 417–423. [Google Scholar] [CrossRef]
- Lascelles, B.D.X.; Blikslager, A.T.; Fox, S.M.; Reece, D. Gastrointestinal tract perforation in dogs treated with a selective cyclooxygenase-2 inhibitor: 29 cases (2002–2003). JAVMA J. Am. Vet. Med. Assoc. 2005, 227, 1112–1117. [Google Scholar] [CrossRef]
- Seibert, K.; Lefkowith, J.; Tripp, C.; Isakson, P.; Needleman, P. COX-2 inhibitors-Is there cause for concern? Nat. Med. 1999, 5, 621–622. [Google Scholar] [CrossRef] [PubMed]
- Seibert, K.; Masferrer, J.L. Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 1994, 4, 17–23. [Google Scholar]
- Seibert, K.; Zhang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Isakson, P. Distribution of COX-1 and COX-2 in normal and inflamed tissues. In Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, Proceedings of the 2nd International Conference, Berlin, Germany, 17–21 September 1991; Honn, K.V., Nigam, S., Marnett, L.J., Eds.; Kluwer Academic Publishers: Berlin, Germany, 1997; Volume 400, pp. 167–170. [Google Scholar]
- Seibert, K.; Zhang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Perkins, W.; Lee, L.; Isakson, P. Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain. Proc. Natl. Acad. Sci. USA 1994, 91, 12013–12017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.J.; Zhang, Y.; Koboldt, C.M.; Muhammad, J.; Zweifel, B.S.; Shaffer, A.; Talley, J.J.; Masferrer, J.L.; Seibert, K.; Isakson, P.C. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc. Natl. Acad. Sci. USA 1998, 95, 13313–13318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Shaffer, A.; Portanova, J.; Seibert, K.; Isakson, P.C. Inhibition of cyclooxygenase-2 rapidly reverses inflammatory hyperalgesia and prostaglandin E-2 production. J. Pharmacol. Exp. Ther. 1997, 283, 1069–1075. [Google Scholar]
- Brooks, P.; Emery, P.; Evans, J.F.; Fenner, H.; Hawkey, C.J.; Patrono, C.; Smolen, J.; Breeveld, F.; Day, R.; Dougados, M.; et al. Interpreting the clinical significance of the differential inhibition of cyclooxygenase-1 and cyclooxygenase-2. Rheumatology 1999, 38, 779–788. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, G.A.; Patrono, C. Drug therapy: The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med. 2001, 345, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, P.; Patrono, C. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 422–432. [Google Scholar] [CrossRef]
- Patrono, C. Cardiovascular effects of cyclooxygenase-2 inhibitors: A mechanistic and clinical perspective. Br. J. Clin. Pharmacol. 2016, 82, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C. Cardiovascular Effects of Nonsteroidal Anti-inflammatory Drugs. Curr. Cardiol. Rep. 2016, 18. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C.; Baigent, C. Coxibs, Traditional NSAIDs, and Cardiovascular Safety Post-PRECISION: What We Thought We Knew Then and What We Think We Know Now. Clin. Pharmacol. Ther. 2017, 102, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C.; Baigent, C. Nonsteroidal Anti-Inflammatory Drugs and the Heart. Circulation 2014, 129, 907–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrono, C.; Baigent, C. Low-Dose Aspirin, Coxibs, and other NSAIDS: A Clinical Mosaic Emerges. Mol. Interv. 2009, 9, 31–39. [Google Scholar] [CrossRef]
- Mukherjee, D. Traditional NSAIDs and coxibs: Is one better than the other? Eur. Heart J. 2017, 38, 1851–1852. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D. Does a coxib-associated thrombotic risk limit the clinical use of the compounds as analgesic anti-inflammatory drugs? Arguments in favor. Thromb. Haemost. 2006, 96, 407–412. [Google Scholar] [CrossRef]
- Mukherjee, D. Selective cyclooxygenase-2 (COX-2) inhibitors and potential risk of cardiovascular events. Biochem. Pharmacol. 2002, 63, 817–821. [Google Scholar] [CrossRef]
- Mukherjee, D.; Nissen, S.E.; Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001, 286, 954–959. [Google Scholar] [CrossRef]
- Mukherjee, D.; Topol, E.J. Cyclooxygenase-2: Where are we in 2003? Cardiovascular risk and COX-2 inhibitors. Arthritis Res. Ther. 2003, 5, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pal, M. Medicinal Chemistry of Quinolines As Emerging Anti-inflammatory Agents: An Overview. Curr. Med. Chem. 2013, 20, 4386–4410. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pal, M. Quinolines: A new hope against inflammation. Drug Discov. Today 2013, 18, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.S.; Mukherjee, S.; Era, N.; Mukherjee, M. Etoricoxib-induced toxic epidermal necrolysis: A fatal case report. Indian J. Pharmacol. 2018, 50, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.L.; Lascelles, B.D.X.; Law, J.M.; Blikslager, A.T. The Effect of Tramadol and Indomethacin Coadministration on Gastric Barrier Function in Dogs. J. Vet. Intern. Med. 2014, 28, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Wooten, J.G.; Lascelles, D.X.; Cook, V.L.; Mac Law, J.; Blikslager, A.T. Evaluation of the relationship between lesions in the gastroduodenal region and cyclooxygenase expression in clinically normal dogs. Am. J. Vet. Res. 2010, 71, 630–635. [Google Scholar] [CrossRef]
- Ahn, D.K.; Chae, J.M.; Choi, H.S.; Kyung, H.M.; Kwon, O.W.; Park, H.S.; Youn, D.H.; Bae, Y.C. Central cyclooxygenase inhibitors reduced IL-1 beta-induced hyperalgesia in temporomandibular joint of freely moving rats. Pain 2005, 117, 204–213. [Google Scholar] [CrossRef]
- Ahn, D.K.; Choi, H.S.; Yeo, S.P.; Woo, Y.W.; Lee, M.K.; Yang, G.Y.; Park, J.S.; Mokha, S.S. Blockade of central cyclooxygenase (COX) pathways enhances the cannabinold-induced antinociceptive effects on inflammatory temporomandibular joint (TMJ) nociception. Pain 2007, 132, 23–32. [Google Scholar] [CrossRef]
- Bonnefont, J.; Courade, J.P.; Alloui, A.; Eschalier, A. Mechanism of the antinociceptive effect of paracetamol. Drugs 2003, 63, 1–4. [Google Scholar] [CrossRef]
- Botting, R. COX-1 and COX-3 inhibitors. Thromb. Res. 2003, 110, 269–272. [Google Scholar] [CrossRef]
- Chandrasekharan, N.V.; Dai, H.; Roos, K.L.T.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA 2002, 99, 13926. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Bazan, N.G. Acetaminophen modifies hippocampal synaptic plasticity via a presynaptic 5-HT2 receptor. Neuroreport 2003, 14, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.M.; Good, R.L.; Roupe, K.A.; Yanez, J.A. Cyclooxygenase-3: Axiom, dogma, anomaly, enigma or splice error? not as easy as 1, 2, 3. J. Pharm. Pharm. Sci. 2004, 7, 217–226. [Google Scholar] [PubMed]
- Erol, K.; Sirmagul, B.; Kilic, F.S.; Yigitaslan, S.; Dogan, A.E. The Role of Inflammation and COX-Derived Prostanoids in the Effects of Bradykinin on Isolated Rat Aorta and Urinary Bladder. Inflammation 2012, 35, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Sato, T.; Irifune, M.; Tanaka, K.I.; Nakamura, N.; Nishikawa, T. Effect of acetaminophen, a cyclooxygenase inhibitor, on Morris water maze task performance in mice. J. Psychopharmacol. 2007, 21, 757–767. [Google Scholar] [CrossRef]
- Kis, B.; Snipes, A.; Bari, F.; Busija, D.W. Regional distribution of cyclooxygenase-3 m-RNA in the rat central nervous system. Mol. Brain Res. 2004, 126, 78–80. [Google Scholar] [CrossRef]
- Kis, B.; Snipes, J.A.; Busija, D.W. Acetaminophen and the cyclooxygenase-3 puzzle: Sorting out facts, fictions, and uncertainties. J. Pharmacol. Exp. Ther. 2005, 315, 1–7. [Google Scholar] [CrossRef]
- Rezende, R.M.; Franca, D.S.; Menezes, G.B.; dos Reis, W.G.P.; Bakhle, Y.S.; Francischi, J.N. Different mechanisms underlie the analgesic actions of paracetamol and dipyrone in a rat model of inflammatory pain. Br. J. Pharmacol. 2008, 153, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Schwab, J.M.; Schluesener, H.J.; Meyermann, R.; Serhan, C.N. COX-3 the enzyme and the concept: Steps towards highly specialized pathways and precision therapeutics? Prostaglandins Leukot. Essent. Fat. Acids 2003, 69, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Verma, A.; Chauhan, R.A.; Kedar, M.; Kulshrestha, R. Study of cyclooxygenase-3 on the bases of its facts and controversies. Int. J. Pharm. Sci. Res. 2019, 10, 387–392. [Google Scholar] [CrossRef]
- Warner, T.D.; Mitchell, J.A. Cyclooxygenase-3 (COX-3): Filling in the gaps toward a COX continuum? Proc. Natl. Acad. Sci. USA 2002, 99, 13371–13373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willoughby, D.A.; Moore, A.R.; Colville-Nash, P.R. COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease. Lancet 2000, 355, 646–648. [Google Scholar] [CrossRef]
- Cuniberti, B.; Odore, R.; Barbero, R.; Cagnardi, P.; Badino, P.; Girardi, C.; Re, G. In vitro and ex vivo pharmacodynamics of selected non-steroidal anti-inflammatory drugs in equine whole blood. Vet. J. 2012, 191, 327–333. [Google Scholar] [CrossRef]
- Pan, M.R.; Chang, H.C.; Hung, W.C. Non-steroidal anti-inflammatory drugs suppress the ERK signaling pathway via block of Ras/c-Raf interaction and activation of MAP kinase phosphatases. Cell. Signal. 2008, 20, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.R.; Hung, W.C. Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 via suppression of the ERK/Sp1-mediated transcription. J. Biol. Chem. 2002, 277, 32775–32780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnello, K.A.; Reynolds, L.R.; Budsberg, S.C. In vivo effects of tepoxalin, an inhibitor of cyclooxygenase and lipoxygenase, on prostanoid and leukotriene production in dogs with chronic osteoarthritis. Am. J. Vet. Res. 2005, 66, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Goodman, L.A.; Torres, B.T.; Reynolds, L.R.; Budsberg, S.C. Effects of firocoxib, meloxicam, and tepoxalin administration on eicosanoid production in target tissues of healthy cats. Am. J. Vet. Res. 2010, 71, 1067–1073. [Google Scholar] [CrossRef]
- Duan, B.; Wu, L.J.; Yu, Y.Q.; Ding, Y.; Jing, L.; Xu, L.; Chen, J.; Xu, T.L. Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J. Neurosci. 2007, 27, 11139–11148. [Google Scholar] [CrossRef] [Green Version]
- Voilley, N.; de Weille, J.; Mamet, J.; Lazdunski, M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J. Neurosci. 2001, 21, 8026–8033. [Google Scholar] [CrossRef]
- Wu, W.L.; Cheng, C.F.; Sun, W.H.; Wong, C.W.; Chen, C.C. Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol. Ther. 2012, 134, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Mattia, C.; Coluzzi, F. What anesthesiologists should know about paracetamol (acetaminophen). Minerva Anestesiol. 2009, 75, 644–653. [Google Scholar]
- Jones, C.J.; Streppa, H.K.; Harmon, B.G.; Budsberg, S.C. In vivo effects of meloxicam and aspirin on blood, gastric mucosal, and synovial fluid prostanoid synthesis in dogs. Am. J. Vet. Res. 2002, 63, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Brainard, B.M.; Meredith, C.P.; Callan, M.B.; Budsberg, S.C.; Shofer, F.S.; Driessen, B.; Otto, C.M. Changes in platelet function, hemostasis, and prostaglandin expression after treatment with nonsteroidal anti-inflammatory drugs with various cyclooxygenase selectivities in dogs. Am. J. Vet. Res. 2007, 68, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.A.; Coetzee, J.F.; Edwards-Callaway, L.N.; Glynn, H.; Dockweiler, J.; KuKanich, B.; Lin, H.; Wang, C.; Fraccaro, E.; Jones, M.; et al. The effect of timing of oral meloxicam administration on physiological responses in calves after cautery dehorning with local anesthesia. J. Dairy Sci. 2013, 96, 5194–5205. [Google Scholar] [CrossRef] [PubMed]
- Altinoz, S.; Nemutlu, E.; Kir, S. Polarographic behaviour of meloxicam and its determination in tablet preparations and spiked plasma. Farmaco 2002, 57, 463–468. [Google Scholar] [CrossRef]
- Barrett, L.A.; Beausoleil, N.J.; Benschop, J.; Stafford, K.J. Pain-related behavior was not observed in dairy cattle in the days after liver biopsy, regardless of whether NSAIDs were administered. Res. Vet. Sci. 2016, 104, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Barz, A.; Ritzmann, M.; Breitinger, I.; Langhoff, R.; Zols, S.; Palzer, A.; Heinritzi, K. Examination of different options for combined administration of an NSAID (Meloxicam) and iron for piglets being castrated. Tieraerztliche Prax. Ausg. Grosstiere Nutztiere 2010, 38, 23–30. [Google Scholar]
- Bates, A.J.; Eder, P.; Laven, R.A. Effect of analgesia and anti-inflammatory treatment on weight gain and milk intake of dairy calves after disbudding. N. Z. Vet. J. 2015, 63, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Blain, H.; Jouzeau, J.Y.; Netter, P.; Jeandel, C. Non-steroidal anti-inflammatory drugs with selective inhibitory activity on cyclooxygenase 2. Interest and future prospects. Rev. Med. Interne 2000, 21, 978–988. [Google Scholar] [CrossRef]
- Budsberg, S.C.; Cross, A.R.; Quandt, J.E.; Pablo, L.S.; Runk, A.R. Evaluation of intravenous administration of meloxicam for perioperative pain management following stifle joint surgery in dogs. Am. J. Vet. Res. 2002, 63, 1557–1563. [Google Scholar] [CrossRef]
- Charlton, A.N.; Benito, J.; Simpson, W.; Freire, M.; Lascelles, B.D.X. Evaluation of the clinical use of tepoxalin and meloxicam in cats. J. Feline Med. Surg. 2013, 15, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.F.; Edwards, L.N.; Mosher, R.A.; Bello, N.M.; O’Connor, A.M.; Wang, B.; KuKanich, B.; Blasi, D.A. Effect of oral meloxicam on health and performance of beef steers relative to bulls castrated on arrival at the feedlot. J. Anim. Sci. 2012, 90, 1026–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coetzee, J.F.; Mosher, R.A.; Kohake, L.E.; Cull, C.A.; Kelly, L.L.; Mueting, S.L.; KuKanich, B. Pharmacokinetics of oral gabapentin alone or co-administered with meloxicam in ruminant beef calves. Vet. J. 2011, 190, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.R.; Budsberg, S.C.; Keefe, T.J. Kinetic gait analysis assessment of meloxicam efficacy in a sodium urate-induced synovitis model in dogs. Am. J. Vet. Res. 1997, 58, 626–631. [Google Scholar] [PubMed]
- Das, Y.K.; Aksoy, A.; Yavuz, O.; Guvenc, D.; Atmaca, E. Tocolytic Effects of Meloxicam on Isolated Cattle Myometrium. Kafkas Univ. Vet. Fak. Derg. 2012, 18, 1043–1048. [Google Scholar] [CrossRef]
- Drag, M.; Kunkle, B.N.; Romano, D.; Hanson, P.D. Efficacy of firocoxib in preventing urate-induced synovitis, pain, and inflammation in dogs. Vet. Ther. 2007, 8, 41–50. [Google Scholar]
- Engelhardt, G. Pharmacology of meloxicam, a new non-steroidal anti-inflammatory drug with an improved safety profile through preferential inhibition of COX-2. Br. J. Rheumatol. 1996, 35, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelhardt, G.; Bogel, R.; Schnitzer, C.; Utzmann, R. Meloxican: Influence on arachidonic acid metabolism. 1. In vitro findings. Biochem. Pharmacol. 1996, 51, 21–28. [Google Scholar] [CrossRef]
- Euller-Ziegler, L.; Velicitat, P.; Bluhmki, E.; Turck, D.; Scheuerer, S.; Combe, B. Meloxicam: A review of its pharmacokinetics, efficacy and tolerability following intramuscular administration. Inflamm. Res. 2001, 50, S5–S9. [Google Scholar]
- Gates, B.J.; Nguyen, T.T.; Setter, S.M.; Davies, N.M. Meloxicam: A reappraisal of pharmacokinetics, efficacy and safety. Expert Opin. Pharmacother. 2005, 6, 2117–2140. [Google Scholar] [CrossRef]
- Gilmour, M.A.; Lehenbauer, T.W. Comparison of tepoxalin, carprofen, and meloxicam for reducing intraocular inflammation in dogs. Am. J. Vet. Res. 2009, 70, 902–907. [Google Scholar] [CrossRef]
- Gottardo, F.; Scollo, A.; Contiero, B.; Ravagnani, A.; Tavella, G.; Bernardini, D.; De Benedictis, G.M.; Edwards, S.A. Pain alleviation during castration of piglets: A comparative study of different farm options. J. Anim. Sci. 2016, 94, 5077–5088. [Google Scholar] [CrossRef] [PubMed]
- Hanft, G.; Turck, D.; Scheuerer, S.; Sigmund, R. Meloxicam oral suspension: A treatment alternative to solid meloxicam formulations. Inflamm. Res. 2001, 50, S35–S37. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, A.; Duffield, T.F.; Lissemore, K.D.; Millman, S.T. The effect of meloxicam on behavior and pain sensitivity of dairy calves following cautery dehorning with a local anesthetic. J. Dairy Sci. 2010, 93, 2450–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, A.; Duffield, T.F.; Lissemore, K.D.; Squires, E.J.; Millman, S.T. The impact of meloxicam on postsurgical stress associated with cautery dehorning. J. Dairy Sci. 2009, 92, 540–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, J.R.; Grint, N.J.; Taylor, P.M.; Murrell, J.C. Sedative and analgesic effects of buprenorphine, combined with either acepromazine or dexmedetomidine, for premedication prior to elective surgery in cats and dogs. Vet. Anaesth. Analg. 2013, 40, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Ingvast-Larsson, C.; HÖGberg, M.; Mengistu, U.; OlsÉN, L.; Bondesson, U.; Olsson, K. Pharmacokinetics of meloxicam in adult goats and its analgesic effect in disbudded kids. J. Vet. Pharmacol. Ther. 2011, 34, 64–69. [Google Scholar] [CrossRef]
- Kaplan-Machlis, B.; Klostermeyer, B.S. The cyclooxygenase-2 inhibitors: Safety and effectiveness. Ann. Pharmacother. 1999, 33, 979–988. [Google Scholar] [CrossRef]
- Lees, P.; Giraudel, J.; Landoni, M.F.; Toutain, P.L. PK-PD integration and PK-PD modelling of nonsteroidal anti-inflammatory drugs: Principles and applications in veterinary pharmacology. J. Vet. Pharmacol. Ther. 2004, 27, 491–502. [Google Scholar] [CrossRef]
- Milne, M.H.; Nolan, A.M.; Cripps, P.J.; Fitzpatrick, J.L. Assessment and alleviation of pain in dairy cows with clinical mastitis. Cattle Pract. 2003, 11, 289–293. [Google Scholar]
- Nascimento, F.F.; Marques, V.I.; Crociolli, G.C.; Nicacio, G.M.; Nicacio, I.; Cassu, R.N. Analgesic efficacy of laser acupuncture and electroacupuncture in cats undergoing ovariohysterectomy. J. Vet. Med. Sci. 2019, 81, 764–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nfor, O.N.; Chan, J.P.W.; Kere, M.; Peh, H.C. Disbudding pain: The benefits of disbudding goat kids with dexmedetomidine hydrochloride. Small Rumin. Res. 2016, 139, 60–66. [Google Scholar] [CrossRef]
- Olson, M.E.; Ralston, B.; Burwash, L.; Matheson-Bird, H.; Allan, N.D. Efficacy of oral meloxicam suspension for prevention of pain and inflammation following band and surgical castration in calves. BMC Vet. Res. 2016, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Paull, D.R.; Lee, C.; Atkinson, S.J.; Fisher, A.D. Effects of meloxicam or tolfenamic acid administration on the pain and stress responses of Merino lambs to mulesing. Aust. Vet. J. 2008, 86, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Paull, D.R.; Small, A.H.; Lee, C.; Palladin, P.; Colditz, I.G. Evaluating a novel analgesic strategy for ring castration of ram lambs. Vet. Anaesth. Analg. 2012, 39, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Punke, J.P.; Speas, A.L.; Reynolds, L.R.; Budsberg, S.C. Effects of firocoxib, meloxicam, and tepoxalin on prostanoid and leukotriene production by duodenal mucosa and other tissues of osteoarthritic dogs. Am. J. Vet. Res. 2008, 69, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Schwieler, L.; Erhardt, S.; Erhardt, C.; Engberg, G. Prostaglandin-mediated control of rat brain kynurenic acid synthesis-opposite actions by COX-1 and COX-2 isoforms. J. Neural Transm. 2005, 112, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Small, A.H.; Belson, S.; Holm, M.; Colditz, I.G. Efficacy of a buccal meloxicam formulation for pain relief in Merino lambs undergoing knife castration and tail docking in a randomised field trial. Aust. Vet. J. 2014, 92, 381–388. [Google Scholar] [CrossRef]
- Stewart, M.; Stookey, J.M.; Stafford, K.J.; Tucker, C.B.; Rogers, A.R.; Dowling, S.K.; Verkerk, G.A.; Schaefer, A.L.; Webster, J.R. Effects of local anesthetic and a nonsteroidal antiinflammatory drug on pain responses of dairy calves to hot-iron dehorning. J. Dairy Sci. 2009, 92, 1512–1519. [Google Scholar] [CrossRef]
- Theurer, M.E.; White, B.J.; Coetzee, J.F.; Edwards, L.N.; Mosher, R.A.; Cull, C.A. Assessment of behavioral changes associated with oral meloxicam administration at time of dehorning in calves using a remote triangulation device and accelerometers. BMC Vet. Res. 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Viscardi, A.V.; Turner, P.V. Use of meloxicam, buprenorphine, and Maxilene® to assess a multimodal approach for piglet pain management, part 1: Surgical castration. Anim. Welf. 2019, 28, 487–498. [Google Scholar] [CrossRef]
- Viscardi, A.V.; Turner, P.V. Use of meloxicam, buprenorphine, and Maxilene® to assess a multimodal approach for piglet pain management, part 2: Tail-docking. Anim. Welf. 2019, 28, 499–510. [Google Scholar] [CrossRef]
- Lizarraga, I.; Chambers, J.P. Involvement of opioidergic and alpha(2)-adrenergic mechanisms in the central analgesic effects of non-steroidal anti-inflammatory drugs in sheep. Res. Vet. Sci. 2006, 80, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; De Vito, V.; Lee, H.K.; Laus, F.; Kowalski, C.; Faillace, V.; Burmanczuk, A.; Vullo, C. Pharmacokinetic investigations of the marker active metabolite-4-methylamino-antipyrin after intravenous and intramuscular injection of metamizole in healthy sheep. Small Rumin. Res. 2015, 132, 143–146. [Google Scholar] [CrossRef]
- Kim, T.W.; Lebkowska-Wieruszewska, B.; Sitovs, A.; Poapolathep, A.; Owen, H.; Lisowski, A.; Abilova, Z.; Giorgi, M. Pharmacokinetic profiles of metamizole (dipyrone) active metabolites in goats and its residues in milk. J. Vet. Pharmacol. Ther. 2018, 41, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Sidler, M.; Fouche, N.; Meth, I.; von Hahn, F.; von Rechenberg, B.; Kronen, P.W. Preliminary study on carprofen concentration measurements after transcutaneous treatment with Vetdrop (R) in a microfracture joint defect model in sheep. BMC Vet. Res. 2014, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, J.; Nolan, A.M. Analgesia of newborn lambs before castration and tail docking with rubber rings. Vet. Rec. 2001, 149, 321–324. [Google Scholar] [CrossRef]
- Moya, D.; Gonzalez, L.A.; Janzen, E.; Caulkett, N.A.; Fireheller, E.; Schwartzkopf-Genswein, K.S. Effects of castration method and frequency of intramuscular injections of ketoprofen on behavioral and physiological indicators of pain in beef cattle. J. Anim. Sci. 2014, 92, 1684–1695. [Google Scholar] [CrossRef]
- Moya, D.; Schwartzkopf-Genswein, K.S.; Gonzalez, L.A.; Caulkett, N.A.; Fireheller, E.; Janzen, E. Effect of multiple intramuscular injections of ketoprofen on physiological and behavioural indicators of pain in beef calves following surgical or band castration. Can. J. Anim. Sci. 2011, 91, 510–511. [Google Scholar]
- Verret, V.; Bevilacqua, C.; Schwartz-Cornil, I.; Pelage, J.P.; Wassef, M.; Namur, J.; Bedouet, L.; Lewis, A.L.; Martin, P.; Laurent, A. IL6 and TNF expression in vessels and surrounding tissues after embolization with ibuprofen-loaded beads confirms diffusion of ibuprofen. Eur. J. Pharm. Sci. 2011, 42, 489–495. [Google Scholar] [CrossRef]
- Wassef, M.; Pelage, J.P.; Velzenberger, E.; Namur, J.; Schwartz-Cornil, I.; Taylor, R.R.; Lewis, A.L.; Laurent, A. Anti-inflammatory effect of ibuprofen-loaded embolization BEADS in sheep uterus. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86B, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Sessions, J.K.; Reynolds, L.R.; Budsberg, S.C. In vivo effects of carprofen, deracoxib, and etodolac on prostanoid production in blood, gastric mucosa, and synovial fluid in dogs with chronic osteoarthritis. Am. J. Vet. Res. 2005, 66, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.D.; Brooks, K.C.; Case, J.; Conzemius, M.; Gordon, W.; Schuessler, J.; Shelley, B.; Sifferman, R.; Drag, M.; Alva, R.; et al. Efficacy and safety of firocoxib in the management of canine osteoarthritis under field conditions. Vet. Ther. 2006, 7, 127–140. [Google Scholar] [PubMed]
- Di Salvo, A.; Giorgi, M.; Lee, H.K.; Vercelli, C.; Rueca, F.; Marinucci, M.T.; della Rocca, G. Plasma profile of cimicoxib in sheep after oral administration at two different rates. Pol. J. Vet. Sci. 2017, 20, 535–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, G.G.; Davies, M.J.; Day, R.O.; Mohamudally, A.; Scott, K.F. The modern pharmacology of paracetamol: Therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology 2013, 21, 201–232. [Google Scholar] [CrossRef]
- Jozwiak-Bebenista, M.; Nowak, J.Z. Paracetamol: Mechanism of action, applications and safety concern. Acta Pol. Pharm. 2014, 71, 11–23. [Google Scholar] [PubMed]
- Ali, B.H.; Cheng, Z.; Elhadrami, G.; Bashir, A.K.; McKellar, Q.A. Comparative pharmacokinetics of paracetamol (acetaminophen) and its sulphate and glucuronide metabolites in desert camels and goats. J. Vet. Pharmacol. Ther. 1996, 19, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.L.; Anderson, D.E.; Coetzee, J.F.; White, B.J.; Miesner, M.D. Effect of flunixin meglumine on the amelioration of lameness in dairy steers with amphotericin B-induced transient synovitis-arthritis. Am. J. Vet. Res. 2011, 72, 1431–1438. [Google Scholar] [CrossRef]
- Paull, D.R.; Small, A.H.; Lee, C.; Labeur, L.; Colditz, I.G. Effect of local infusion of NSAID analgesics administered alone or in combination on the pain associated with band castration in calves. Aust. Vet. J. 2015, 93, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Marini, D.; Colditz, I.G.; Hinch, G.; Petherick, J.C.; Lee, C. Self-administration by consumption of flunixin in feed alleviates the pain and inflammation associated with castration and tail docking of lambs. Appl. Anim. Behav. Sci. 2017, 188, 26–33. [Google Scholar] [CrossRef]
- Horvath-Ungerboeck, C.; Thoday, K.L.; Shaw, D.J.; van den Broek, A.H.M. Tepoxalin reduces pruritus and modified CADESI-01 scores in dogs with atopic dermatitis: A prospective, randomized, double-blinded, placebo-controlled, cross-over study. Vet. Dermatol. 2009, 20, 233–242. [Google Scholar] [CrossRef]
- De Boever, S.; Neirinckx, E.; Beyaert, R.; De Backer, P.; Croubels, S. Pharmacodynamic properties of salicylate, tepoxalin and ketoprofen in an intravenous LPS inflammation model in broiler chickens. J. Vet. Pharmacol. Ther. 2009, 32, 109–110. [Google Scholar]
- Knight, E.V.; Kimball, J.P.; Keenan, C.M.; Smith, I.L.; Wong, F.A.; Barrett, D.S.; Dempster, A.M.; Lieuallen, W.G.; Panigrahi, D.; Powers, W.J.; et al. Preclinical toxicity evaluation of tepoxalin, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, in Sprague-Dawley rats and beagle dogs. Fundam. Appl. Toxicol. 1996, 33, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Karasu, A.; Genccelep, M. The Effect of Xylazine HCl Used in Repeated Sedations for Sheep on Biochemical and Clinical Values. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 831–836. [Google Scholar] [CrossRef]
- Genccelep, M.; Karasu, A. Evaluation of analgesic and sedative effects of repeated and increasing doses of xylazine HCl in sheep. Med. Weter. Vet. Med. Sci. Pract. 2017, 73, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Grant, C.; Summersides, G.E.; Kuchel, T.R. A xylazine infusion regimen to provide analgesia in sheep. Lab. Anim. 2001, 35, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.; Upton, R.N. Comparison of the analgesic effects of xylazine in sheep via three different administration routes. Aust. Vet. J. 2004, 82, 304–307. [Google Scholar] [CrossRef]
- Lizarraga, I.; Chambers, J.P.; Johnson, C.B. Prevention of N-Methyl-D-Aspartate-Induced Mechanical Nociception by Intrathecal Administration of Ketoprofen and Ketamine in Sheep. Anesth. Analg. 2008, 107, 2061–2067. [Google Scholar] [CrossRef]
- Haerdi-Landerer, M.C.; Schlegel, U.; Neiger-Aeschbacher, G. The analgesic effects of intrathecal xylazine and detomidine in sheep and their antagonism with systemic atipamezole. Vet. Anaesth. Analg. 2005, 32, 297–307. [Google Scholar] [CrossRef]
- Murdoch, F.R.; Maker, G.L.; Nitsos, I.; Polglase, G.R.; Musk, G.C. Intraperitoneal medetomidine: A novel analgesic strategy for postoperative pain management in pregnant sheep. Lab. Anim. 2013, 47, 66–70. [Google Scholar] [CrossRef]
- Coetzee, J.F.; Gehring, R.; Tarus-Sang, J.; Anderson, D.E. Effect of sub-anesthetic xylazine and ketamine (‘ketamine stun’) administered to calves immediately prior to castration. Vet. Anaesth. Analg. 2010, 37, 566–578. [Google Scholar] [CrossRef]
- Obata, H.; Li, X.H.; Eisenach, J.C. alpha(2)-Adrenoceptor activation by clonidine enhances stimulation-evoked acetylcholine release from spinal cord tissue after nerve ligation in rats. Anesthesiology 2005, 102, 657–662. [Google Scholar] [CrossRef] [PubMed]
- DeRossi, R.; Gaspar, E.B.; Junqueira, A.L.; Beretta, M.P. A comparison of two subarachnoid alpha(2)-agonists, xylazine and clonidine, with respect to duration of antinociception, and hemodynamic effects in goats. Small Rumin. Res. 2003, 47, 103–111. [Google Scholar] [CrossRef]
- Musk, G.C.; Netto, J.D.; Maker, G.L.; Trengove, R.D. Transplacental transfer of medetomidine and ketamine in pregnant ewes. Lab. Anim. 2012, 46, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Honarmand, A.; Safavi, M.R.; Jamshidi, M. The preventative analgesic effect of preincisional peritonsillar infiltration of two low doses of ketamine for postoperative pain relief in children following adenotonsillectomy. A randomized, double-blind, placebo-controlled study. Pediatr. Anesth. 2008, 18, 508–514. [Google Scholar] [CrossRef]
- Safavi, M.; Honarmand, A.; Nematollahy, Z. Pre-Incisional Analgesia with Intravenous or Subcutaneous Infiltration of Ketamine Reduces Postoperative Pain in Patients after Open Cholecystectomy: A Randomized, Double-Blind, Placebo-Controlled Study. Pain Med. 2011, 12, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Guedes, A.G.P.; Pluhar, G.E.; Daubs, B.M.; Rude, E.P. Effects of preoperative epidural administration of racemic ketamine for analgesia in sheep undergoing surgery. Am. J. Vet. Res. 2006, 67, 222–229. [Google Scholar] [CrossRef]
- DeRossi, R.; Pompermeyer, C.T.D.; Silva-Neto, A.B.; de Barros, A.L.C.; Jardim, P.H.D.; Frazilio, F.O. Lumbosacral epidural magnesium prolongs ketamine analgesia in conscious sheep. Acta Cir. Bras. 2012, 27, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Johansen, M.J.; Gradert, T.L.; Satterfield, W.C.; Baze, W.B.; Hildebrand, K.; Trissel, L.; Hassenbusch, S.J. Safety of continuous intrathecal midazolam infusion in the sheep model. Anesth. Analg. 2004, 98, 1528–1535. [Google Scholar] [CrossRef]
- Upton, R.N.; Ludbrook, G.L.; Martinez, A.M.; Grant, C.; Milne, R.W. Cerebral and lung kinetics of morphine in conscious sheep after short intravenous infusions. Br. J. Anaesth. 2003, 90, 750–758. [Google Scholar] [CrossRef] [Green Version]
- Villesen, H.H.; Foster, D.J.R.; Upton, R.N.; Christrup, L.L.; Somogyi, A.A.; Martinez, A.; Grant, C. Blood-brain distribution of morphine-6-glucuronide in sheep. Br. J. Pharmacol. 2006, 149, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Villesen, H.H.; Foster, D.J.R.; Upton, R.N.; Somogyi, A.A.; Martinez, A.; Grant, C. Cerebral kinetics of oxycodone in conscious sheep. J. Pharm. Sci. 2006, 95, 1666–1676. [Google Scholar] [CrossRef] [PubMed]
- Lalani, J.; Baradia, D.; Lalani, R.; Misra, A. Brain targeted intranasal delivery of tramadol: Comparative study of microemulsion and nanoemulsion. Pharm. Dev. Technol. 2015, 20, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Jen, K.Y.; Dyson, M.C.; Lester, P.A.; Nemzek, J.A. Pharmacokinetics of a Transdermal Fentanyl Solution in Suffolk Sheep (Ovis aries). J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 550–557. [Google Scholar] [PubMed]
- Christou, C.; Oliver, R.A.; Rawlinson, J.; Walsh, W.R. Transdermal fentanyl and its use in ovine surgery. Res. Vet. Sci. 2015, 100, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.J.; Soma, L.R.; Boston, R.C.; Rudy, J.A.; Schaer, T.P. Evaluation of the analgesic and pharmacokinetic properties of transdermally administered fentanyl in goats. J. Vet. Emerg. Crit. Care 2017, 27, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Ahern, B.J.; Soma, L.R.; Boston, R.C.; Schaer, T.P. Comparison of the analgesic properties of transdermally administered fentanyl and intramuscularly administered buprenorphine during and following experimental orthopedic surgery in sheep. Am. J. Vet. Res. 2009, 70, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Musk, G.C.; Catanchin, C.S.M.; Usuda, H.; Woodward, E.; Kemp, M.W. The uptake of transdermal fentanyl in a pregnant sheep model. Vet. Anaesth. Analg. 2017, 44, 1382–1390. [Google Scholar] [CrossRef]
- De Sousa, A.B.; Santos, A.C.D.; Schramm, S.G.; Porta, V.; Gorniak, S.L.; Florio, J.C.; Spinosa, H.D.S. Pharmacokinetics of tramadol and o-desmethyltramadol in goats after intravenous and oral administration. J. Vet. Pharmacol. Ther. 2008, 31, 45–51. [Google Scholar] [CrossRef]
- De Benedictis, G.M.; Giorgi, M.; Depase, A.; De Vito, V.; della Rocca, G.; Bellini, L. Cardiovascular effects and intraoperative pharmacokinetics of tramadol in sheep undergoing spinal surgery. Vet. Anaesth. Analg. 2017, 44, 1245–1252. [Google Scholar] [CrossRef]
- Lindhardt, K.; Ravn, C.; Gizurarson, S.; Bechgaard, E. Intranasal absorption of buprenorphine-in vivo bioavailability study in sheep. Int. J. Pharm. 2000, 205, 159–163. [Google Scholar] [CrossRef]
- Zullian, C.; Lema, P.; Lavoie, M.; Dodelet-Devillers, A.; Beaudry, F.; Vachon, P. Plasma concentrations of buprenorphine following a single subcutaneous administration of a sustained release formulation of buprenorphine in sheep. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2016, 80, 250–253. [Google Scholar]
- Walkowiak, K.J.; Graham, M.L. Pharmacokinetics and Antinociceptive Activity of Sustained-Release Buprenorphine in Sheep. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 763–768. [Google Scholar] [PubMed]
- Carroll, G.L.; Boothe, D.M.; Hartsfield, S.M.; Martinez, E.A.; Spann, A.C.; Hernandez, A. Pharmacokinetics and pharmacodynamics of butorphanol in llamas after intravenous and intramuscular administration. J. Am. Vet. Med. Assoc. 2001, 219, 1263–1267. [Google Scholar] [CrossRef]
- Szeto, H.H.; Lovelace, J.L.; Fridland, G.; Soong, Y.; Fasolo, J.; Wu, D.L.; Desiderio, D.M.; Schiller, P.W. In vivo pharmacokinetics of selective mu-opioid peptide agonists. J. Pharmacol. Exp. Ther. 2001, 298, 57–61. [Google Scholar] [PubMed]
- Bayer, K.; Ahmadi, S.; Zeilhofer, H.U. Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 2004, 46, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.H.; Choi, J.; Kwak, S.H. Characteristic of interactions between intrathecal gabapentin and either clonidine or neostigmine in the formalin test. Anesth. Analg. 2004, 98, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Julius, D. The vanilloid receptor: A molecular gateway to the pain pathway. Annu. Rev. Neurosci. 2001, 24, 487–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caterina, M.J. TRP Channel Cannabinoid Receptors in Skin Sensation, Homeostasis, and Inflammation. ACS Chem. Neurosci. 2014, 5, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Pang, Z.X. TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals 2016, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Laing, R.J.; Dhaka, A. ThermoTRPs and Pain. Neuroscientist 2016, 22, 171–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederick, J.; Buck, M.E.; Matson, D.J.; Cortright, D.N. Increased TRPA1, TRPM8, and TRPV2 expression in dorsal root ganglia by nerve injury. Biochem. Biophys. Res. Commun. 2007, 358, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Facer, P.; Casula, M.A.; Smith, G.D.; Benham, C.D.; Chessell, I.P.; Bountra, C.; Sinisi, M.; Birch, R.; Anand, P. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 2007, 7. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.J.; Liu, B.Y.; Qin, F. Low pH potentiates both capsaicin binding and channel Gating of VR1 receptors. J. Gen. Physiol. 2003, 122, 45–61. [Google Scholar] [CrossRef]
- Honore, P.; Wismer, C.T.; Mikusa, J.; Zhu, C.Z.; Zhong, C.M.; Gauvin, D.M.; Gomtsyan, A.; El Kouhen, R.; Lee, C.H.; Marsh, K.; et al. A-425619 1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea, a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 2005, 314, 410–421. [Google Scholar] [CrossRef]
- Gavva, N.R.; Tamir, R.; Qu, Y.S.; Klionsky, L.; Zhang, T.J.; Immke, D.; Wang, J.; Zhu, D.; Vanderah, T.W.; Porreca, F.; et al. AMG 9810 (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo b 1,4 dioxin-6-yl)acrylami de, a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther. 2005, 313, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Pomonis, J.D.; Harrison, J.E.; Mark, L.; Bristol, D.R.; Valenzano, K.J.; Walker, K. N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide(BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 2003, 306, 387–393. [Google Scholar] [CrossRef]
- Valenzano, K.J.; Grant, E.R.; Wu, G.; Hachicha, M.; Schmid, L.; Tafesse, L.; Sun, Q.; Rotshteyn, Y.; Francis, J.; Limberis, J.; et al. N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide(BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. In vitro characterization and pharmacokinetic properties. J. Pharmacol. Exp. Ther. 2003, 306, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, S.; Chapman, R.J.; Woodhams, S.; Sagar, D.R.; Turner, J.; Burston, J.J.; Bullock, C.; Paton, K.; Huang, J.; Wong, A.; et al. Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain. Ann. Rheum. Dis. 2015, 74, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Gavva, N.R.; Treanor, J.J.S.; Garami, A.; Fang, L.; Surapaneni, S.; Akrami, A.; Alvarez, F.; Bak, A.; Darling, M.; Gore, A.; et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 2008, 136, 202–210. [Google Scholar] [CrossRef]
- Wong, G.Y.; Gavva, N.R. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks. Brain Res. Rev. 2009, 60, 267–277. [Google Scholar] [CrossRef]
- Abdullah, M.; Mahowald, M.L.; Frizelle, S.P.; Dorman, C.W.; Funkenbusch, S.C.; Krug, H.E. The effect of intra-articular vanilloid receptor agonists on pain behavior measures in a murine model of acute monoarthritis. J. Pain Res. 2016, 9, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Neubert, J.K.; Karai, L.; Jun, J.H.; Kim, H.S.; Olah, Z.; Iadarola, M.J. Peripherally induced resiniferatoxin analgesia. Pain 2003, 104, 219–228. [Google Scholar] [CrossRef]
- Neubert, J.K.; Mannes, A.J.; Karai, L.J.; Jenkins, A.C.; Zawatski, L.; Abu-Asab, M.; Iadarola, M.J. Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia. Mol. Pain 2008, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, M.M.; Clifford, J.L.; Hayden, J.R.; Iadarola, M.J.; Averitt, D.L. Local Resiniferatoxin Induces Long-Lasting Analgesia in a Rat Model of Full Thickness Thermal Injury. Pain Med. 2017, 18, 2453–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Ueda, T.; Shibata, Y.; Kumamoto, N.; Ugawa, S. The role of TRPV1 channels in carrageenan-induced mechanical hyperalgesia in mice. Neuroreport 2015, 26, 173–178. [Google Scholar] [CrossRef]
- Baamonde, A.; Lastra, A.; Juarez, L.; Hidalgo, A.; Menendez, L. TRPV1 desensitisation and endogenous vanilloid involvement in the enhanced analgesia induced by capsaicin in inflamed tissues. Brain Res. Bull. 2005, 67, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Backonja, M.M.; Dunteman, E.; Irving, G.A.; Blonsky, E.R.; Vanhove, G.F.; Lu, S.P.; Tobias, J. One 60-min application of a high-concentration capsaicin patch (NGX-4010) significantly reduced pain for up to 3 months in patients with postherpetic neuralgia: Results from a randomized, double-blind, controlled phase 3 study. Neurology 2008, 70, A162–A163. [Google Scholar]
- Bak, A.; Gore, A.; Yanez, E.; Stanton, M.; Tufekcic, S.; Syed, R.; Akrami, A.; Rose, M.; Surapaneni, S.; Bostick, T.; et al. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J. Pharm. Sci. 2008, 97, 3942–3956. [Google Scholar] [CrossRef]
- Remadevi, R.; Szallasi, A. Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for long-lasting pain relief. Idrugs 2008, 11, 120–132. [Google Scholar]
- Aasvang, E.K.; Hansen, J.B.; Kehlet, H. Late sensory function after intraoperative capsaicin wound instillation. Acta Anaesthesiol. Scand. 2010, 54, 224–231. [Google Scholar] [CrossRef]
- Aasvang, E.K.; Hansen, J.B.; Malmstrom, J.; Asmussen, T.; Gennevois, D.; Struys, M.; Kehlet, H. The effect of wound instillation of a novel purified capsaicin formulation on postherniotomy pain: A double-blind, randomized, placebo-controlled study. Anesth. Analg. 2008, 107, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Simon, S.A. Similarities and differences in the currents activated by capsaicin, piperine, and zingerone in rat trigeminal ganglion cells. J. Neurophysiol. 1996, 76, 1858–1869. [Google Scholar] [CrossRef] [PubMed]
- McNamara, F.N.; Randall, A.; Gunthorpe, M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol. 2005, 144, 781–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.H.; Piao, Z.G.; Kim, Y.B.; Lee, C.H.; Lee, J.K.; Park, K.; Kim, J.S.; Oh, S.B. Activation of vanilloid receptor 1 (VR1) by eugenol. J. Dent. Res. 2003, 82, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Dedov, V.N.; Tran, V.H.; Duke, C.C.; Connor, M.; Christie, M.J.; Mandadi, S.; Roufogalis, B.D. Gingerols: A novel class of vanilloid receptor (VR1) agonists. Br. J. Pharmacol. 2002, 137, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, Y.; Morita, A.; Iwasawa, T.; Kobata, K.; Sekiwa, Y.; Morimitsu, Y.; Kubota, K.; Watanabe, T. A nonpungent component-of steamed ginger- 10 -shogaol-increases adrenaline secretion via the activation of TRPV1. Nutr. Neurosci. 2006, 9, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, L.J.; Geierstanger, B.H.; Viswanath, V.; Bandell, M.; Eid, S.R.; Hwang, S.; Patapoutian, A. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 2005, 15, 929–934. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.X.; Blair, N.T.; Clapham, D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 2005, 25, 8924–8937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.H.; Yeon, K.Y.; Park, C.K.; Li, H.Y.; Fang, Z.; Kim, M.S.; Choi, S.Y.; Lee, S.J.; Lee, S.; Park, K.; et al. Eugenol inhibits calcium currents in dental afferent neurons. J. Dent. Res. 2005, 84, 848–851. [Google Scholar] [CrossRef]
- Park, C.K.; Li, H.Y.; Yeon, K.Y.; Jung, S.J.; Choi, S.Y.; Lee, S.J.; Lee, S.; Park, K.; Kim, J.S.; Oh, S.B. Eugenol inhibits sodium currents in dental afferent neurons. J. Dent. Res. 2006, 85, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Kania, B.F.; Lewicki, S. Influence of nifedypine on the hyperalgesic action of duodenal distention in sheep. Pol. J. Vet. Sci. 2007, 10, 263–269. [Google Scholar] [PubMed]
- Kania, B.F.; Sutiak, V. Influence of centrally administered diltiazem on behavioural responses, clinical symptoms, reticulo-ruminal contractions and plasma catecholamine level after experimentally induced duodenal distension in sheep. Res. Vet. Sci. 2011, 90, 291–297. [Google Scholar] [CrossRef]
- Kania, B.F.; Brytan, M.; Tomaszewska, D. Centrally administered verapamil prevents the autonomic reaction to visceral pain in sheep. Res. Vet. Sci. 2009, 86, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Kania, B.F.; Kowalczyk, M.; Brytan, M.; Tomaszewska, D.; Przekop, F. The inhibition of experimentally induced visceral hyperalgesia by nifedipine-A voltage-gated Ca2+ channels blocker (VGCCs) in Sheep. Res. Vet. Sci. 2009, 86, 285–292. [Google Scholar] [CrossRef]
- Gerner, P.; Haderer, A.E.; Mujtaba, M.; Sudoh, Y.; Narang, S.; Abdi, S.; Srinivasa, V.; Pertl, C.; Wang, G.K. Assessment of differential blockade by amitriptyline and its N-methyl derivative in different species by different routes. Anesthesiology 2003, 98, 1484–1490. [Google Scholar] [CrossRef]
- Mamet, J.; Baron, A.; Lazdunski, M.; Voilley, N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J. Neurosci. 2002, 22, 10662–10670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugawa, S.; Ueda, T.; Ishida, Y.; Nishigaki, M.; Shibata, Y.; Shimada, S. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin. Investig. 2002, 110, 1185–1190. [Google Scholar] [CrossRef]
- Kawabata, A.; Kawao, N.; Kuroda, R.; Tanaka, A.; Shimada, C. The PAR-1-activating peptide attenuates carrageenan-induced hyperalgesia in rats. Peptides 2002, 23, 1181–1183. [Google Scholar] [CrossRef]
- Martin, L.; Auge, C.; Boue, J.; Buresi, M.C.; Chapman, K.; Asfaha, S.; Andrade-Gordon, P.; Steinhoff, M.; Cenac, N.; Dietrich, G.; et al. Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain 2009, 146, 121–129. [Google Scholar] [CrossRef]
- Steinhoff, M.; Vergnolle, N.; Young, S.H.; Tognetto, M.; Amadesi, S.; Ennes, H.S.; Trevisani, M.; Hollenberg, M.D.; Wallace, J.L.; Caughey, G.H.; et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat. Med. 2000, 6, 151–158. [Google Scholar] [CrossRef]
- Helyes, Z.; Sandor, K.; Borbely, E.; Tekus, V.; Pinter, E.; Elekes, K.; Toth, D.M.; Szolcsanyi, J.; McDougall, J.J. Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur. J. Pain 2010, 14, 351–358. [Google Scholar] [CrossRef]
- Kanke, T.; Kabeya, M.; Kubo, S.; Kondo, S.; Yasuoka, K.; Tagashira, J.; Ishiwata, H.; Saka, M.; Furuyama, T.; Nishiyama, T.; et al. Novel antagonists for proteinase-activated receptor 2: Inhibition of cellular and vascular responses in vitro and in vivo. Br. J. Pharmacol. 2009, 158, 361–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, W.A.; Dias, T.B. Postoperative analgesia induced by intrathecal neostigmine or bethanechol in rats. Clin. Exp. Pharmacol. Physiol. 2009, 36, 648–654. [Google Scholar] [CrossRef]
- Matsumoto, M.; Xie, W.J.; Inoue, M.; Ueda, H. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Mol. Pain 2007, 3. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.J.; Higgins, M.D. A systematic review of the analgesic efficacy of cannabinoid medications in the management of acute pain. Acta Anaesthesiol. Scand. 2017, 61, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Han, N.L.; Luo, F.; Bian, Z.P.; Han, J.S. Synergistic effect of cholecystokinin octapeptide and angiotensin II in reversal of morphine induced analgesia in rats. Pain 2000, 85, 465–469. [Google Scholar] [CrossRef]
- Acuna, M.A.; Yevenes, G.E.; Ralvenius, W.T.; Benke, D.; Di Lio, A.; Lara, C.O.; Munoz, B.; Burgos, C.F.; Moraga-Cid, G.; Corringer, P.J.; et al. Phosphorylation state-dependent modulation of spinal glycine receptors alleviates inflammatory pain. J. Clin. Investig. 2016, 126, 2547–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, S.; Nolan, A.M. Behavioral evidence supporting a differential role for spinal group I and II metabotropic glutamate receptors in inflammatory hyperalgesia in sheep. Neuropharmacology 2002, 43, 319–326. [Google Scholar] [CrossRef]
- Yevenes, G.E.; Zeilhofer, H.U. Molecular Sites for the Positive Allosteric Modulation of Glycine Receptors by Endocannabinoids. PLoS ONE 2011, 6, e23886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeilhofer, H.U. The glycinergic control of spinal pain processing. Cell. Mol. Life Sci. 2005, 62, 2027–2035. [Google Scholar] [CrossRef] [PubMed]
- Zeilhofer, H.U.; Acuna, M.A.; Gingras, J.; Yevenes, G.E. Glycine receptors and glycine transporters: Targets for novel analgesics? Cell. Mol. Life Sci. 2018, 75, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.T.; Lee, J.H.; Wan, Y.; Han, J.S. Involvement of ionotropic glutamate receptors in low frequency. electroacupuncture analgesia in rats. Neurosci. Lett. 2005, 377, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Dolan, S.; Gunn, M.D.; Crossan, C.; Nolan, A.M. Activation of metabotropic glutamate receptor 7 in spinal cord inhibits pain and hyperalgesia in a novel formalin model in sheep. Behav. Pharmacol. 2011, 22, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Dolan, S.; Kelly, J.G.; Monteiro, A.M.; Nolan, A.M. Differential expression of central metabotropic glutamate receptor (mGluR) subtypes in a clinical model of post-surgical pain. Pain 2004, 110, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Dolan, S.; Kelly, J.G.; Monteiro, A.M.; Nolan, A.M. Up-regulation of metabotropic glutamate receptor subtypes 3 and 5 in spinal cord in a clinical model of persistent inflammation and hyperalgesia. Pain 2003, 106, 501–512. [Google Scholar] [CrossRef]
- Knabl, J.; Witschi, R.; Hosl, K.; Reinold, H.; Zeilhofer, U.B.; Ahmadi, S.; Brockhaus, J.; Sergejeva, M.; Hess, A.; Brune, K.; et al. Reversal of pathological pain through specific spinal GABA(A) receptor subtypes. Nature 2008, 451, U330–U336. [Google Scholar] [CrossRef]
- Lainez, S.; Valente, P.; Ontoria-Oviedo, I.; Estevez-Herrera, J.; Camprubi-Robles, M.; Ferrer-Montiel, A.; Planells-Cases, R. GABA(A) receptor associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. FASEB J. 2010, 24, 1958–1970. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.P.; Zhou, Q.; Ba, X.Y.; Feng, X.J.; Hu, X.X.; Cheng, X.E.; Liu, T.; Guo, J.; Xiao, L.Z.; Jiang, J.; et al. Oxytocin Relieves Neuropathic Pain Through GABA Release and Presynaptic TRPV1 Inhibition in Spinal Cord. Front. Mol. Neurosci. 2018, 11, 248. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, F.; Yang, C.; Kirkmire, C.M.; Wang, Z.J. Acute Inhibition of Ca2+/Calmodulin-Dependent Protein Kinase II Reverses Experimental Neuropathic Pain in Mice. J. Pharmacol. Exp. Ther. 2009, 330, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, A. Prostaglandin E-2 and Pain-An Update. Biol. Pharm. Bull. 2011, 34, 1170–1173. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, C.H.; Yin, P.P.; Wang, Z.J.; Luo, F. Inhibition of CaMKII alpha in the Central Nucleus of Amygdala Attenuates Fentanyl-Induced Hyperalgesia in Rats. J. Pharmacol. Exp. Ther. 2016, 359, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, F.; Yang, C.; Chen, Y.; Shukla, P.; Tang, L.; Wang, L.L.X.; Wang, Z.J. Reversal of chronic inflammatory pain by acute inhibition of Ca2+/calmodulin-dependent protein kinase II. J. Pharmacol. Exp. Ther. 2008, 325, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Luo, F.; Tian, Y.K.; Ye, D.W. Cellular and Molecular Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II in Chronic Pain. J. Pharmacol. Exp. Ther. 2017, 363, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Urbanek, B.; Duma, A.; Kimberger, O.; Huber, G.; Marhofer, P.; Zimpfer, M.; Kaparl, S. Onset time, quality of blockade, and duration of three-in-one blocks with levobupivacaine and bupivacaine. Anesth. Analg. 2003, 97, 888–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, A.; Swami, A.; Smith, G.; Robertson, G.; Lloyd, D.M. Is intraperitoneal levobupivacaine with epinephrine useful for analgesia following laparoscopic cholecystectomy? A randomized controlled trial. Eur. J. Anaesthesiol. 2004, 21, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Novak-Jankovic, V.; Milan, Z.; Potocnik, I.; Stupnik, T.; Maric, S.; Stopar-Pintaric, T.; Kremzar, B. A Prospective, Randomized, Double-Blinded Comparison Between Multimodal Thoracic Paravertebral Bupivacaine and Levobupivacaine Analgesia in Patients Undergoing Lung Surgery. J. Cardiothorac. Vasc. Anesth. 2012, 26, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.L.; da Rosa, A.C.; Oleskovicz, N.; Mattoso, C.R.S.; Dallabrida, A.L.; de Moraes, A.N. Effects of the morphine-lidocaine-ketamine combination on cardiopulmonary function and isoflurane sparing in sheep. Semin. Cienc. Agrar. 2014, 35, 2527–2538. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.I.; Tabasam, G. An investigation into the analgesic effects of interferential currents and transcutaneous electrical nerve stimulation on experimentally induced ischemic pain in otherwise pain-free volunteers. Phys. Ther. 2003, 83, 208–223. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.I. Transcutaneous Electrical Nerve Stimulation (TENS) and TENS-like devices: Do they provide pain relief? Pain Rev. 2001, 8, 121–158. [Google Scholar] [CrossRef]
- Ward, A.R.; Lucas-Toumbourou, S.; McCarthy, B. A comparison of the analgesic efficacy of medium-frequency alternating current and TENS. Physiotherapy 2009, 95, 280–288. [Google Scholar] [CrossRef]
- Shanahan, C.; Ward, A.R.; Robertson, V.J. Comparison of the analgesic efficacy of interferential therapy and transcutaneous electrical nerve stimulation. Physiotherapy 2006, 92, 247–253. [Google Scholar] [CrossRef]
- Luchesa, C.A.; Greca, F.H.; Guarita-Souza, L.C.; dos Santos, J.L.V.; Aquim, E.E. The role of electroanalgesia in patients undergoing coronary artery bypass surgery. Rev. Bras. Cir. Cardiovasc. 2009, 24, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.E.; White, P.F.; Craig, W.F.; Hamza, M.A.; Ghoname, E.S.A.; Gajraj, N.M. Use of percutaneous electrical nerve stimulation (PENS) in the short-term management of headache. Headache 2000, 40, 311–315. [Google Scholar] [CrossRef]
- Lee, B.Y.; LaRiccia, P.J.; Newberg, A.B. Acupuncture in theory and practice part 1: Theoretical basis and physiologic effects. Hosp. Physician 2004, 2004, 11–18. [Google Scholar]
- Chen, W.H.; Tzen, J.T.C.; Hsieh, C.L.; Chen, Y.H.; Lin, T.J.; Chen, S.Y.; Lin, Y.W. Attenuation of TRPV1 and TRPV4 Expression and Function in Mouse Inflammatory Pain Models Using Electroacupuncture. Evid. Based Complement. Altern. Med. 2012, 2012, 636848. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.W.; Hsu, C.K.; Hsieh, C.L.; Yang, J.; Lin, Y.W. Probing the Effects and Mechanisms of Electroacupuncture at Ipsilateral or Contralateral ST36-ST37 Acupoints on CFA-induced Inflammatory Pain. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.J.; Su, Y.S.; Yang, Z.K.; He, W.; Shi, H.; Wang, X.Y.; Hu, L.; Yu, X.C.; Jing, X.H.; Zhu, B. Distinct roles of ASIC3 and TRPV1 receptors in electroacupuncture-induced segmental and systemic analgesia. Front. Med. 2016, 10, 465–472. [Google Scholar] [CrossRef]
- Yang, J.; Hsieh, C.L.; Lin, Y.W. Role of Transient Receptor Potential Vanilloid 1 in Electroacupuncture Analgesia on Chronic Inflammatory Pain in Mice. BioMed Res. Int. 2017, 5068347. [Google Scholar] [CrossRef] [Green Version]
- Du, J.Y.; Fang, J.Q.; Liang, Y.; Fang, J.F. Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain. Brain Res. Bull. 2014, 108, 27–36. [Google Scholar] [CrossRef]
- Liu, Y.J.; Lin, X.X.; Fang, J.Q.; Fang, F. Involvement of MrgprC in Electroacupuncture Analgesia for Attenuating CFA-Induced Thermal Hyperalgesia by Suppressing the TRPV1 Pathway. Evid. Based Complement. Altern. Med. 2018, 2018, 9102107. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, E.J.N.; de Alencar, G.G.; de Siqueira, G.R.; Guerino, M.R.; Maia, J.N.; de Oliveira, D.A. Effect of low frequency transcutaneous electrical nerve stimulation of te5 (waiguan) and pc6 (neiguan) acupoints on cold-induced pain. J. Phys. Ther. Sci. 2016, 28, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Cassu, R.N.; da Silva, D.A.; Genari, T.; Stevanin, H. Electroanalgesia for the postoperative control pain in dogs. Acta Circ. Bras. 2012, 27, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Beatti, A.; Rayner, A.; Chipchase, L.; Souvlis, T. Penetration and spread of interferential current in cutaneous, subcutaneous and muscle tissues. Physiotherapy 2011, 97, 319–326. [Google Scholar] [CrossRef] [PubMed]
- McManus, F.J.; Ward, A.R.; Robertson, V.J. The analgesic effects of interferential therapy on two experimental pain models: Cold and mechanically induced pain. Physiotherapy 2006, 92, 95–102. [Google Scholar] [CrossRef]
- Simpson, K.H.; Ward, J. A randomized, double-blind, crossover study of the use of transcutaneous spinal electroanalgesia in patients with pain from chronic critical limb ischemia. J. Pain Symptom Manag. 2004, 28, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.W.; Bower, S.; Tyrer, S.P. A double blind randomised controlled clinical trial on the effect of transcutaneous spinal electroanalgesia (TSE) on low back pain. Eur. J. Pain 2008, 12, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.; Cramp, F.; Propert, K.; Godfrey, H. Transcutaneous electrical nerve stimulation and transcutaneous spinal electroanalgesia: A preliminary efficacy and mechanisms-based investigation. Physiotherapy 2009, 95, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Marchand, S.; Kupers, R.C.; Bushnell, M.C.; Duncan, G.H. Analgesic and placebo effects of thalamic stimulation. Pain 2003, 105, 481–488. [Google Scholar] [CrossRef]
- Gabis, L.; Shklar, B.; Geva, D. Immediate influence of transcranial electrostimulation on pain and beta-endorphin blood levels-An active placebo-controlled study. Am. J. Phys. Med. Rehabil. 2003, 82, 81–85. [Google Scholar] [CrossRef]
- Cidral-Filho, F.J.; Mazzardo-Martins, L.; Martins, D.F.; Santos, A.R.S. Light-emitting diode therapy induces analgesia in a mouse model of postoperative pain through activation of peripheral opioid receptors and the L-arginine/nitric oxide pathway. Lasers Med. Sci. 2014, 29, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Pigatto, G.R.; Silva, C.S.; Parizotto, N.A. Photobiomodulation therapy reduces acute pain and inflammation in mice. J. Photochem. Photobiol. B Biol. 2019, 196. [Google Scholar] [CrossRef] [PubMed]
- Cidral-Filho, F.J.; Martins, D.F.; More, A.O.O.; Mazzardo-Martins, L.; Silva, M.D.; Cargnin-Ferreira, E.; Santos, A.R.S. Light-emitting diode therapy induces analgesia and decreases spinal cord and sciatic nerve tumour necrosis factor- levels after sciatic nerve crush in mice. Eur. J. Pain 2013, 17, 1193–1204. [Google Scholar] [CrossRef]
- Pigatto, G.R.; Quinteiro, M.H.S.; Nunes-de-Souza, R.L.; Coimbra, N.C.; Parizotto, N.A. Low-Intensity Photobiomodulation Decreases Neuropathic Pain in Paw Ischemia-Reperfusion and Spared Nervus Ischiadicus Injury Experimental Models. Pain Pract. 2020. [Google Scholar] [CrossRef]
- Huang, D.; Gu, Y.H.; Liao, Q.; Yan, X.B.; Zhu, S.H.; Gao, C.Q. Effects of Linear-Polarized Near-Infrared Light Irradiation on Chronic Pain. Sci. World J. 2012, 567496. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.X.; Chow, R.; Armati, P.J. Inhibitory effects of visible 650-nm and infrared 808-nm laser irradiation on somatosensory and compound muscle action potentials in rat sciatic nerve: Implications for laser-induced analgesia. J. Peripher. Nerv. Syst. 2011, 16, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.C.G.; Fernandes, G.A.; Gonzaga, I.C.; Araujo, R.D.; de Oliveira, R.A.; Nicolau, R.A. Low-Level Laser and Light-Emitting Diode Therapy for Pain Control in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up. Photomed. Laser Surg. 2016, 34, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Bayome, M.; Park, J.B.; Park, J.H.; Baek, S.H.; Kook, Y.A. Effect of frequent laser irradiation on orthodontic pain A single-blind randomized clinical trial. Angle Orthod. 2013, 83, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Del Seppia, C.; Ghione, S.; Luschi, P.; Ossenkopp, K.P.; Choleris, E.; Kavaliers, M. Pain perception and electromagnetic fields. Neurosci. Biobehav. Rev. 2007, 31, 619–642. [Google Scholar] [CrossRef]
- Bodera, P.; Antkowiak, B.; Paluch, M.; Sirav, B.; Siwicki, A.K.; Stankiewicz, W. The effects of radio-frequency radiation (RFR) exposure on the analgesic efficacy of morphine in healthy rats and rats with inflammation. Int. J. Occup. Med. Environ. Health 2019, 32, 465–474. [Google Scholar] [CrossRef]
- Bodera, P.; Stankiewicz, W.; Antkowiak, B.; Paluch, M.; Kieliszek, J.; Sobiech, J.; Zdanowski, R.; Wojdas, A.; Siwicki, A.K.; Skopinska-Rozewska, E. Suppressive effect of electromagnetic field on analgesic activity of tramadol in rats. Pol. J. Vet. Sci. 2012, 15, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdemir, E.; Demirkazik, A.; Taskiran, A.S.; Arslan, G. Effects of 5-HT1 and 5-HT2 Receptor Agonists on Electromagnetic Field-Induced Analgesia in Rats. Bioelectromagnetics 2019, 40, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Choi, K.B.; Yi, B.C.; Chun, C.H.; Sung, K.Y.; Sung, J.Y.; Gimm, Y.M.; Huh, I.H.; Sohn, U.D. Effects of extremely low frequency magnetic fields on pain thresholds in mice: Roles of melatonin and opioids. J. Auton. Pharmacol. 2000, 20, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Demirkazik, A.; Ozdemir, E.; Arslan, G.; Taskiran, A.S.; Pelit, A. The effects of extremely low-frequency pulsed electromagnetic fields on analgesia in the nitric oxide pathway. Nitric Oxide 2019, 92, 49–54. [Google Scholar] [CrossRef]
- Ozdemir, E.; Demirkazik, A.; Gursoy, S.; Taskiran, A.S.; Kilinc, O.; Arslan, G. Effects of extremely low frequency electromagnetic fields on morphine analgesia and tolerance in rats. Gen. Physiol. Biophys. 2017, 36, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Shafford, H.L.; Hellyer, P.W.; Crump, K.T.; Wagner, A.E.; Mama, K.R.; Gaynor, J.S. Use of a pulsed electromagnetic field for treatment of post-operative pain in dogs: A pilot study. Vet. Anaesth. Analg. 2002, 29, 43–48. [Google Scholar] [CrossRef]
- Harper, W.L.; Schmidt, W.K.; Kubat, N.J.; Isenberg, R.A. An open-label pilot study of pulsed electromagnetic field therapy in the treatment of failed back surgery syndrome pain. Int. Med. Case Rep. J. 2015, 8, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heden, P.; Pilla, A.A. Effects of pulsed electromagnetic fields on postoperative pain: A double-blind randomized pilot study in breast augmentation patients. Aesthetic Plast. Surg. 2008, 32, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Feng, Y.; Gao, Z.F.; Yang, B.X. The potential role of nerve growth factor in cryoneurolysis-induced neuropathic pain in rats. Cryobiology 2012, 65, 132–138. [Google Scholar] [CrossRef]
- Hsu, M.; Stevenson, F.F. Wallerian degeneration and recovery of motor nerves after multiple focused cold therapies. Muscle Nerve 2015, 51, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Ba, Y.F.; Li, X.D.; Zhang, X.F.; Ning, Z.H.; Zhang, H.Z.; Liu, Y.N.; He, S.H.; Zhu, Y.; Li, C.S.; Wang, Q.H.; et al. Comparison of the analgesic effects of cryoanalgesia vs. parecoxib for lung cancer patients after lobectomy. Surg. Today 2015, 45, 1250–1254. [Google Scholar] [CrossRef]
- Gwak, M.S.; Yang, M.; Hahm, T.S.; Cho, H.S.; Cho, C.H.; Song, J.G. Effect of cryoanalgesia combined with intravenous continuous analgesia in thoracotomy patients. J. Korean Med. Sci. 2004, 19, 74–78. [Google Scholar] [CrossRef]
- Ju, H.; Feng, Y.; Yang, B.X.; Wang, J. Comparison of epidural analgesia and intercostal nerve cryoanalgesia for post-thoracotomy pain control. Eur. J. Pain 2008, 12, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, N.; Laferriere, N.; Koo, S.; Johnson, S.; Woo, R.; Puapong, D. Cryoanalgesia in Patients Undergoing Nuss Repair of Pectus Excavatum: Technique Modification and Early Results. J. Laparoendosc. Adv. Surg. Tech. 2018, 28, 1148–1151. [Google Scholar] [CrossRef] [PubMed]
- Bellini, M.; Barbieri, M. Percutaneous cryoanalgesia in pain management: A case-series. Anaesthesiol. Intensive Ther. 2015, 47, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Bellini, M.; Barbieri, M. Percutaneous cryoanalgesia in pain management: A case-series. Anaesthesiol. Intensive Ther. 2015, 47, 333–335. [Google Scholar] [CrossRef] [Green Version]
- Cavazos, G.J.; Khan, K.H.; D’Antoni, A.V.; Harkless, L.B.; Lopez, D. Cryosurgery for the Treatment of Heel Pain. Foot Ankle Int. 2009, 30, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Coelho, R.P.; Biaggi, R.H.; Jorge, R.; Rodrigues, M.D.V.; Messias, A. Clinical study of pain sensation during phacoemulsification with and without cryoanalgesia. J. Cataract. Refract. Surg. 2015, 41, 719–723. [Google Scholar] [CrossRef]
- Kim, C.H.; Hu, W.; Gao, J.; Dragan, K.; Whealton, T.; Julian, C. Cryoablation for the Treatment of Occipital Neuralgia. Pain Physician 2015, 18, E363–E368. [Google Scholar] [CrossRef]
- Robinson, S.R.; Purdie, G.L. Reducing post-tonsillectomy pain with cryoanalgesia: A randomized controlled trial. Laryngoscope 2000, 110, 1128–1131. [Google Scholar] [CrossRef]
- Al Shahwan, M.A. Prospective Comparison Between Buffered 1% Lidocaine-Epinephrine and Skin Cooling in Reducing the Pain of Local Anesthetic Infiltration. Dermatol. Surg. 2012, 38, 1654–1659. [Google Scholar] [CrossRef] [PubMed]
- Haynes, J.M. Randomized Controlled Trial of Cryoanalgesia (Ice Bag) to Reduce Pain Associated With Arterial Puncture. Respir. Care 2015, 60, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hanprasertpong, T.; Kor-Anantakul, O.; Prasartwanakit, V.; Leetanaporn, R.; Suntharasaj, T.; Suwanrath, C. Efficacy of cryoanalgesia in decreasing pain during second trimester genetic amniocentesis: A randomized trial. Arch. Gynecol. Obstet. 2012, 286, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Naik, S.; Misra, A. Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J. Pharm. Sci. 2012, 101, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak-Enselme, M.; Estebe, J.P.; Dollo, G.; Chevanne, F.; Bec, D.; Malinovsky, J.M.; Ecoffey, C.; Le Corre, P. Epidural, intrathecal and plasma pharmacokinetic study of epidural ropivacaine in PLGA-microspheres in sheep model. Eur. J. Pharm. Biopharm. 2009, 72, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Lagarce, F.; Faisant, N.; Desfontis, J.C.; Marescaux, L.; Gautier, F.; Holopherne, D.; Rousselet, M.C.; Menei, P.; Benoit, J.P. Biopharmaceutics of intrathecal baclofen-loaded microparticles in a goat model. Int. J. Pharm. 2005, 298, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J. Preparing for Life After Birth: Introducing the Concepts of Intrauterine and Extrauterine Sensory Entrainment in Mammalian Young. Animals 2019, 9, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Databases to Search | Web of Science Core Collection PubMed MedLine Scopus |
---|---|
Inclusions | Research papers Analgesic agents Husbandry procedures Livestock Companion animals Humans |
Exclusions | Policy documents Reviews (except as a means to identify other research) Philosophical/opinion papers Patents General anaesthesia Papers published prior to 2000 * Language other than English |
Category or Primary Keywords | Secondary or Qualifier Keywords |
---|---|
Livestock | Sheep; cattle; goat; lamb; calf/calves; kid; ewe; wether; cow |
Companion animals | Horse; cat; dog; pet; rabbit; rat; mouse |
Analgesic | Pain; discomfort; NSAID; opio *; * cannabi *; local an * sthetic; sedative |
Pain receptor | COX; ASIC; sensation; * algesia; neurophysiology |
Husbandry procedures | Surg *; mules *; castrat *; dock; amputate *; dehorning; disbud; lame *; shear *; injur * |
Field Title | Description or Example of Content |
---|---|
First author | Surname |
Year | Year of publication |
Country | Country in which study was carried out |
Affiliation | Research organisation involved |
Study category | Pharmacokinetics, behaviour, physiology, etc. |
Species | Species used during study |
Sample size | Number of animals in treatment group |
Animal type | Dairy, beef, mature, neonate, etc. |
Procedure | Pain model used, if applicable., e.g., mulesing and castration |
Agent | Drug evaluated |
Measure | Specific physiological assay; specific behaviour/posture |
Finding | Significant/non-significant or other comment |
Key conclusions | Main points from article conclusion |
Notes/comments | Free-form comments section |
Article reference | Citation information |
Agent (Route of Administration) | Parameter | Sheep | Goats | Cattle | Horses | Other |
---|---|---|---|---|---|---|
Acetaminophen (intravenous) | Half-life | 1.28–1.73 h [171] | ||||
MEC * | ||||||
Carprofen (intravenous) | Half-life | 0.25–0.95 h [172] | ||||
MEC * | <0.7 mg/kg | |||||
Carprofen (intramuscular) | Half-life | White Rhino: 105.71 [173] | ||||
MEC * | ||||||
Diclofenac (intravenous) | Half-life | 2.84 h [174] | ||||
MEC * | ||||||
Diclofenac (intramuscular) | Half-life | 2.12 h [174] | ||||
MEC * | ||||||
Flunixin meglumine (intravenous) | Half-life | 6 h [175,176] | ||||
MEC * | ||||||
Flunixin meglumine (in feed) | Half-life | 7.95 h [177] | ||||
MEC * | ||||||
Ibuprofen (BeadBlock embolization) | Half-life | 2.76 h [178] | ||||
MEC * | ||||||
Ketoprofen (intravenous) | Half-life | 0.63 h [179] | 0.18–0.19 h [180] | 0.71–0.91 h (adult) 1.35–1.7 h (neonate) [181] | 0.13–2.67 h [182,183] | Cat: 1.52 h [184] Buffalo: 3.58 h [185] |
MEC * | <1.5 mg/kg | <3 mg/kg | Cat: <2 mg/kg [184] | |||
Ketoprofen (oral) | Half-life | Cat: 0.57–0.92 h [184] | ||||
MEC * | Cat: <2 mg/kg [184] | |||||
Ketorolac (intravenous) | Half-life | 0.30 h [186] | ||||
MEC * | ||||||
Ketorolac (intramuscular) | Half-life | 0.25 h [186] | ||||
MEC * | ||||||
Mefenamic acid (intraperitoneal) | Half-life | |||||
MEC * | Mice: <1.5 mg/kg [187] | |||||
Meloxicam (intramuscular) | Half-life | 12.6–12.8 h [188] | 10.82 h [189] | |||
MEC * | ||||||
Meloxicam (intravenous) | Half-life | 10.85–14.0 h [190,191] | 6.07–12.73 h [189,192] | 8.1–21.86 h [193,194,195] | Iguana: 9.93 h [196] Llama: 17.4 h [197] Pig: 6.15 h [198] Buffalo: 12.4 h [193] Donkeys: 0.97–1.02 h [199] | |
MEC * | ||||||
Meloxicam (oral) | Half-life | 15.4 h [191] | 10.69 h [190,192] | 14.59–27.54 h [175,176,195,200,201] | 10–34 h [202] | Iguana: 12.96 h [196] Llama: 22.7 h [197] Pig: 6.83 h [198] |
MEC * | ||||||
Meloxicam (subcutaneous) | Half-life | 10.8–14.2 h [188] | 15.16 h [192] | 16.2 h [200] | Cat: 37 h [203] | |
MEC * | ||||||
Sodium salicylate (intravenous) | Half-life | 0.46–1.16 h [204] | 0.62–0.68 h [205,206,207] | |||
MEC * | ||||||
Sodium salicylate (oral) | Half-life | 1.86–1.9 h [204] | ||||
MEC * | ||||||
Tepoxalin # (intravenous) | Half-life | Broilers: 1.07 h [208] | ||||
MEC * | ||||||
Tepoxalin (oral) | Half-life | 6.3–8.8 h [209] | Broilers: 2.8 h [208] Rabbits: 2.8–3 h [210] | |||
MEC * | <10 mg/kg [209] | Broilers: >30 mg/kg [211] | ||||
Tolfenamic acid (intramuscular) | Half-life | 2.29–2.61 h [212] | 6.68–8.22 h [213] | |||
MEC * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Small, A.; Fisher, A.D.; Lee, C.; Colditz, I. Analgesia for Sheep in Commercial Production: Where to Next? Animals 2021, 11, 1127. https://doi.org/10.3390/ani11041127
Small A, Fisher AD, Lee C, Colditz I. Analgesia for Sheep in Commercial Production: Where to Next? Animals. 2021; 11(4):1127. https://doi.org/10.3390/ani11041127
Chicago/Turabian StyleSmall, Alison, Andrew David Fisher, Caroline Lee, and Ian Colditz. 2021. "Analgesia for Sheep in Commercial Production: Where to Next?" Animals 11, no. 4: 1127. https://doi.org/10.3390/ani11041127
APA StyleSmall, A., Fisher, A. D., Lee, C., & Colditz, I. (2021). Analgesia for Sheep in Commercial Production: Where to Next? Animals, 11(4), 1127. https://doi.org/10.3390/ani11041127