Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Diets
2.3. Productive Performances
2.4. Incidence of Growth-Related Breast Meat Abnormalities
2.5. Meat Quality
2.5.1. Quality Traits and Technological Properties
2.5.2. Amino Acid Profile
2.5.3. Protein Solubility
2.5.4. Protein Carbonyls
2.5.5. Sulfhydryl Content
2.5.6. Histidine-Containing Dipeptides and Metabolites
2.5.7. Buffering Capacity
2.6. Statistical Analyses
3. Results
3.1. Productive Performances
3.2. Incidence of Breast Meat Abnormalities
3.3. Meat Quality
3.3.1. Quality Traits and Technological Properties
3.3.2. Protein Oxidation and Functionality
3.3.3. Amino Acid Profile
3.3.4. Histidine-Containing Dipeptides and Metabolites
3.3.5. Buffering Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez, S.R.; Aoyagi, S.; Han, Y.; Parsons, C.M.; Baker, D.H. Limiting Order of Amino Acids in Corn and Soybean Meal for Growth of the Chick. Poult. Sci. 1994, 73, 1887–1896. [Google Scholar] [CrossRef]
- Leclercq, B. Lysine: Specific effects of lysine on broiler production: Comparison with threonine and valine. Poult. Sci. 1998, 77, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, A.; Shivazad, M.; Alemi, F.; Zaghari, M.; Moravej, H.; Darabighane, B. Digestible lysine requirement of broilers based on practical diet. Ital. J. Anim. Sci. 2012, 11, 68–76. [Google Scholar] [CrossRef]
- Moran, J.E.T.; Bilgili, S.F. Processing Losses, Carcass Quality, and Meat Yields of Broiler Chickens Receiving Diets Marginally Deficient to Adequate in Lysine Prior to Marketing. Poult. Sci. 1990, 69, 702–710. [Google Scholar] [CrossRef]
- Kidd, M.T.; Kerr, B.J.; Halpin, K.M.; McWard, G.W.; Quarles, F.C.L. Lysine Levels in Starter and Grower-Finisher Diets Affect Broiler Performance and Carcass Traits. J. Appl. Poult. Res. 1998, 7, 351–358. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, Ninth Revised Edition; National Academy: Washigton, DC, USA, 1994; ISBN 0309048923. [Google Scholar]
- Zampiga, M.; Laghi, L.; Petracci, M.; Zhu, C.; Meluzzi, A.; Dridi, S.; Sirri, F. Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens. J. Anim. Sci. Biotechnol. 2018, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.H. Ideal amino acid profiles for swine and poultry and their applications in feed formulation. Biokyowa Tech. Rev. 1997, 9, 1–24. [Google Scholar]
- Ishii, T.; Shibata, K.; Kai, S.; Noguchi, K.; Hendawy, A.O.; Fujimura, S.; Sato, K. Dietary Supplementation with Lysine and Threonine Modulates the Performance and Plasma Metabolites of Broiler Chicken. J. Poult. Sci. 2019, 56, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Zhai, W.; Schilling, M.W.; Jackson, V.; Peebles, E.D.; Mercier, Y. Effects of dietary lysine and methionine supplementation on Ross 708 male broilers from 21 to 42 days of age (II): Breast meat quality. J. Appl. Poult. Res. 2016, 25, 212–222. [Google Scholar] [CrossRef]
- Tesseraud, S.; Larbier, M.; Chagneau, A.M.; Geraert, P.A. Effect of dietary lysine on muscle protein turnover in growing chickens. Reprod. Nutr. Dev. 1992, 32, 163–171. [Google Scholar] [CrossRef]
- Lee, C.Y.; Song, A.A.-L.; Loh, T.C.; Rahim, R.A. Effects of lysine and methionine in a low crude protein diet on the growth performance and gene expression of immunity genes in broilers. Poult. Sci. 2020, 99, 2916–2925. [Google Scholar] [CrossRef] [PubMed]
- Sterling, K.G.; Pesti, G.M.; Bakalli, R.I. Performance of Different Broiler Genotypes Fed Diets with Varying Levels of Dietary Crude Protein and Lysine. Poult. Sci. 2006, 85, 1045–1054. [Google Scholar] [CrossRef]
- Berri, C.; Besnard, J.; Relandeau, C. Increasing Dietary Lysine Increases Final pH and Decreases Drip Loss of Broiler Breast Meat. Poult. Sci. 2008, 87, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.F.A.; Vieira, S.L.; Kindlein, L.; Kipper, M.; Cemin, H.S.; Rauber, S.M. Occurrence of white striping and wooden breast in broilers fed grower and finisher diets with increasing lysine levels. Poult. Sci. 2017, 96, 501–510. [Google Scholar] [CrossRef]
- Meloche, K.; Fancher, B.; Emmerson, D.; Bilgili, S.; Dozier, W.A. Effects of reduced digestible lysine density on myopathies of the Pectoralis major muscles in broiler chickens at 48 and 62 days of age. Poult. Sci. 2018, 97, 3311–3324. [Google Scholar] [CrossRef] [PubMed]
- European Union Council Directive: Laying down minimum rules for the protection of chickens kept for meat production. Off. J. Eur. Union 2007, 182, 19–28.
- European Commission Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union 2009, L 303/1, 1–30.
- European Union Council. Directive 2010/63/EU of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 28, 82–128. [Google Scholar]
- Aviagen Group. Ross 308 Broiler: Nutrition Specifications; Aviagen Group: Huntsville, AL, USA, 2019. [Google Scholar]
- Ajinomoto Heartland LLC. True Amino Acid Digestibility Values for Poultry; Ajinomoto Heartland: Chicago, IL, USA, 2015. [Google Scholar]
- Kuttappan, V.; Brewer, V.; Apple, J.; Waldroup, P.; Owens, C. Influence of growth rate on the occurrence of white striping in broiler breast fillets. Poult. Sci. 2012, 91, 2677–2685. [Google Scholar] [CrossRef]
- Sihvo, H.-K.; Immonen, K.; Puolanne, E. Myodegeneration With Fibrosis and Regeneration in the Pectoralis Major Muscle of Broilers. Veter- Pathol. 2014, 51, 619–623. [Google Scholar] [CrossRef]
- Sirri, F.; Maiorano, G.; Tavaniello, S.; Chen, J.; Petracci, M.; Meluzzi, A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poult. Sci. 2016, 95, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Jeacocke, R.E. Continuous measurements of the pH of beef muscle in intact beef carcases. Int. J. Food Sci. Technol. 2007, 12, 375–386. [Google Scholar] [CrossRef]
- Mudalal, S.; Babini, E.; Cavani, C.; Petracci, M. Quantity and functionality of protein fractions in chicken breast fillets affected by white striping. Poult. Sci. 2014, 93, 2108–2116. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Soglia, F.; Petracci, M.; Ertbjerg, P. Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chem. 2016, 197, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Benjakul, S.; Seymour, T.A.; Morrissey, M.T.; An, H. Physicochemical Changes in Pacific Whiting Muscle Proteins during Iced Storage. J. Food Sci. 1997, 62, 729–733. [Google Scholar] [CrossRef]
- Visessanguan, W.; Ogawa, M.; Nakai, S.; An, H. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. J. Agric. Food Chem. 2000, 48, 1016–1023. [Google Scholar] [CrossRef]
- Soglia, F.; Silva, A.K.; Tappi, S.; Lião, L.M.; Rocculi, P.; Laghi, L.; Petracci, M. Gaping of pectoralis minor muscles: Magnitude and characterization of an emerging quality issue in broilers. Poult. Sci. 2019, 98, 6194–6204. [Google Scholar] [CrossRef]
- Matarneh, S.K.; England, E.M.; Scheffler, T.L.; Oliver, E.M.; Gerrard, D.E. Net lactate accumulation and low buffering capacity explain low ultimate pH in the longissimus lumborum of AMPKγ3R200Q mutant pigs. Meat Sci. 2015, 110, 189–195. [Google Scholar] [CrossRef]
- Baldi, G.; Soglia, F.; Laghi, L.; Meluzzi, A.; Petracci, M. The role of histidine dipeptides on postmortem acidification of broiler muscles with different energy metabolism. Poult. Sci. 2021, 100, 1299–1307. [Google Scholar] [CrossRef]
- De Cesare, A.; do Valle, Ì.F.; Sala, C.; Sirri, F.; Astolfi, A.; Castellani, G.; Manfreda, G. Effect of a low protein diet on chicken ceca microbiome and productive performances. Poult. Sci. 2019, 98, 3963–3976. [Google Scholar] [CrossRef]
- Noble, D.O.; Picard, M.L.; Dunnington, E.A.; Uzu, G.; Larsen, A.S.; Siegel, P.B. Food intake adjustments of chicks: Short term reactions of genetic stocks to deficiencies in lysine, methionine or tryptophan. Br. Poult. Sci. 1993, 34, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Yoshizawa, F.; Sugahara, K. Voluntary food intake variation in chickens on lysine-free diet is attributed to the plasma lysine concentration. Br. Poult. Sci. 2014, 55, 605–609. [Google Scholar] [CrossRef]
- Ahsan, U.; Cengiz, Ö. Restriction of dietary digestible lysine allowance in grower phase reduces the occurrence of white striping in broiler chickens. Anim. Feed. Sci. Technol. 2020, 270, 114705. [Google Scholar] [CrossRef]
- Eady, M.; Samuel, D.; Bowker, B. Effect of pH and postmortem aging on protein extraction from broiler breast muscle. Poult. Sci. 2014, 93, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Rathgeber, B.M.; Boles, J.A.; Shand, P.J. Rapid postmortem pH decline and delayed chilling reduce quality of turkey breast meat. Poult. Sci. 1999, 78, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhao, Y.Y.; Kang, Z.L.; Wang, P.; Han, M.Y.; Xu, X.L.; Zhou, G.H. Reduced functionality of PSE-like chicken breast meat batter resulting from alterations in protein conformation. Poult. Sci. 2015, 94, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, H.H.; Qi, J.; Wang, M.; Xu, X.; Zhou, G. Chicken breast quality—normal, pale, soft and exudative (PSE) and woody - influences the functional properties of meat batters. Int. J. Food Sci. Technol. 2018, 53, 654–664. [Google Scholar] [CrossRef]
- Petracci, M.; Cavani, C. Muscle Growth and Poultry Meat Quality Issues. Nutrients 2011, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.A.; Jackson, V.; Zhai, W.; Suman, S.; Nair, M.N.; Beach, C.M.; Schilling, M.W. Proteome basis of pale, soft, and exudative-like (PSE-like) broiler breast (Pectoralis major) meat. Poult. Sci. 2016, 95, 2696–2706. [Google Scholar] [CrossRef]
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. Worlds Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Dong, M.; Chen, H.; Zhang, Y.; Xu, Y.; Han, M.; Xu, X.; Zhou, G. Processing Properties and Improvement of Pale, Soft, and Exudative-Like Chicken Meat: A Review. Food Bioprocess Technol. 2020, 13, 1280–1291. [Google Scholar] [CrossRef]
- Barbaresi, S.; Maertens, L.; Claeys, E.; Derave, W.; de Smet, S. Differences in muscle histidine-containing dipeptides in broilers. J. Sci. Food Agric. 2019, 99, 5680–5686. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-C.; Shiau, C.-Y.; Chen, H.-M.; Chiou, T.-K. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal. 2003, 11, 13. [Google Scholar] [CrossRef]
- Kohen, R.; Yamamoto, Y.; Cundy, K.C.; Ames, B.N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA 1988, 85, 3175–3179. [Google Scholar] [CrossRef] [Green Version]
- Puolanne, E.; Kivikari, R. Determination of the buffering capacity of postrigor meat. Meat Sci. 2000, 56, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Decker, E.A. The Role of Histidine-Containing Compounds on the Buffering Capacity of Muscle. In Proceedings of the 54th Annual Reciprocal Meat Conference, Indianapolis, IN, USA, 24–28 July 2001; pp. 161–164. [Google Scholar]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, G.; Kobayashi, H.; Shibata, M.; Kubota, M.; Kadowaki, M.; Fujimura, S. Reduction in dietary lysine increases muscle free amino acids through changes in protein metabolism in chickens. Poult. Sci. 2020, 99, 3102–3110. [Google Scholar] [CrossRef]
- Li, P.; Wu, G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018, 50, 29–38. [Google Scholar] [CrossRef]
- Proud, C.G. Signalling to translation: How signal transduction pathways control the protein synthetic machinery. Biochem. J. 2007, 403, 217–234. [Google Scholar] [CrossRef] [Green Version]
Starter 0–9 d | Grower I 10–20 d | Grower II 21–34 d | Finisher 35–49 d | |
---|---|---|---|---|
Ingredients, g/100 g | ||||
Corn | 42.3 | 45.6 | 39.7 | 30.0 |
Wheat | 12.0 | 12.0 | 17.5 | 30.0 |
Sorghum | 0.00 | 0.00 | 5.01 | 5.00 |
Vegetable oil | 1.61 | 2.31 | 2.48 | 2.59 |
Soybean meal 48% | 17.7 | 20.0 | 13.3 | 6.06 |
Full-fat soybean | 5.00 | 7.53 | 10.0 | 12.5 |
High-protein soybean meal | 5.00 | 0.00 | 0.00 | 0.00 |
Sunflower | 3.00 | 3.01 | 4.01 | 5.00 |
Pea | 3.00 | 3.01 | 5.01 | 6.00 |
Corn gluten | 3.00 | 0.00 | 0.00 | 0.00 |
Lysine | 0.67 | 0.23 | 0.22 | 0.50 |
DL-Methionine | 0.27 | 0.31 | 0.29 | 0.25 |
L-Threonine | 0.18 | 0.17 | 0.12 | 0.11 |
Choline chloride | 0.10 | 0.10 | 0.05 | 0.05 |
Calcium carbonate | 0.40 | 0.54 | 0.66 | 0.87 |
Dicalcium phosphate | 1.10 | 0.57 | 0.40 | 0.23 |
Sodium chloride | 0.36 | 0.32 | 0.28 | 0.19 |
Sodium bicarbonate | 0.00 | 0.00 | 0.10 | 0.19 |
Vitamin premix 1 | 0.50 | 0.45 | 0.36 | 0.21 |
Phytase | 0.05 | 0.05 | 0.05 | 0.05 |
Xylanase | 0.05 | 0.05 | 0.05 | 0.05 |
Calculated composition, % | ||||
Dry matter * | 88.3 | 88.1 | 88.3 | 88.4 |
Crude protein * | 22.2 | 20.0 | 18.7 | 17.5 |
Total lipid * | 4.68 | 5.85 | 6.38 | 6.80 |
Crude fiber * | 2.91 | 2.96 | 2.97 | 3.10 |
Ash | 4.82 | 4.37 | 4.14 | 4.00 |
Lysine (digestible) | 1.27 | 1.15 | 1.05 | 0.95 |
Met. + Cyst. (digestible) | 0.92 | 0.84 | 0.79 | 0.72 |
Arginine (digestible) | 1.34 | 1.25 | 1.15 | 1.03 |
Threonine (digestible) | 0.85 | 0.77 | 0.68 | 0.62 |
Ca (total) | 0.69 | 0.59 | 0.57 | 0.56 |
P (total) | 0.59 | 0.49 | 0.44 | 0.40 |
AME 2, kcal/kg | 3000 | 3078 | 3153 | 3200 |
Experimental Group | sem | p-Value | |||||
---|---|---|---|---|---|---|---|
CONT | GRW I | GRW I + II | Analysis of Variance 1 | Planned Contrast 2 | |||
n. replicates | 7 | 7 | 7 | ||||
0–9 d | |||||||
Chick body weight (g/bird) | 43.3 | 43.2 | 43.1 | 0.10 | ns | ns | |
Body weight (g/bird) | 215 | 218 | 214 | 1.03 | ns | ns | |
Daily weight gain (g/bird/d) # | 19.1 | 19.5 | 19.0 | 0.11 | ns | ns | |
Daily feed intake (g/bird/d) # | 24.0 | 24.7 | 24.1 | 0.14 | 0.06 | ns | |
Feed conversion ratio # | 1.259 | 1.269 | 1.269 | 0.01 | ns | ns | |
Mortality (%) | 0.00 | 0.00 | 0.00 | - | - | - | |
10–20 d | |||||||
Body weight (g/bird) | 789 | 772 | 764 | 4.82 | 0.10 | * | |
Daily weight gain (g/bird/d) # | 52.0 | 50.3 | 49.9 | 0.40 | 0.07 | * | |
Daily feed intake (g/bird/d) # | 81.2 a | 77.7 b | 76.4 b | 0.64 | ** | ** | |
Feed conversion ratio # | 1.563 | 1.545 | 1.533 | 0.01 | ns | ns | |
Mortality (%) | 0.32 | 0.00 | 0.32 | 0.01 | ns | ns | |
21–34 d | |||||||
Body weight (g/bird) | 2014 a | 1953 ab | 1890 b | 21.5 | * | * | |
Daily weight gain (g/bird/d) # | 87.5 | 84.3 | 80.4 | 1.45 | ns | 0.09 | |
Daily feed intake (g/bird/d) # | 152.9 a | 146.5 b | 145.2 b | 1.16 | ** | ** | |
Feed conversion ratio # | 1.749 | 1750 | 1.809 | 0.02 | ns | ns | |
Mortality (%) | 0.32 | 0.00 | 0.00 | 0.01 | ns | ns | |
35–49 d | |||||||
Body weight (g/bird) | 3601 | 3519 | 3494 | 28.6 | ns | ns | |
Daily weight gain (g/bird/d) # | 105.8 | 104.2 | 106.7 | 1.63 | ns | ns | |
Daily feed intake (g/bird/d) # | 230.5 | 228.3 | 227.0 | 1.56 | ns | ns | |
Feed conversion ratio # | 2.184 | 2.195 | 2.139 | 0.02 | ns | ns | |
Mortality (%) | 0.00 | 0.32 | 0.64 | 0.01 | ns | ns | |
0–49 d | |||||||
Body weight (g/bird) | 3601 | 3519 | 3494 | 28.6 | ns | ns | |
Daily weight gain (g/bird/d) # | 72.6 | 70.9 | 70.4 | 0.58 | ns | ns | |
Daily feed intake (g/bird/d) # | 136.7 | 133.7 | 132.4 | 0.78 | 0.06 | * | |
Feed conversion ratio # | 1.886 | 1.889 | 1.886 | 0.01 | ns | ns | |
Mortality (%) | 0.64 | 0.32 | 0.96 | 0.02 | ns | ns |
Experimental Group | sem | p-Value | ||||
---|---|---|---|---|---|---|
CONT | GRW I | GRW I + II | Analysis of Variance 1 | Planned Contrast 2 | ||
Weight (g) | 303.35 | 259.37 | 267.43 | 5.54 | ns | ns |
Ultimate pH | 5.71 | 5.66 | 5.67 | 0.02 | ns | ns |
Lightness—L * | 58.30 | 57.98 | 57.31 | 0.45 | ns | ns |
Redness—a * | 1.78 | 1.84 | 1.81 | 0.10 | ns | ns |
Yellowness—b * | 2.76 | 2.30 | 2.36 | 0.18 | ns | * |
Drip loss 24 h (%) | 1.83 | 1.82 | 1.68 | 0.05 | ns | ns |
Drip loss 96 h (%) | 2.70 | 2.79 | 2.48 | 0.10 | ns | ns |
Cooking loss (%) | 22.94 | 22.90 | 22.47 | 0.31 | ns | ns |
Experimental Group | sem | p-Value | ||||
---|---|---|---|---|---|---|
CONT | GRW I | GRW I + II | Analysis of Variance 1 | Planned Contrast 2 | ||
Carbonyls (nmol/mg of protein) | 2.94 | 2.93 | 3.20 | 0.19 | ns | ns |
Protein solubility (mg/100 mg total protein) | 74.1 b | 73.4 b | 77.2 a | 1.61 | * | * |
TSH (μmol/mg meat) | 6.52 | 6.23 | 6.65 | 0.06 | ns | ns |
SSH (μmol/mg meat) | 5.90 | 6.01 | 5.84 | 0.08 | ns | ns |
Experimental Group | sem | p-Value | ||||
---|---|---|---|---|---|---|
CONT | GRW I | GRW I + II | Analysis of Variance 1 | Planned Contrast 2 | ||
Alanine | 1.33 a | 1.22 b | 1.30 ab | 0.02 | * | * |
Glycine | 1.00 a | 0.84 b | 0.86 b | 0.02 | ** | *** |
Valine | 0.72 | 0.65 | 0.69 | 0.03 | ns | ns |
Leucine | 1.88 | 1.83 | 1.91 | 0.02 | ns | ns |
Isoleucine | 1.05 b | 1.03 b | 1.12 a | 0.01 | *** | ns |
Proline | 1.25 a | 0.83 b | 1.00 ab | 0.06 | ** | ** |
Methionine | 0.47 | 0.47 | 0.51 | 0.01 | ns | ns |
Serine | 0.71 | 0.67 | 0.72 | 0.02 | ns | ns |
Threonine | 0.96 | 0.92 | 0.97 | 0.01 | ns | ns |
Phenylalanine | 0.71 | 0.69 | 0.78 | 0.02 | ns | ns |
Aspartate | 2.13 a | 1.97 b | 2.05 ab | 0.02 | * | ** |
Glutamate | 3.24 | 3.08 | 3.21 | 0.04 | ns | ns |
Lysine | 2.20 | 2.03 | 1.93 | 0.07 | ns | ns |
Arginine | 1.45 | 1.35 | 1.53 | 0.04 | ns | ns |
Histidine | 1.14 ab | 1.10 b | 1.19 a | 0.01 | ** | ns |
Tyrosine | 0.42 | 0.38 | 0.47 | 0.03 | ns | ns |
Experimental Group | sem | p-Value | ||||
---|---|---|---|---|---|---|
CONT | GRW I | GRW I + II | Analysis of Variance 1 | Planned Contrast 2 | ||
Histidine-containing dipeptides (mg/100 g of meat) | ||||||
Anserine | 369.7 | 429.4 | 442.3 | 15.5 | ns | * |
Carnosine | 108.2 | 123.3 | 139.5 | 8.4 | ns | ns |
Metabolites (mg/100 g of meat) | ||||||
Creatine | 330.2 | 363.3 | 345.7 | 7.4 | ns | ns |
IMP | 114.9 | 125.1 | 117.8 | 4.4 | ns | ns |
Lactate | 611.1 | 692.9 | 677.5 | 18.4 | ns | 0.06 |
Fumarate | 0.99 | 0.98 | 0.89 | 0.03 | ns | ns |
Hypoxanthine | 23.4 | 27.6 | 27.1 | 1.1 | ns | 0.09 |
Guanidoacetate | 29.8 | 30.6 | 30.4 | 0.4 | ns | ns |
Glucose | 14.3 | 22.5 | 19.4 | 2.1 | ns | ns |
Inosine | 34.9 | 32.8 | 29.5 | 1.7 | ns | ns |
Experimental Group | sem | p-Value | ||||
---|---|---|---|---|---|---|
CONT | GRW I | GRW I + II | Analysis of Variance 1 | Planned Contrast 2 | ||
pH 6.0 | 41.2 | 42.5 | 44.2 | 0.9 | ns | ns |
pH 6.2 | 44.4 | 42.3 | 51.5 | 1.3 | ns | ns |
pH 6.4 | 48.6 | 46.8 | 47.7 | 1.0 | ns | ns |
pH 6.6 | 49.2 ab | 45.6 b | 51.6 a | 1.3 | ** | ns |
pH 6.8 | 49.5 b | 44.0 b | 58.0 a | 1.4 | * | ns |
pH 7.0 | 44.5 b | 42.1 b | 55.2 a | 1.4 | ** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soglia, F.; Zampiga, M.; Baldi, G.; Malila, Y.; Thanatsang, K.V.; Srimarut, Y.; Tatiyaborworntham, N.; Unger, O.; Klamchuen, A.; Laghi, L.; et al. Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens. Animals 2021, 11, 1499. https://doi.org/10.3390/ani11061499
Soglia F, Zampiga M, Baldi G, Malila Y, Thanatsang KV, Srimarut Y, Tatiyaborworntham N, Unger O, Klamchuen A, Laghi L, et al. Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens. Animals. 2021; 11(6):1499. https://doi.org/10.3390/ani11061499
Chicago/Turabian StyleSoglia, Francesca, Marco Zampiga, Giulia Baldi, Yuwares Malila, Krittaporn V. Thanatsang, Yanee Srimarut, Nantawat Tatiyaborworntham, Onuma Unger, Annop Klamchuen, Luca Laghi, and et al. 2021. "Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens" Animals 11, no. 6: 1499. https://doi.org/10.3390/ani11061499
APA StyleSoglia, F., Zampiga, M., Baldi, G., Malila, Y., Thanatsang, K. V., Srimarut, Y., Tatiyaborworntham, N., Unger, O., Klamchuen, A., Laghi, L., Petracci, M., & Sirri, F. (2021). Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens. Animals, 11(6), 1499. https://doi.org/10.3390/ani11061499