Effect of Fortified Feed with Phyto-Extract on the First Physical Barrier (Mucus) of Labeo rohita
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Duration
2.2. Feed Preparation and Fortification
2.3. Rearing of the Fish
2.4. Mucus Collection
2.5. Total Protein Content
2.6. Molecular Weight of Proteins
2.7. Challenge Study
2.8. Lectin Activity
2.9. Alkaline Phosphate Test
2.10. Disc Diffusion Method (In-Vitro Antimicrobial Activity)
2.11. Statistical Analysis
2.12. Ethical Approval
3. Results
3.1. Protein Profiles
3.2. Challenge Study (In-Vivo)
3.3. Disc Diffusion Method (In-Vitro)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture, Contributing to Food Security and Nutrition for All; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.C.; Van Den Brink, P.J. Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: A critical review. Rev. Aquac. 2012, 4, 75–93. [Google Scholar] [CrossRef]
- Leung, T.L.; Bates, A.E. More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. J. Appl. Ecol. 2013, 50, 215–222. [Google Scholar] [CrossRef]
- Habib, S.S.; Naz, S.; Sadeeq, A.; Iqbal, M.Z.; Ali, M.; Hanif, R.; Malik, M.A.; Khan, N.; Gul, K.; Mushtaq, A. Prevalence of ectoparasites in carp fingerlings of Chashma Lake in District Mianwali Punjab Province, Pakistan. Int. J. Biosci. 2019, 14, 468–474. [Google Scholar]
- Basti, A.A.; Misaghi, A.; Salehi, T.Z.; Kamkar, A. Bacterial pathogens in fresh, smoked and salted Iranian fish. Food Control 2006, 17, 183–188. [Google Scholar] [CrossRef]
- Bojarski, B.; Kot, B.; Witeska, M. Antibacterials in aquatic environment and their toxicity to fish. Pharmaceut 2020, 13, 189. [Google Scholar] [CrossRef]
- Zanuzzo, F.S.; Sabioni, R.E.; Marzocchi-Machado, C.M.; Urbinati, E.C. Modulation of stress and innate immune response by corticosteroids in pacu (Piaractus mesopotamicus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 231, 39–48. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Esteban, M.Á. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Rev. Aquac. 2018, 10, 950–974. [Google Scholar] [CrossRef]
- Fazio, F.; Habib, S.S.; Naz, S.; Filiciotto, F.; Cicero, N.; Rehman, H.U.; Saddozai, S.; Rind, K.H.; Rind, N.A.; Shar, A.H. Effect of fortified feed with olive leaves extract on the haematological and biochemical parameters of Oreochromis niloticus (Nile tilapia). Nat. Prod. Res. 2021, 1–6. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Zou, H.K.; Paknejad, H.; Hajimoradloo, A.; Van Doan, H. Effects of dietary white-button mushroom powder on mucosal immunity, antioxidant defence, and growth of common carp (Cyprinus carpio). Aquaculture 2019, 501, 448–454. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Ringø, E.; Shenavar Masouleh, A.; Esteban, M.Á. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: A review. Rev. Aquac. 2016, 8, 89–102. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Zoheiri, F.; Lazado, C.C. Dietary phytoimmunostimulant Persian hogweed (Heracleum persicum) has more remarkable impacts on skin mucus than on serum in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2016, 59, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Adel, M.; Amiri, A.A.; Zorriehzahra, J.; Nematolahi, A.; Esteban, M.Á. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum). Fish Shellfish Immunol. 2015, 45, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Shukla, K.; Dikshit, P.; Shukla, R.; Gambhir, J.K. The aqueous extract of Withania coagulans fruit partially reverses nicotinamide/streptozotocin-induced diabetes mellitus in rats. J. Med. Food. 2012, 15, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salwaan, C.; Singh, A.; Mittal, A.; Singh, P. Investigation of the pharmacognostical, phytochemical and antioxidant studies of plant Withania coagulans dunal. J. Pharmacogn. Phytochem. 2012, 1, 32–39. [Google Scholar]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 6th ed.; Howritz, W., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995; p. 19951018. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zaika, L.L. Spices and herbs, their antimicrobial activity its determination. J. Food Saf. 1988, 9, 97. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Mirza, M.R.; Sharif, H.M. A Key to the fishes of Punjab; Ilmi Katab Ghar: Lahore, Pakistan, 1996. [Google Scholar]
- Kabata, Z. Parasites and Diseases of Fish Cultured in the Tropics; Taylor & Francis Ltd.: London, UK, 1985. [Google Scholar]
- Amend, D.F. Potency testing of fish vaccines. International symposium on fish biologics: Serodiagnostic and vaccines. Dev. Biol. Stand. 1981, 49, 447–454. [Google Scholar]
- Ewart, K.V.; Johnson, S.C.; Ross, N.W. Identification of a pathogen-binding lectin in salmon serum. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 123, 9–15. [Google Scholar] [CrossRef]
- Wang, H.X.; Gao, J.; Ng, T.B. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun. 2001, 275, 810–816. [Google Scholar] [CrossRef]
- Fletcher, T.C. Modulation of nonspecific host defenses in fish. Vet. Immunol. Immunopathol. 1986, 12, 59–67. [Google Scholar] [CrossRef]
- Holland, M.C.H.; Lambris, J.D. The complement system in teleosts. Fish Shellfish Immunol. 2002, 12, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; MacKinnon, S.L.; Ross, N.W. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Shephard, K.L. Functions for fish mucus. Rev. Fish Biol. Fish. 1994, 4, 401–429. [Google Scholar] [CrossRef]
- Brott, A.S.; Clarke, A.J. Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System. Antibiotics 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seltmann, G.; Holst, O. Further Cell Wall Components of Gram-Positive Bacteria. In The Bacterial Cell Wall; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Arifa, N.; Mughal, M.S.; Hanif, A.; Batool, A. Effect of alkaline pH on bioactive molecules of epidermal mucus from L. rohita (Rahu). Turkish J. Biochem. 2011, 36, 29–34. [Google Scholar]
- Stosik, M.; Deptula, W.; Travnicek, M. Resistance in carps (C. carpio L.) affected by a natural bacterial infection. Vet. Med. Czech. 2001, 46, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Mozumder, M.H. Antibacterial Activity in Fish Mucus from Farmed Fish. Master’s Thesis, Department of Marine Biotechnology Norwegian, College of Fishery Science, University of Tromso, Tromso, Norway, 2005; pp. 20–21. [Google Scholar]
- Ghafoori, Z.; Heidari, B.; Farzadfar, F.; Aghamaali, M. Variations of serum and mucus lysozyme activity and total protein content in the male and female Caspian kutum (Rutilus frisii kutum, Kamensky, 1901) during reproductive period. Fish Shellfish Immunol. 2014, 37, 139–146. [Google Scholar] [CrossRef]
- Hoffmann, J.A.; Kafatos, F.C.; Janeway, J.C.A.; Ezekowitz, R.A.B. Phylogenetic perspectives in innate immunity. Science 1999, 284, 1313–1318. [Google Scholar] [CrossRef] [Green Version]
- Troast, J.L. Antibodies against enteric bacteria in brown bullhead catfish (Ictalurus nebulosus, LeSueur) inhabiting contaminated waters. J. Appl. Microbiol. 1975, 30, 189–192. [Google Scholar] [CrossRef]
- Ng, T.B.; Lam, Y.W.; Woo, N.Y.S. The immunestimulatory activity and stability of grass carp (Ctenopharyngodon idellus) roe lectin. Vet. Immunol. Immunopathol. 2003, 94, 105–112. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kumari, J.; Mishra, B.K. Non-specific immune responses in juveniles of Indian major carps. J. Appl. Ichthyol. 2005, 21, 151–155. [Google Scholar] [CrossRef]
- Ross, N.W.; Firth, K.J.; Wang, A.; Burka, J.F.; Johnson, S.C. Changes in hydrolytic enzyme activities of naïve Atlantic salmon (Salmo salar) skin mucus due to infection with the salmon louse (Epeophtheirus salmonis) and cortisol implantation. Dis. Aquat. Organ. 2000, 41, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Omolbanin, S.; Moradloo, A.H.; Ghorbani, R. Measurement of alkaline phosphatase and lysozyme enzymes in epidermal mucus of different weights of Cyprinus carpio. World J. Fish Mar. Sci. 2012, 4, 521–524. [Google Scholar]
- Wang, H. (Ed.) Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials; BoD–Books on Demand: London, UK, 2020. [Google Scholar]
- Maurya, R.; Akanksha; Jayendra. Chemistry and pharmacology of Withania coagulans: An Ayurvedic remedy. J. Pharm. Pharmacol. 2010, 62, 153–160. [Google Scholar] [CrossRef]
- Bragadeeswaran, S.; Thangaraj, S. Hemolytic and antibacterial studies on skin mucus of eel fish, Anguilla anguilla Linnaues, 1758. Asia. J. Biol. Sci. 2011, 4, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Reverter, M.; Tapissier-Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Biological and ecological roles of external fish mucus: A review. Fishes 2018, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, Y.; Sendo, A.; Shimakura, K.; Shiomi, K.; Kobayashi, T.; Kimura, B.; Fujii, T. Antibacterial factors in skin mucus of rabbitfishes. J. Fish Biol. 2001, 58, 1761–1765. [Google Scholar] [CrossRef]
Withania coagulans (WC) | Zingiber officinaleis (ZO) |
---|---|
Main Compounds | Main Compounds |
Glycosides | Paradol |
Steroidal compounds | Shogoal |
Saponins | Zingerone |
Phenolic compounds | Zerumbone |
Tannins | 1-Dehydro-(10) gingerdione |
Triterpenoids | Terpenoids |
Flavanoids | Ginger Flavonoids |
Alkaloids |
Basic Ingredients (g/100 g) | Diet | |||
---|---|---|---|---|
Basal | 1% | 1.5% | 2% | |
Soybean meal | 35.2 | 35.2 | 35.2 | 35.2 |
Wheat offal | 7 | 7 | 7 | 7 |
Ca (PO4)2 | 0.2 | 0.2 | 0.2 | 0.2 |
Palm oil | 0.4 | 0.4 | 0.4 | 0.4 |
Fish meal | 21 | 21 | 21 | 21 |
Vitamin and mineral premixa | 1 | 1 | 1 | 1 |
Common salt (NaCl) | 0.2 | 0.2 | 0.2 | 0.2 |
Maize powder | 35 | 34 | 33.5 | 32 |
Z. officinalis or W. coagulans | 00 | 1% | 1.5% | 2% |
Total | 100 | 100 | 100 | 100 |
G1 Group | G2 Group (1%) | G3 Group (1.5%) | G4 Group (2%) | Total | ||||
---|---|---|---|---|---|---|---|---|
Sub Groups | G1-control | G2-WC1% | G2-ZO1% | G3-WC1.5% | G3-ZO1.5% | G4-WC2% | G4-ZO2% | |
Fish quantity (n =) | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 210 |
Challenge Study | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 140 |
Weight (g) | 433–436 | 430–432 | 439–435 | 432–437 | 432–439 | 432–439 | 431–438 | 435 Mean |
G-1 (Control Group) | G-2 | G-3 | G-4 | ||||
---|---|---|---|---|---|---|---|
(G2-ZO1%) | (G2-WC1%) | (G3-ZO1.5%) | (G3-WC1.5%) | (G4-ZO2%) | (G4-WC2%) | ||
Protein Profiling (kDa) | |||||||
1 | 89.12 | 40.32 | 90.25 | 14.00 | 90.3 | 14.68 | 21.54 |
2 | 85.13 | 20.32 | 100.00 | 75.64 | 89.6 | 20.19 | 18.00 |
3 | 75.12 | 25.25 | 81.2 | 13.68 | 87.65 | 45.56 | 120.36 |
4 | 58.87 | 30.32 | 98.79 | 20.65 | 45.8 | 54.98 | 13.54 |
5 | 100.63 | 36.3 | 95.6 | 21.63 | 99.8 | 78.65 | 18.98 |
6 | 101.25 | 98.65 | 31.08 | 84.21 | 31.00 | 45.69 | |
7 | 120.23 | 90.3 | 75.69 | 14.28 | 75.65 | ||
8 | 81.23 | 75.5 | 78.54 | 13.56 | 78.32 | ||
9 | 33.12 | 90.58 | |||||
10 | 36.45 | 46.35 | |||||
11 | 12.36 | ||||||
12 | 17.56 | ||||||
13 | 50.13 |
Groups | Day 7 | Day 14 | Day 22 | Day 30 | Cumulative Mortality % | |
---|---|---|---|---|---|---|
G-1 | CG | - | + | ++ | +++ | 60 |
G-2 | G2-WC 1% | - | - | + | ++ | 20 |
G2-ZO 1% | - | - | + | - | 5 | |
G-3 | G3-WC 1.5% | + | - | + | ++ | 15 |
G3-ZO 1.5% | - | - | - | - | 10 | |
G-4 | G4-WC 2% | + | + | ++ | +++ | 25 |
G4-Z O2% | - | - | - | - | 5 |
Groups | Concentration of Protein | HA Titer Value | ALP | |
---|---|---|---|---|
G-1 | CG | 3.63 ± 0.48 a | 28 | 86.5 ± 0.7 a |
G-2 | WC 1% | 3.00 ± 0.07 a | 28 | 161.3 ± 0.4 b |
ZO 1% | 2.59 ± 0.08 b | 29 | 53.3 ± 0.56 c | |
G-3 | WC 1.5% | 2.02 ± 0.57 b | 27 | 89.6 ± 0.2 d |
ZO 1.5% | 2.68 ± 0.48 b | 29 | 18.29 ± 0.1 e | |
G-4 | WC 2% | 2.29 ± 0.13 b | 26 | 152.5 ± 0.7 f |
ZO 2% | 1.98 ± 0.02 c | 27 | 148.25 ± 0.45 g |
Bacterial Strains | Zone of Inhibition (mm) | ||||||
---|---|---|---|---|---|---|---|
Control | G2 | G3 | G4 | ||||
G2-ZO 1% | G2-WC 1% | G3-ZO 1.5% | G3-WC 1.5% | G4-ZO 2% | G4-WC 2% | ||
E. coli | 18.65 ± 0.24 | 30.58 ± 0.67 | 23.46 ± 0.32 | 30.65 ± 0.69 | 24.36 ± 0.45 | 30.48 ± 0.48 | 20.14 ± 0.21 |
F. columnare | 19.64 ± 0.45 | 30.57 ± 0.98 | 24.65 ± 0.45 | 36.35 ± 0.89 | 26.75 ± 0.75 | 33.45 ± 0.79 | 28.36 ± 0.31 |
E. piscicida | 20.78 ± 0.14 | 31.23 ± 0.89 | 20.54 ± 0.36 | 38.45 ± 0.24 | 26.34 ± 0.45 | 34.15 ± 0.69 | 29.31 ± 0.24 |
P. mirabilis | 25.32 ± 0.19 | 28.54 ± 0.87 | 24.65 ± 0.78 | 30.32 ± 0.75 | 21.31 ± 0.48 | 32.24 ± 0.36 | 26.34 ± 0.24 |
S. paratyphi | 20.14 ± 0.65 | 39.72 ± 0.47 | 25.40 ± 0.45 | 31.21 ± 0.69 | 25.45 ± 0.47 | 33.24 ± 0.48 | 28.35 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazio, F.; Naz, S.; Habib, S.S.; Hashmi, M.A.H.; Ali, M.; Saoca, C.; Ullah, M. Effect of Fortified Feed with Phyto-Extract on the First Physical Barrier (Mucus) of Labeo rohita. Animals 2021, 11, 1308. https://doi.org/10.3390/ani11051308
Fazio F, Naz S, Habib SS, Hashmi MAH, Ali M, Saoca C, Ullah M. Effect of Fortified Feed with Phyto-Extract on the First Physical Barrier (Mucus) of Labeo rohita. Animals. 2021; 11(5):1308. https://doi.org/10.3390/ani11051308
Chicago/Turabian StyleFazio, Francesco, Saira Naz, Syed Sikandar Habib, Mehmood Ahmed Husnain Hashmi, Muhsin Ali, Concetta Saoca, and Mujeeb Ullah. 2021. "Effect of Fortified Feed with Phyto-Extract on the First Physical Barrier (Mucus) of Labeo rohita" Animals 11, no. 5: 1308. https://doi.org/10.3390/ani11051308
APA StyleFazio, F., Naz, S., Habib, S. S., Hashmi, M. A. H., Ali, M., Saoca, C., & Ullah, M. (2021). Effect of Fortified Feed with Phyto-Extract on the First Physical Barrier (Mucus) of Labeo rohita. Animals, 11(5), 1308. https://doi.org/10.3390/ani11051308