Optimal Feeding Frequency for Captive Hawksbill Sea Turtle (Eretmochelys imbricata)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Preparation and Husbandry of Hatchlings
2.3. Feeding Test
2.4. Determination of Fecal Digestive Enzymes
2.5. Thermal Properties of Feces
2.6. Elemental Composition in Carapace
2.7. Hematological Parameters
2.8. Statistical Analysis
3. Results
3.1. Survival, Growth Performance and Feed Utilization
3.2. Fecal Digestive Enzyme Activity
3.3. Fecal Thermal Properties
3.4. Carapace Elemental Composition
3.5. Hematological Parameters
4. Discussion
4.1. Growth and Feed Utilization of Reared Turtles
4.2. Fecal Digestive Enzyme Specific Activities in Reared Turtles
4.3. Nutrients Present in Feces and Parameters Indicating Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mortimer, J.A. The state of the world’s hawksbills. In SWOT Report: The State of the World’s Sea Turtles; Griffin, D., Ed.; NG Media: Arlington, VA, USA, 2008; Volume 3, pp. 10–13. [Google Scholar]
- Hawksbill Turtle Eretmochelys imbricata. Available online: https://www.speciesonthebrink.org/species/hawksbill-turtle/ (accessed on 20 January 2021).
- Lei, J.; Booth, D.T. Who are the important predators of sea turtle nests at Wreck Rock beach? PeerJ 2017, 5, e3515. [Google Scholar] [CrossRef] [Green Version]
- Quinn, D.P.; Buhlmann, K.A.; Jensen, J.B.; Norton, T.M.; Tuberville, T.D. Post release movement and survivorship of head-started gopher tortoises. J. Wildl. Manag. 2018, 82, 1545–1554. [Google Scholar] [CrossRef]
- Hawksbill Turtle. Available online: https://www.fisheries.noaa.gov/species/hawksbill-turtle (accessed on 20 January 2021).
- Von Brandis, R.G.; Mortimer, J.A.; Reilly, B.K.; van Soest, R.W.M.; Branch, G.M. Diet composition of hawksbill turtles (Eretmochelys imbricata) in the Republic of Seychelles. West. Indian Ocean J. Mar. Sci. 2014, 13, 81–91. [Google Scholar]
- Fontaine, C.T.; Marvin, K.T.; Williams, T.D.; Browning, W.J.; Harris, R.M.; Indelicato, K.L.W.; Shattuch, G.A.; Sadler, R.A. The Husbandry of Hatchling to Yearling Kemp’s Ridley Sea Turtles (Lepidochelys kempii); National Technical Information Service: Springfield, IL, USA, 1985; pp. 20–21. [Google Scholar]
- Solomon, S.E.; Lippett, R. Lipid inclusion in the livers of captive reared marine turtles. Anim. Technol. 1991, 42, 77–81. [Google Scholar]
- Kanghae, H.; Thongprajukaew, K.; Yeetam, P.; Jarit-ngam, T.; Hwan-air, W.; Rueangjeen, S.; Kittiwattanawong, K. Optimal feeding frequency of captive head-started green turtles (Chelonia mydas). J. Anim. Physiol. Anim. Nutr. 2017, 101, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.J. Effects of ration level and feeding frequency on digestibility in juvenile soft-shelled turtle, Pelodiscus sinensis. J. Zheijang Univ. Sci. 2006, 7B, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Costa-Bomfim, C.N.; Pessoa, W.V.N.; Oliveira, R.L.M.; Farias, J.L.; Domingues, E.C.; Hamilton, S.; Cavalli, R.O. The effect of feeding frequency on growth performance of juvenile cobia, Rachycentron canadum (Linnaeus, 1766). J. Appl. Ichthyol. 2014, 30, 135–139. [Google Scholar] [CrossRef]
- Gilannejad, N.; Silva, T.; Martínez-Rodríguez, G.; Yúfera, M. Effect of feeding time and frequency on gut transit and feed digestibility in two fish species with different feeding behaviours, gilthead seabream and Senegalese sole. Aquaculture 2019, 513, 734438. [Google Scholar] [CrossRef]
- Lawrence, C.; Best, J.; James, A.; Maloney, K. The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio). Aquaculture 2012, 368–369, 103–108. [Google Scholar] [CrossRef]
- Thongprajukaew, K.; Kovitvadhi, S.; Kovitvadhi, U.; Preeprame, P. Effects of feeding frequency on growth performance and digestive enzyme activity of sex-reversed Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). Agric. Nat. Res. 2017, 51, 292–298. [Google Scholar] [CrossRef]
- Garber, J. Effect of fish size, meal size, and dietary moisture on gastric evacuation of pelleted diets by yellow perch (Perca glavescens). Aquaculture 1983, 34, 41–49. [Google Scholar] [CrossRef]
- Córdova-Murueta, J.H.; García-Carreño, F.L.; Navarrete-del-Toro, M.A. Digestive enzymes present in crustacean feces as a tool for biochemical, physiological, and ecological studies. J. Exp. Mar. Biol. Ecol. 2003, 297, 43–56. [Google Scholar] [CrossRef]
- Jualaong, S.; Songnui, A.; Thongprajukaew, K.; Ninwat, S.; Khwanmaung, S.; Hahor, W.; Khunsaeng, P.; Kanghae, H. Optimal salinity for head-starting northern river terrapins (Batagur baska Gray, 1831). Animals 2019, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Kanghae, H.; Thongprajukaew, K.; Phromkunthong, W.; Plangsri, S.; Jatupornpitukchat, S.; Kittiwattanawong, K. Pre-soaking of the feed pellets: A trick for successful feed utilization in juvenile green turtles (Chelonia mydas Linnaeus, 1758). J. Anim. Physiol. Anim. Nutr. 2017, 101, 329–338. [Google Scholar] [CrossRef]
- Wattanakul, W.; Thongprajukaew, K.; Songnui, A.; Satjarak, J.; Kanghae, H. Pre-soaking feed pellet significantly improved feed utilization in Asian seabass (Lates calcarifer). Aquaculture 2017, 471, 106–112. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Thongprajukaew, K.; Kanghae, H.; Kittiwattanawong, K. Faecal characteristics as markers of Chelonia mydas feeding. ScienceAsia 2016, 42, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Worthington, V. Worthington Enzyme Manual. Enzymes and Related Biochemicals; Worthington Chemical: Lakewood, NJ, USA, 1993; p. 399. [Google Scholar]
- Rungruangsak-Torrissen, K.; Moss, R.; Andresen, L.H.; Berg, A.; Waagbo, R. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 2006, 32, 7–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernfeld, P. Enzymes of starch degradation and synthesis. Adv. Enzymol. 1951, 12, 379–428. [Google Scholar]
- Winkler, U.K.; Stuckmann, M. Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 1979, 138, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Blaxhall, P.C.; Daisley, K.W. Routine haematological methods for use with fish blood. J. Fish Biol. 1973, 5, 771–781. [Google Scholar] [CrossRef]
- Larsen, H.N.; Snieszko, S.F. Comparison of various methods of determination of haemoglobin in trout blood. Prog. Fish-Cult. 1961, 23, 8–17. [Google Scholar] [CrossRef]
- Larsen, H.N.; Snieszko, S.F. Modification of the microhematocrit technique with trout blood. Trans. Am. Fish. Soc. 1961, 90, 139–142. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Jacobs, N.J.; van Denmark, P.J. Enzymatic determination of serum triglyceride. Arch. Biochem. Biophys. 1960, 88, 250–255. [Google Scholar] [CrossRef]
- Montazeri Parchikolaei, H.; Abedian Kenari, A.; Esmaeili, M. Soybean-based diets plus probiotics improve the profile of fatty acids, digestibility, intestinal microflora, growth performance, and the innate immunity of beluga (Huso huso). Aquac. Res. 2021, 52, 152–166. [Google Scholar] [CrossRef]
- Sarmiento-Devia, R.A.; Jaúregui-Romero, G.A.; Sanjuan-Muñoz, A. Use of commercial foods in the headstarting of hawksbill turtles (Eretmochelys imbricata, Cheloniidae). Boletín Investigaciones Marinas y Costeras 2018, 47, 135–156. [Google Scholar]
- Dwyer, K.S.; Brown, J.A.; Parrish, C.; Lall, S.P. Feeding frequency affects food consumption, feeding pattern and growth of juvenile yellowtail flounder (Limanda ferruginea). Aquaculture 2002, 213, 279–292. [Google Scholar] [CrossRef]
- Liu, F.G.; Liao, I.C. Effect of feeding regimen on the food consumption, growth and body composition in hybrid striped bass Morone saxitilis × M. chrysops. Fish. Sci. 1999, 64, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Valente, A.L.; Marco, I.; Parga, L.; Lavin, S.; Alegre, F.; Cuenca, R. Ingesta passage and gastric emptying times in loggerhead sea turtles (Caretta caretta). Res. Vet. Sci. 2008, 84, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Gopar-Canales, K.L.; Miranda-Anaya, M. Circadian clock and sun compass orientation in hatchlings of the turtle Eretmochelys imbricata at Sisal, Yucatán, México. Biol. Rhythm Res. 2014, 45, 407–414. [Google Scholar] [CrossRef]
- Reyes, C.; Milsom, W.K. Circadian and circannual rhythms in the metabolism and ventilation of red-eared sliders (Trachemys scripta elegans). Physiol. Biochem. Zool. 2010, 83, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Ballagh, D.A.; Pankhurst, P.M.; Fielder, D.S. Photoperiod and feeding interval requirements of juvenile mulloway, Argyrosomus japonicus. Aquaculture 2008, 277, 52–57. [Google Scholar] [CrossRef]
- Songnui, A.; Thongprajukaew, K.; Kanghae, H.; Satjarak, J.; Kittiwattanawong, K. Water depth and feed pellet type effects on growth and feed utilization in the rearing of green turtle (Chelonia mydas Linnaeus, 1758). Aquat. Liv. Res. 2017, 30, 18. [Google Scholar] [CrossRef] [Green Version]
- Jualaong, S.; Thongprajukaew, K.; Ninwat, S.; Petchrit, N.; Khwanmaung, S.; Wattanakul, W.; Tantipiriyakij, T.; Kanghae, H. Optimal background color for head-starting northern river terrapins (Batagur baska Gray, 1831). Animals 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Dunn, B.M. Overview of pepsin-like aspartic peptidases. Curr. Protoc. Protein Sci. 2001, 25, 21–23. [Google Scholar] [CrossRef]
- Eshel, A.; Lindner, P.; Smirnoff, P.; Newton, S.; Harpaz, S. Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp. Biochem. Physiol. 1993, 106A, 627–634. [Google Scholar] [CrossRef]
- Chan, C.R.; Lee, D.N.; Cheng, Y.H.; Hsieh, D.J.Y.; Weng, C.F. Feed deprivation and refeeding on alterations of proteases in tilapia Oreochromis mossambicus. Zool. Stud. 2008, 47, 207–214. [Google Scholar]
- Romijn, J.A.; Godfried, M.H.; Hommes, M.J.T.; Endert, E.; Sauerwein, H.P. Decreased glucose oxidation during short-term starvation. Metabolism 1990, 39, 525–530. [Google Scholar] [CrossRef]
- Hofer, R.; Schiemer, F. Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia 1981, 48, 342–345. [Google Scholar] [CrossRef]
- Thongprajukaew, K.; Kovitvadhi, U.; Kovitvadhi, S.; Somsueb, P.; Rungruangsak-Torrissen, K. Effects of different modified diets on growth, digestive enzyme activities and muscle compositions in juvenile Siamese fighting fish (Betta splendens Regan, 1910). Aquaculture 2011, 322–323, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Moon, D.-Y.; Owens, D.W.; MacKenzie, D.S. The effects of fasting and increased feeding on plasma thyroid hormones, glucose, and total protein in sea turtles. Zool. Sci. 1999, 16, 579–586. [Google Scholar] [CrossRef]
- Steffens, W. Protein sparing effect and nutritive significance of lipid supplementation in carp diets. Archiv fur Tierernahrung 1996, 49, 93–98. [Google Scholar] [CrossRef]
- Kanghae, H.; Thongprajukaew, K.; Jatupornpitukchat, S.; Kittiwattanawong, K. Optimal-rearing density for head-starting green turtles (Chelonia mydas Linnaeus, 1758). Zoo Biol. 2016, 35, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Gu, H.; Li, P. A review of chelonian hematology. Asian Herpetol. Res. 2011, 2, 12–20. [Google Scholar]
Parameter | 1M12 | 2M8–12 | 2M8–16 | 2M12–16 | 3M8–12–16 | p-Value |
---|---|---|---|---|---|---|
Survival (%) | 100 | 100 | 100 | 100 | 100 | – |
FBW (g) | 107.71 ± 0.64 d | 114.92 ± 1.87 c | 148.81 ± 1.46 a | 139.11 ± 2.51 b | 138.48 ± 0.91 b | < 0.001 |
WG (g) | 68.73 ± 0.62 d | 75.93 ± 1.06 c | 109.83 ± 0.94 a | 100.17 ± 1.21 b | 99.49 ± 0.74 b | < 0.001 |
SGR (% BW day−1) | 1.82 ± 0.01 d | 1.93 ± 0.03 c | 2.39 ± 0.02 a | 2.27 ± 0.03 b | 2.26 ± 0.01 b | < 0.001 |
FSCW (cm) | 6.89 ± 0.33 | 7.38 ± 0.70 | 8.22 ± 0.03 | 7.37 ± 0.49 | 7.43 ± 0.09 | 0.065 |
SCWG (cm) | 1.75 ± 0.10 c | 2.19 ± 0.02 b | 3.08 ± 0.07 a | 2.15 ± 0.17 b | 2.20 ± 0.08 b | 0.036 |
FSCL (cm) | 8.27 ± 0.33 c | 8.96 ± 0.12 b | 9.72 ± 0.07 a | 9.06 ± 0.17 b | 9.67 ± 0.08 a | 0.001 |
SCLG (cm) | 2.09 ± 0.31 c | 2.76 ± 0.10 b | 3.56 ± 0.14 a | 2.87 ± 0.19 b | 3.42 ± 0.12 a | 0.002 |
BCI (kg cm−3) | 1.94 ± 0.24 | 1.60 ± 0.07 | 1.62 ± 0.02 | 1.88 ± 0.12 | 1.53 ± 0.02 | 0.148 |
FR (g day−1) | 0.98 ± 0.05 c | 1.27 ± 0.09 bc | 2.00 ± 0.43 a | 1.64 ± 0.12 ab | 1.75 ± 0.15 a | 0.004 |
FCR (g feed g gain−1) | 0.80 ± 0.06 | 0.94 ± 0.11 | 1.02 ± 0.37 | 0.92 ± 0.10 | 0.98 ± 0.11 | 0.327 |
Digestive Enzyme | Pepsin | Trypsin | Chymotrypsin | Lipase | Amylase | A/T ratio | T/C Ratio |
---|---|---|---|---|---|---|---|
Pepsin | 1 | ||||||
Trypsin | 0.632 * | 1 | |||||
Chymotrypsin | 0.968 ** | 0.651 ** | 1 | ||||
Lipase | –0.630 * | –0.690 ** | –0.730 ** | 1 | |||
Amylase | 0.223 | –0.097 | 0.157 | –0.038 | 1 | ||
A/T ratio | –0.528 * | –0.707 ** | –0.587 | 0.607 * | 0.457 | 1 | |
T/C ratio | 0.737 ** | 0.967 ** | 0.737 ** | –0.710 ** | 0.041 | –0.712 | 1 |
Thermal Property | Peak | To (°C) | Tp (°C) | Tc (°C) | Tc–To (°C) | ΔH (J g−1) | ΔH1+2 (J g−1) | ΔH3+4 (J g−1) | ΣΔH (J g−1) |
---|---|---|---|---|---|---|---|---|---|
1M12 | 1 | 44.07 | 63.33 | 79.42 | 27.09 | 31.28 | 35.67 | 16.38 | 52.05 |
2 | 91.15 | 97.89 | 105.13 | 13.98 | 4.39 | ||||
3 | 130.00 | 138.17 | 149.86 | 19.86 | 2.57 | ||||
4 | 313.07 | 331.39 | 347.40 | 34.33 | 13.81 | ||||
2M8–12 | 1 | 46.61 | 64.33 | 79.90 | 33.29 | 53.67 | 56.49 | 25.18 | 81.67 |
2 | 92.62 | 98.06 | 104.04 | 11.42 | 2.82 | ||||
3 | 137.58 | 144.00 | 153.75 | 16.17 | 4.40 | ||||
4 | 306.14 | 325.61 | 355.92 | 49.78 | 20.78 | ||||
2M8–16 | 1 | 44.25 | 60.39 | 77.51 | 33.26 | 51.10 | 58.11 | 44.21 | 102.32 |
2 | 89.91 | 96.44 | 103.45 | 13.54 | 7.01 | ||||
3 | 133.18 | 138.17 | 144.04 | 3.68 | 10.86 | ||||
4 | 311.29 | 338.83 | 348.91 | 37.62 | 33.35 | ||||
2M12–16 | 1 | 45.29 | 65.00 | 82.78 | 37.49 | 153.11 | 165.15 | 88.08 | 253.23 |
2 | 92.52 | 100.00 | 106.38 | 13.86 | 12.04 | ||||
3 | 135.38 | 146.17 | 158.64 | 23.27 | 8.89 | ||||
4 | 315.47 | 336.17 | 360.58 | 45.11 | 79.19 | ||||
3M8–12–16 | 1 | 44.66 | 63.28 | 79.83 | 35.17 | 39.61 | 45.28 | 39.58 | 84.86 |
2 | 91.61 | 99.33 | 105.02 | 13.41 | 5.67 | ||||
3 | 136.56 | 145.08 | 160.66 | 24.10 | 5.75 | ||||
4 | 302.81 | 315.56 | 327.58 | 20.25 | 33.83 |
Element | 1M12 | 2M8–12 | 2M8–16 | 2M12–16 | 3M8–12–16 | p-Value |
---|---|---|---|---|---|---|
Carbon | 51.36 ± 1.19 | 52.11 ± 0.89 | 50.30 ± 0.59 | 50.92 ± 0.31 | 48.71 ± 0.52 | 0.084 |
Oxygen | 27.92 ± 0.66 | 26.78 ± 0.66 | 28.57 ± 0.70 | 27.64 ± 0.29 | 29.33 ± 0.72 | 0.125 |
Nitrogen | 19.75 ± 0.67 | 20.19 ± 0.37 | 20.10 ± 0.12 | 20.54 ± 10.26 | 21.31 ± 0.30 | 0.122 |
Sulfur | 0.69 ± 0.17 | 0.77 ± 0.11 | 0.60 ± 0.04 | 0.55 ± 0.06 | 0.44 ± 0.05 | 0.274 |
Sodium | 0.24 ± 0.01 | 0.19 ± 0.01 | 0.25 ± 0.02 | 0.24 ± 0.08 | 0.25 ± 0.03 | 0.753 |
Chlorine | 0.20 ± 0.01 | 0.17 ± 0.02 | 0.22 ± 0.04 | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.109 |
Hematological Parameter | 1M12 | 2M8–12 | 2M8–16 | 2M12–16 | 3M8–12–16 | p-Value |
---|---|---|---|---|---|---|
RBC (×105 cells µL−1) | 4.80 ± 0.91 | 3.93 ± 0.88 | 3.70 ± 0.31 | 4.30 ± 0.26 | 4.27 ± 0.24 | 0.828 |
Hb (g dL−1) | 5.56 ± 0.77 | 7.03 ± 0.43 | 6.00 ± 0.54 | 6.10 ± 0.53 | 6.87 ± 0.41 | 0.423 |
Hct (%) | 16.67 ± 1.35 | 21.00 ± 0.76 | 18.00 ± 0.94 | 19.00 ± 1.09 | 20.67 ± 0.71 | 0.505 |
WBC (×104 cells µL−1) | 4.63 ± 2.06 | 2.63 ± 0.90 | 4.63 ± 1.97 | 2.70 ± 0.62 | 2.10 ± 0.68 | 0.579 |
BUN (mg dL−1) | 42.97 ± 1.14 | 48.50 ± 0.81 | 55.17 ± 1.36 | 50.43 ± 1.54 | 53.67 ± 1.91 | 0.263 |
Creatinine (mg dL−1) | 0.07 ± 0.02 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.07 ± 0.04 | 0.06 ± 0.01 | 0.712 |
Cholesterol (mg dL−1) | 32.00 ± 1.23 | 34.33 ± 1.35 | 37.00 ± 1.42 | 34.33 ± 1.25 | 39.67 ± 1.53 | 0.549 |
Triglyceride (mg dL−1) | 34.33 ± 2.97 | 30.33 ± 1.50 | 51.00 ± 2.04 | 45.00 ± 2.67 | 41.67 ± 2.97 | 0.739 |
HDL-Cholesterol (mg dL−1) | 12.67 ± 0.71 | 12.33 ± 0.98 | 12.00 ± 0.75 | 11.33 ± 0.63 | 13.00 ± 0.57 | 0.814 |
LDL-Cholesterol (mg dL−1) | 12.33 ± 1.08 | 16.00 ± 0.81 | 15.33 ± 1.00 | 14.00 ± 0.58 | 18.33 ± 1.30 | 0.436 |
Total protein (g dL−1) | 1.67 ± 0.28 | 1.80 ± 0.18 | 1.87 ± 0.19 | 1.86 ± 0.22 | 1.97 ± 0.19 | 0.245 |
Blood performance * | 54.47 ± 3.22 | 56.49 ± 7.79 | 54.74 ± 1.29 | 54.46 ± 3.77 | 50.46 ± 7.53 | 0.961 |
AST (U L−1) | 75.33 ± 2.18 | 97.67 ± 3.31 | 111.67 ± 2.88 | 92.00 ± 1.20 | 131.67 ± 5.27 | 0.593 |
ALT (U L−1) | 3.40 ± 0.59 | 2.67 ± 0.40 | 4.00 ± 0.01 | 3.33 ± 0.43 | 3.90 ± 0.94 | 0.751 |
ALP (U L−1) | 344.33 ± 7.81 | 308.00 ± 5.21 | 345.67 ± 3.96 | 364.67 ± 6.10 | 399.00 ± 8.23 | 0.949 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jualaong, S.; Kanghae, H.; Thongprajukaew, K.; Saekhow, S.; Amartiratana, N.; Sotong, P. Optimal Feeding Frequency for Captive Hawksbill Sea Turtle (Eretmochelys imbricata). Animals 2021, 11, 1252. https://doi.org/10.3390/ani11051252
Jualaong S, Kanghae H, Thongprajukaew K, Saekhow S, Amartiratana N, Sotong P. Optimal Feeding Frequency for Captive Hawksbill Sea Turtle (Eretmochelys imbricata). Animals. 2021; 11(5):1252. https://doi.org/10.3390/ani11051252
Chicago/Turabian StyleJualaong, Suthep, Hirun Kanghae, Karun Thongprajukaew, Suktianchai Saekhow, Natthida Amartiratana, and Piyanan Sotong. 2021. "Optimal Feeding Frequency for Captive Hawksbill Sea Turtle (Eretmochelys imbricata)" Animals 11, no. 5: 1252. https://doi.org/10.3390/ani11051252
APA StyleJualaong, S., Kanghae, H., Thongprajukaew, K., Saekhow, S., Amartiratana, N., & Sotong, P. (2021). Optimal Feeding Frequency for Captive Hawksbill Sea Turtle (Eretmochelys imbricata). Animals, 11(5), 1252. https://doi.org/10.3390/ani11051252