Annatto seeds as Antioxidants Source with Linseed Oil for Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows, Diets, and Experimental Procedures
2.2. Dry Matter and Nutrients Intake and Digestibility
2.3. Lipid Profile and Blood Total Antioxidant Capacity
2.4. Milk Yield and Composition
2.5. Reducing Power of Milk
2.6. Total Antioxidant Activity in Milk
2.7. Conjugated Diene Hydriperoxides (CD) in Milk
2.8. Tiobarbituric Acid Reactive Substances (TBARS) in Milk
2.9. Composition of Fatty Acids in Milk
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, D.P.; Connolly, J.M. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol. Ther. 1999, 83, 217–244. [Google Scholar] [CrossRef]
- Dewailly, É.; Blanchet, C.; Gingras, S.; Lemieux, S.; Holub, B.J. Fish consumption and blood lipids in three ethnic groups of Québec (Canada). Lipids 2003, 38, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Howe, P.; Meyer, B.; Record, S.; Baghurst, K. Dietary intake of long-chain ω-3 polyunsaturated fatty acids: Contribution of meat sources. Nutrition 2006, 22, 47–53. [Google Scholar] [CrossRef]
- Lopez-Huertas, E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol. Res. 2010, 61, 200–207. [Google Scholar] [CrossRef]
- Grummer, R.R. Effect of Feed on the Composition of Milk Fat. J. Dairy Sci. 1991, 74, 3244–3257. [Google Scholar] [CrossRef]
- Glasser, F.; Ferlay, A.; Chilliard, Y. Oilseed lipid supplements and fatty acid composition of cow milk: A meta-analysis. J. Dairy Sci. 2008, 91, 4687–4703. [Google Scholar] [CrossRef] [Green Version]
- Charmley, E.; Nicholson, J.W.G. Influence of dietary fat source on oxidative stability and fatty acid composition of milk from cows receiving a low or high level of dietary vitamin E. Can. J. Anim. Sci. 1994, 74, 657–664. [Google Scholar] [CrossRef]
- Schulz, H. Fatty Acid Oxidation, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 2, ISBN 9780123786319. [Google Scholar]
- Raff, M.; Tholstrup, T.; Basu, S.; Nonboe, P.; Sørensen, M.T.; Straarup, E.M. A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men. J. Nutr. 2008, 138, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Bricarello, L.P.; Kasinski, N.; Bertolami, M.C.; Faludi, A.; Pinto, L.A.; Relvas, W.G.M.; Izar, M.C.O.; Ihara, S.S.M.; Tufik, S.; Fonseca, F.A.H. Comparison Between the Effects of Soy Milk and Non-Fat Cow Milk on Lipid Profile and Lipid Peroxidation in Patients with Primary Hypercholesterolemia. Nutrition 2004, 20, 200–204. [Google Scholar] [CrossRef]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Significance and its mechanism. Am. J. Clin. Nutr. 1993, 57, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Grażyna, C.; Hanna, C.; Adam, A.; Magdalena, B.M. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol. 2017, 70, 165–178. [Google Scholar] [CrossRef]
- Lindmark-Månsson, H.; Åkesson, B. Antioxidative factors in milk. Br. J. Nutr. 2000, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, G.; Nielsen, J.H.; Slots, T.; Seal, C.; Eyre, M.D.; Sanderson, R.; Leifert, C. Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: Seasonal variation. J. Sci. Food Agric. 2008, 88. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Castillo, C.; Pereira, V.; Abuelo, Á.; Hernández, J. Effect of supplementation with antioxidants on the quality of bovine milk and meat production. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef]
- Math, R.G.; Ramesh, G.; Nagender, A.; Satyanarayana, A. Design and development of annatto (Bixa orellana L.) seed separator machine. J. Food Sci. Technol. 2016, 53, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiokias, S.; Gordon, M.H. Dietary supplementation with a natural carotenoid mixture decreases oxidative stress. Eur. J. Clin. Nutr. 2003, 57, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, W.F.; Mariutti, L.R.B.; Bragagnolo, N. The effects of colorifico on lipid oxidation, colour and vitamin E in raw and grilled chicken patties during frozen storage. Food Chem. 2011, 124, 126–131. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Morris, D.L.; Rebelo, L.R.; Dieter, P.A.; Lee, C. Validating intrinsic markers and optimizing spot sampling frequency to estimate fecal outputs. J. Dairy Sci. 2018, 101, 7980–7989. [Google Scholar] [CrossRef]
- Rybak-Chmielewska, H. Honey. Chem. Funct. Prop. Food Sacch. 2003, 1, 73–80. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- O’Connor, J.D.; Sniffen, C.J.; Fox, D.G.; Chalupa, W. A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. J. Anim. Sci. 1993, 71, 1298–1311. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, P.; Kaustell, K.; Jaakkola, S. The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim. Feed Sci. Technol. 1994, 48, 211–227. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Gaines, W.L. The Energy Basis of Measuring Milk Yield in Dairy Cows; no. 308; University of Illinois Agricultural Experiment Station: Urbana, IL, USA, 1928. [Google Scholar]
- Zhu, Q.Y.; Hackman, R.M.; Ensunsa, J.L.; Holt, R.R.; Keen, C.L. Antioxidative activities of oolong tea. J. Agric. Food Chem. 2002, 50, 6929–6934. [Google Scholar] [CrossRef]
- Rufino, M.d.S.M.; Alves, R.E.; Brito, E.S.; de Morais, S.M.; de Sampaio, C.D.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS+ [Determination of total antioxidant activity in fruits by capturing the free radical ABTS+.]. Embrapa Agroind. Trop. Téc. 2007, 128, 1–4. [Google Scholar]
- Kiokias, S.N.; Dimakou, C.P.; Tsaprouni, I.V.; Oreopoulou, V. Effect of compositional factors against the thermal oxidative deterioration of novel food emulsions. Food Biophys. 2006, 1, 115–123. [Google Scholar] [CrossRef]
- Vyncke, W. Direct determination of the thiobarbituric acid value in trichoracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Murphy, J.J.; Connolly, J.F.; McNeill, G.P. Effects on milk fat composition and cow performance of feeding concentrates containing full fat rapeseed and maize distillers grains on grass-silage based diets. Livest. Prod. Sci. 1995, 44, 1–11. [Google Scholar] [CrossRef]
- ISO. Animal and Vegetable Fats and Oils. Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 1978; pp. 1–6. [Google Scholar]
- Jondiko, I.J.O.; Pattenden, G. Terpenoids and an apocarotenoid from seeds of Bixa orellana. Phytochemistry 1989, 28, 3159–3162. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Steck, A.; Pfander, H. Isolation and Identification of New Apocarotenoids from Annatto (Bixa orellana) Seeds. J. Agric. Food Chem. 1997, 45, 1050–1054. [Google Scholar] [CrossRef]
- Rather, L.J.; Mohammad, F. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications—A review. J. Adv. Res. 2016, 7, 499–514. [Google Scholar] [CrossRef] [Green Version]
- Dziba, L.E.; Hall, J.O.; Provenza, F.D. Feeding behavior of lambs in relation to kinetics of 1,8-cineole dosed intravenously or into the rumen. J. Chem. Ecol. 2006, 32, 391–408. [Google Scholar] [CrossRef]
- Dziba, L.E.; Provenza, F.D. Dietary monoterpene concentrations influence feeding patterns of lambs. Appl. Anim. Behav. Sci. 2008, 109, 49–57. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Oluwaseun Ademiluyi, A.; et al. Biological Activities of Essential oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Giwa-Ajeniya, A.; Ademefun, A.; Lawal, O.; Ogunwande, I. Chemical Composition of Essential Oils from the Leaves, Seeds, Seed-pods and Stems of Bixa orellana L. (Bixaceae). Arch. Curr. Res. Int. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Estell, R.E.; Fredrickson, E.L.; Anderson, D.M.; Havstad, K.M.; Remmenga, M.D. Effects of four mono- and sesquiterpenes on the consumption of alfalfa pellets by sheep. J. Anim. Sci. 2002, 80, 3301–3306. [Google Scholar] [CrossRef]
- Santos, N.W.; Yoshimura, E.H.; Machado, E.; Matumoto-Pintro, P.T.; Montanher, P.F.; Visentainer, J.V.; dos Santos, G.T.; Zeoula, L.M. Antioxidant effects of a propolis extract and vitamin E in blood and milk of dairy cows fed diet containing flaxseed oil. Livest. Sci. 2016, 191, 132–138. [Google Scholar] [CrossRef]
- Lock, A.L.; Shingfield, K.J. Optimising Milk Composition. BSAP Occas. Publ. 2004, 29, 107–188. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Fat in Lactation Rations: Review. J. Dairy Sci. 1980, 63, 1–14. [Google Scholar] [CrossRef]
- Barbosa, J.; Rogério, M.; Galvani, D.; Alves, A.; Pompeu, R.; Vasconcelos, Â. Comportamento ingestivo de ovinos alimentados com dietas contendo sementes de urucum. Rev. Bras. Hig. E Sanidade Anim. RBHSA 2016, 10, 187–198. [Google Scholar] [CrossRef]
- De Lima Júnior, D.M.; De Carvalho, F.F.R.; Clementino, R.H.; Batista, Â.M.V.; Maciel, M.V.; Ferreira, J.C.S.; Neto, J.D.P. Performance of sheep fed on annatto byproduct. Ital. J. Anim. Sci. 2014, 13, 563–567. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, L.M. Clinical Biochesmitry of Domestic Animals; Academic Press: Cambridge, MA, USA, 2008; p. 925. [Google Scholar]
- Lima, L.R.P.; Oliveira, T.T.; de Nagem, T.J. Efeitos do flavonóide quercetina e dos corantes bixina e norbixina sobre parâmetros sanguíneos de coelhos. Rev. Nutr. 2003, 16, 305–314. [Google Scholar] [CrossRef] [Green Version]
- De Paula, H.; Pedrosa, M.L.; Júnior, J.V.R.; Haraguchi, F.K.; dos Santos, R.C.; Silva, M.E. Effect of an aqueous extract of annatto (Bixa orellana) seeds on lipid profile and biochemical markers of renal and hepatic function in hipercholesterolemic rats. Braz. Arch. Biol. Technol. 2009, 52, 1373–1378. [Google Scholar] [CrossRef]
- De Oliveira Lima, C.S.; de Andrade, A.P.; Magalhães, A.L.R.; de Almeida, O.C.; Guido, S.I.; Valença, R.d.L. Plasma fatty acid profile in dairy cows associated with the inclusion of annatto in their diet. Acta Sci. Anim. Sci. 2020, 42, 1–7. [Google Scholar] [CrossRef]
- Dado, R.G.; Allen, M.S. Variation in and Relationships among Feeding, Chewing, and Drinking Variables for Lactating Dairy Cows. J. Dairy Sci. 1994, 77, 132–144. [Google Scholar] [CrossRef]
- Teles, F.; Anjos, F.S.d.; Machado, T.; Lima, R. Bixa orellana (annatto) exerts a sustained hypoglycemic effect in experimental diabetes mellitus in rats. Med. Express 2014, 1, 36–38. [Google Scholar] [CrossRef] [Green Version]
- Javier, F. Variation in Milk Yield, Contents and Incomes According to Somatic Cell Count in a Large Dairy Goat Population. Adv. Dairy Res. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Santos, N.W.; Santos, G.T.D.; Silva-Kazama, D.C.; Grande, P.A.; Pintro, P.M.; de Marchi, F.E.; Jobim, C.C.; Petit, H.V. Production, composition and antioxidants in milk of dairy cows fed diets containing soybean oil and grape residue silage. Livest. Sci. 2014, 159, 37–45. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Yang, Y.; Bu, D.; Cui, H.; Sun, Y.; Xu, X.; Zhou, L. Effects of different fat mixtures on milk fatty acid composition and oxidative stability of milk fat. Anim. Feed Sci. Technol. 2013, 185, 35–42. [Google Scholar] [CrossRef]
- Furr, H.C.; Clark, R.M. Intestinal absorption and tissue distribution of carotenoids. J. Nutr. Biochem. 1997, 8, 364–377. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Reynolds, C.K.; Hervás, G.; Griinari, J.M.; Grandison, A.S.; Beever, D.E. Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. J. Dairy Sci. 2006, 89, 714–732. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Martin, C.; Rouel, J.; Doreau, M. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 2009, 92, 5199–5211. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, A.; Sæbø, P.C.; Griinari, J.M.; Shingfield, K.J. Effect of abomasal infusions of geometric isomers of 10,12 conjugated linoleic acid on milk fat synthesis in dairy cows. Lipids 2005, 40, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Perfield, J.W.; Lock, A.L.; Griinari, J.M.; Sæbø, A.; Delmonte, P.; Dwyer, D.A.; Bauman, D.E. Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J. Dairy Sci. 2007, 90, 2211–2218. [Google Scholar] [CrossRef]
- Woolpert, M.E.; Dann, H.M.; Cotanch, K.W.; Melilli, C.; Chase, L.E.; Grant, R.J.; Barbano, D.M. Management, nutrition, and lactation performance are related to bulk tank milk de novo fatty acid concentration on northeastern US dairy farms. J. Dairy Sci. 2016, 99, 8486–8497. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Bauman, D.E. Characterization of the acute lactational response to trans-10, cis-12 conjugated linoleic acid. J. Dairy Sci. 2011, 94, 6047–6056. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Hino, T.; Andoh, N.; Ohgi, H. Effects of β-Carotene and α-Tocopherol on Rumen Bacteria in the Utilization of Long-Chain Fatty Acids and Cellulose. J. Dairy Sci. 1993, 76, 600–605. [Google Scholar] [CrossRef]
- Suksombat, W.; Thanh, L.P.; Meeprom, C.; Mirattanaphrai, R. Effect of linseed oil supplementation on performance and milk fatty acid composition in dairy cows. Anim. Sci. J. 2016, 87, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Caroprese, M.; Marzano, A.; Marino, R.; Gliatta, G.; Muscio, A.; Sevi, A. Flaxseed supplementation improves fatty acid profile of cow milk. J. Dairy Sci. 2010, 93, 2580–2588. [Google Scholar] [CrossRef] [PubMed]
- Petit, H.V.; Côrtes, C. Milk production and composition, milk fatty acid profile, and blood composition of dairy cows fed whole or ground flaxseed in the first half of lactation. Anim. Feed Sci. Technol. 2010, 158, 36–43. [Google Scholar] [CrossRef]
- Benchaar, C.; Romero-Pérez, G.A.; Chouinard, P.Y.; Hassanat, F.; Eugene, M.; Petit, H.V.; Côrtes, C. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J. Dairy Sci. 2012, 95, 4578–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation; WHO Technical Report Series No. 916; WHO: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
Variables | Diets | |||
---|---|---|---|---|
No Linseed Oil | With Linseed Oil | |||
No Annatto | With Annatto | No Annatto | With Annatto | |
Ingredients | ||||
Corn silage (g/kg of DM 1) | 600 | 600 | 600 | 600 |
Ground corn (g/kg of DM) | 202.8 | 189.1 | 166.1 | 152.5 |
Soybean meal (g/kg of DM) | 165.2 | 163.9 | 171.9 | 170.5 |
Linseed oil (g/kg of DM) | 0 | 0 | 30 | 30 |
Mineral and vitamin 2 (g/kg of DM) | 22 | 22 | 22 | 22 |
Annatto Seeds (g/kg of DM) | 0 | 15 | 0 | 15 |
Molasses Powder (g/kg of DM) | 5 | 5 | 5 | 5 |
Limestone (g/kg DM) | 5 | 5 | 5 | 5 |
Chemical composition | ||||
Dry matter (g/kg fresh weight) | 453 | 453 | 448 | 448 |
Organic matter (g/kg of DM) | 934 | 933 | 934 | 933 |
Crude protein (g/kg of DM) | 145 | 145 | 146 | 146 |
Ether extract (g/kg of DM) | 27.8 | 28.0 | 56.4 | 56.5 |
Neutral detergent fiber (g/kg of DM) | 332 | 334 | 329 | 331 |
Non-fibrous carbohydrates (g/kg of DM) | 429 | 428 | 401 | 400 |
NEL3x 3 (MJ/kg of DM) | 6.61 | 6.61 | 6.92 | 6.92 |
Variables | Diets | SEM 7 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
No Linseed Oil | With Linseed Oil | Anna 8 | Oil 9 | Int 10 | ||||
No Annatto | With Annatto | No Annatto | With Annatto | |||||
Intake (kg DM/day) | ||||||||
DM 1 | 14.12 | 12.30 | 13.76 | 12.20 | 0.192 | <0.001 | 0.13 | 0.30 |
OM 2 | 13.25 | 11.47 | 12.87 | 11.39 | 0.181 | <0.001 | 0.17 | 0.34 |
CP 3 | 2.11 | 1.84 | 2.04 | 1.86 | 0.023 | <0.001 | 0.36 | 0.24 |
EE 4 | 0.40 c | 0.35 d | 0.76 a | 0.69 b | 0.015 | <0.001 | <0.001 | 0.03 |
NDF 5 | 4.53 | 3.89 | 4.38 | 3.87 | 0.091 | <0.001 | 0.34 | 0.47 |
NFC 6 | 6.22 | 5.39 | 5.67 | 5.01 | 0.101 | <0.001 | 0.004 | 0.33 |
Total Apparent Digestibility (g/kg of DM) | ||||||||
DM 1 | 0.69 | 0.69 | 0.68 | 0.68 | 0.014 | 0.86 | 0.14 | 0.67 |
OM 2 | 0.71 | 0.71 | 0.71 | 0.72 | 0.017 | 0.77 | 0.96 | 0.74 |
CP 3 | 0.72 | 0.72 | 0.74 | 0.74 | 0.019 | 0.76 | 0.09 | 0.85 |
EE 4 | 0.82 | 0.82 | 0.87 | 0.86 | 0.012 | 0.73 | 0.005 | 0.62 |
NDF 5 | 0.56 | 0.55 | 0.53 | 0.55 | 0.013 | 0.74 | 0.07 | 0.21 |
NFC 6 | 0.81 | 0.82 | 0.82 | 0.82 | 0.014 | 0.83 | 0.85 | 0.92 |
Variables | Diets | SEM 9 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
No Linseed Oil | With Linseed Oil | Anna 10 | Oil 11 | Int 12 | ||||
No Annatto | With Annatto | No Annatto | With Annatto | |||||
Production | ||||||||
Milk yield (kg/d) | 18.20 | 14.42 | 17.15 | 14.15 | 1.452 | 0.01 | 0.49 | 0.67 |
FCM (kg/d) 1 | 17.28 | 15.18 | 14.64 | 14.93 | 1.182 | 0.39 | 0.19 | 0.27 |
Fat (kg/d) | 0.58 | 0.55 | 0.44 | 0.54 | 0.031 | 0.42 | 0.12 | 0.16 |
Protein (kg/d) | 0.58 | 0.48 | 0.60 | 0.47 | 0.044 | 0.01 | 0.90 | 0.73 |
Lactose (kg/d) | 0.81 | 0.63 | 0.76 | 0.61 | 0.065 | 0.01 | 0.37 | 0.66 |
Composition (g/kg of DM) | ||||||||
Fat (g/kg) | 33.87 | 39.65 | 26.85 | 38.62 | 1.152 | <0.001 | 0.03 | 0.10 |
Protein (g/kg) | 32.62 | 34.07 | 35.32 | 33.60 | 0.713 | 0.92 | 0.43 | 0.27 |
Lactose (g/kg) | 45.02 | 43.70 | 44.25 | 43.57 | 0.034 | 0.08 | 0.39 | 0.53 |
TS (g/kg) 2 | 110.5 | 117.4 | 106.42 | 115.8 | 1.745 | 0.01 | 0.25 | 0.60 |
MUN (mg/dl) 3 | 12.83 | 11.22 | 13.63 | 13.11 | 0.918 | 0.25 | 0.17 | 0.55 |
SCS 4 | 2.14 | 2.39 | 2.29 | 2.30 | 0.091 | 0.42 | 0.84 | 0.47 |
Oxidative products and antioxidant activity | ||||||||
CD 5 | 47.47 | 45.79 | 59.50 | 56.68 | 2.621 | 0.68 | 0.07 | 0.91 |
TBARS 6 | 13.23 | 14.72 | 16.71 | 13.67 | 1.002 | 0.57 | 0.38 | 0.12 |
TAC 7 | 241.0 | 242.8 | 239.9 | 252.8 | 2.253 | 0.78 | 0.73 | 0.86 |
Reducing power 8 | 34.37 | 34.71 | 33.32 | 36.96 | 2.673 | 0.67 | 0.89 | 0.72 |
Variables | Diets | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
No Linseed Oil | With Linseed Oil | Anna 3 | Oil 4 | Int 5 | ||||
No Annatto | With Annatto | No Annatto | With Annatto | |||||
C6:0 | 0.17 b | 0.64 a | 0.33 b | 0.16 b | 0.021 | 0.02 | 0.01 | 0.007 |
C8:0 | 0.44 b | 0.75 a | 0.43 b | 0.29 b | 0.042 | 0.20 | 0.01 | 0.01 |
C10:0 | 2.25 | 2.64 | 1.65 | 1.49 | 0.182 | 0.76 | 0.04 | 0.43 |
C11:0 | 0.04 | 0.20 | 0.04 | 0.05 | 0.021 | 0.03 | 0.04 | 0.06 |
C12:0 | 3.64 | 3.58 | 2.73 | 2.36 | 0.221 | 0.58 | 0.03 | 0.67 |
C13:0 | 0.19 | 0.19 | 0.15 | 0.10 | 0.011 | 0.32 | 0.01 | 0.18 |
C14:0 | 13.66 | 12.09 | 10.85 | 10.25 | 0.564 | 0.35 | 0.08 | 0.69 |
C14:1 | 1.18 | 1.19 | 1.01 | 0.71 | 0.071 | 0.23 | 0.02 | 0.19 |
C15:0 | 1.18 | 1.07 | 0.99 | 0.86 | 0.052 | 0.18 | 0.04 | 0.90 |
C15:1 | 0.02 | 0.02 | 0.07 | 0.01 | 0.011 | 0.30 | 0.50 | 0.31 |
C16:0 | 33.12 | 30.68 | 26.21 | 27.35 | 0.871 | 0.69 | 0.02 | 0.33 |
C16:1 | 1.89 | 2.08 | 1.53 | 1.72 | 0.022 | 0.36 | 0.12 | 0.72 |
C17:0 | 0.75 | 0.78 | 0.71 | 0.71 | 0.021 | 0.71 | 0.40 | 0.71 |
C17:1 | 0.32 | 0.31 | 0.17 | 0.22 | 0.043 | 0.82 | 0.17 | 0.74 |
C18:0 | 10.53 | 10.85 | 13.25 | 15.81 | 0.562 | 0.25 | 0.01 | 0.36 |
C18:1 n9t | 4.18 | 3.73 | 7.62 | 5.42 | 0.391 | 0.07 | 0.005 | 0.19 |
C18:1 n9c | 23.96 | 25.69 | 27.14 | 28.52 | 1.224 | 0.42 | 0.16 | 0.77 |
C18:2 n6t | 0.11 b | 0.09 b | 0.01 a | 0.20 b | 0.03 | 0.030 | 0.002 | 0.04 |
C18:2 n6c | 1.52 | 1.55 | 1.73 | 1.40 | 0.065 | 0.23 | 0.82 | 0.18 |
C18:3 n6 | 0.06 | 0.05 | 0.05 | 0.04 | 0.010 | 0.09 | 0.25 | 0.90 |
C18:3 n3 | 0.10 | 0.10 | 0.34 | 0.23 | 0.010 | 0.18 | 0.002 | 0.19 |
C18:2 c9 t11-CLA 1 | 0.68 | 0.72 | 1.23 | 0.94 | 0.182 | 0.44 | 0.03 | 0.30 |
C18:2 t10 c12-CLA 1 | 0.04 | 0.03 | 0.06 | 0.04 | 0.021 | 0.40 | 0.40 | 0.53 |
C20:0 | 0.12 | 0.13 | 0.13 | 0.16 | 0.010 | 0.18 | 0.16 | 0.50 |
C20:1 | 0.04 | 0.05 | 0.07 | 0.05 | 0.011 | 0.74 | 0.25 | 0.30 |
C20:2 | 0.01 | 0.02 | 0.03 | 0.03 | 0.010 | 0.75 | 0.31 | 0.50 |
C20:3 n6 | 0.04 | 0.04 | 0.02 | 0.03 | 0.010 | 0.62 | 0.01 | 0.33 |
C20:3 n3 | 0.01 | 0.01 | 0.01 | 0.01 | 0.010 | 0.40 | 0.41 | 0.44 |
C20:4 n6 | 0.12 | 0.12 | 0.07 | 0.09 | 0.012 | 0.27 | 0.005 | 0.18 |
C20:5 n3 | 0.01 | 0.01 | 0.01 | 0.01 | 0.010 | 0.54 | 0.79 | 0.72 |
C21:0 | 0.60 | 0.55 | 0.96 | 0.73 | 0.091 | 0.21 | 0.03 | 0.42 |
C22 | 0.01 | 0.01 | 0.01 | 0.01 | 0.010 | 0.99 | 0.75 | 0.57 |
C24:0 | 0.02 | 0.02 | 0.02 | 0.01 | 0.010 | 0.89 | 0.52 | 0.16 |
C24:1 | 0.02 | 0.02 | 0.01 | 0.01 | 0.010 | 0.56 | 0.07 | 0.51 |
Diets | SEM 8 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
- | No Linseed Oil | With Linseed Oil | Anna 9 | Oil 10 | Int 11 | |||
No Annatto | With Annatto | No Annatto | With Annatto | |||||
Total CLA 1 | 0.70 | 0.75 | 1.32 | 0.99 | 0.155 | 0.40 | 0.02 | 0.28 |
SCFA 2 | 0.61 b | 1.41 a | 0.76 b | 0.45 b | 0.063 | 0.05 | 0.01 | 0.002 |
MCFA 3 | 55.28 | 51.66 | 43.69 | 43.51 | 1.492 | 0.47 | 0.01 | 0.62 |
LCFA 4 | 44.11 | 46.94 | 55.55 | 56.38 | 1.663 | 0.58 | 0.02 | 0.79 |
SFA 5 | 69.37 | 67.07 | 60.11 | 62.08 | 1.391 | 0.89 | 0.07 | 0.47 |
MUFA 6 | 28.67 | 30.97 | 39.27 | 35.92 | 1.262 | 0.8 | 0.08 | 0.52 |
PUFA 7 | 1.97 | 1.96 | 2.63 | 2.00 | 0.083 | 0.09 | 0.06 | 0.10 |
n-3 | 0.12 | 0.11 | 0.36 | 0.25 | 0.011 | 0.20 | 0.001 | 0.19 |
n-6 | 1.85 | 1.85 | 2.27 | 1.75 | 0.061 | 0.08 | 0.23 | 0.10 |
n-6/n-3 | 15.41 | 15.42 | 6.31 | 7.00 | 0.541 | 0.88 | <0.001 | 0.61 |
Variables | Diets | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
No Linseed Oil | With Linseed Oil | Anna 4 | Oil 5 | Int 6 | ||||
No Annatto | With Annatto | No Annatto | With Annatto | |||||
Cholesterol (mg/dL) | 95.37 | 102.88 | 101.00 | 97.85 | 4.792 | 0.82 | 0.97 | 0.59 |
Triglycerides (mg/dL) | 9.00 | 10.50 | 9.00 | 8.50 | 0.826 | 0.51 | 0.74 | 0.33 |
HDL-Cholesterol (mg/dL) 1 | 66.00 | 62.62 | 71.87 | 74.50 | 2.155 | 0.93 | 0.08 | 0.51 |
TAC 2 | 313.14 | 337.30 | 318.46 | 336.33 | 24.72 | 0.50 | 0.94 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio, J.A.C.; Daniel, J.L.P.; Cabral, J.F.; Almeida, K.V.; Guimarães, K.L.; Sippert, M.R.; Lourenço, J.C.S.; De Marchi, F.E.; Velho, J.P.; Santos, G.T. Annatto seeds as Antioxidants Source with Linseed Oil for Dairy Cows. Animals 2021, 11, 1465. https://doi.org/10.3390/ani11051465
Osorio JAC, Daniel JLP, Cabral JF, Almeida KV, Guimarães KL, Sippert MR, Lourenço JCS, De Marchi FE, Velho JP, Santos GT. Annatto seeds as Antioxidants Source with Linseed Oil for Dairy Cows. Animals. 2021; 11(5):1465. https://doi.org/10.3390/ani11051465
Chicago/Turabian StyleOsorio, Jesus A. C., João L. P. Daniel, Jakeline F. Cabral, Kleves V. Almeida, Karoline L. Guimarães, Micheli R. Sippert, Jean C. S. Lourenço, Francilaine E. De Marchi, João P. Velho, and Geraldo T. Santos. 2021. "Annatto seeds as Antioxidants Source with Linseed Oil for Dairy Cows" Animals 11, no. 5: 1465. https://doi.org/10.3390/ani11051465
APA StyleOsorio, J. A. C., Daniel, J. L. P., Cabral, J. F., Almeida, K. V., Guimarães, K. L., Sippert, M. R., Lourenço, J. C. S., De Marchi, F. E., Velho, J. P., & Santos, G. T. (2021). Annatto seeds as Antioxidants Source with Linseed Oil for Dairy Cows. Animals, 11(5), 1465. https://doi.org/10.3390/ani11051465