Live Bacillus subtilis natto Promotes Rumen Fermentation by Modulating Rumen Microbiota In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Live and Autoclaved B. subtilis natto
2.2. Animals, Diet, and Experimental Design
2.3. Determinations of Ruminal Fermentation Parameters
2.4. DNA Extraction and 16S rRNA Gene Sequencing of the Rumen Microbiota
2.5. Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Rumen Fermentation Parameters
3.2. Ruminal Bacterial Diversity
3.3. Ruminal Bacterial Community Composition
3.4. Correlation Analysis between Ruminal Bacterial Composition and Fermentation Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, G.V.M.; Coelho, B.O.; Irineudo Magalhães, A., Jr.; Thomaz-Soccol, V.; Soccol, C.R. How to Select a Probiotic? A Review and Update of Methods and Criteria. Biotech. Adv. 2018, 36, 2060–2076. [Google Scholar] [CrossRef] [PubMed]
- Dargahi, N.; Johnson, J.; Donkor, O.; Vasiljevic, T.; Apostolopoulos, V. Immunomodulatory Effects of Probiotics: Can They be Used to Treat Allergies and Autoimmune Diseases? Maturitas 2019, 119, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Yokoyama, S. Trends in the Application of Bacillus in Fermented Foods. Curr. Opin. Biotech. 2019, 56, 36–42. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Q.; Zhang, H.T. Effects of Bacillus Subtilis Natto on Performance and Immune Function of Preweaning Calves. J. Dairy Sci. 2010, 93, 5851–5855. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.L.; Lopes, N.M.; Zacaroni, O.F.; Silveira, V.; Pereira, R.A.N.; Freitas, J.A.; Almeida, R.; Salvati, G.G.S.; Pereira, M.N. Lactation Performance and Diet Digestibility of Dairy Cows in Response to the Supplementation of Bacillus Subtillis Natto. Livest. Sci. 2017, 200, 35–39. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Haberer, P.; Geisen, R.; Björkroth, J.; Schillinger, U. Taxonomy and Important Features of Probiotic Microorganisms in Food and Nutrition. Am. J. Clin. Nutr. 2001, 73, 365S–373S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Wang, J.Q.; Kang, H.Y.; Dong, S.H.; Sun, P.; Bu, D.P.; Zhou, L.Y. Effect of Feeding Bacillus Subtillis Natto on Milk Production and Composition, Blood Metabolites and Rumen Fermentation in Early Lactation Dairy Cows. J. Anim. Physiol. Anim. Nutr. 2012, 96, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Hyronimus, B.; Le Marrec, C.; Sassi, A.H.; Deschamps, A. Acid and Bile Tolerance of Spore-forming Lactic Acid Bacteria. Int. J. Food Microbiol. 2000, 61, 193–197. [Google Scholar] [CrossRef]
- Nicholson, W.L. Roles of Bacillus Endospores in the Environment. Cell Mol. Life Sci. 2002, 59, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Casula, G.; Cutting, S.M. Bacillus Probiotics: Spore Germination in the Gastrointestinal Tract. Appl. Environ. Microb. 2002, 68, 2344–2352. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.A.; Duc, L.H.; Cutting, S.M. The Use of Bacterial Spore Formers as Probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripamonti, B.; Agazzi, A.; Baldi, A.; Balzaretti, C.; Bersani, C.; Pirani, S.; Rebucci, G.; Stella, S.; Stenico, A.; Domeneghini, C. Administration of Bacillus Coagulans in Calves: Recovery from Faecal Samples and Evaluation of Functional Aspects of Spores. Vet. Res. Commun. 2009, 33, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.Y.L.; Tan, H.M. Effect of Bacillus Subtilis PB6 (CloSTAT) on Broilers Infected with a Pathogenic Strain of Escherichia coli. J. Appl. Poult. Res. 2006, 15, 229–235. [Google Scholar] [CrossRef]
- Teo, A.Y.L.; Tan, H.M. Inhibition of Clostridium Perfringens by a Novel Strain of Bacillus subtilis Isolated from the Gastrointestinal Tracts of Healthy Chickens. Appl. Environ. Microbiol. 2005, 71, 4185–4190. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.H.; Li, D.F.; Lu, Q.W.; Piao, X.S.; Chen, X. Screening of Bacillus Strains as Potential Probiotics and Subsequent Confirmation of the in vivo Effectiveness of Bacillus Subtilis MA139 in Pigs. Antonie Van Leeuwenhoek 2006, 90, 139–146. [Google Scholar] [CrossRef]
- Sun, P.; Li, J.N.; Bu, D.P.; Nan, X.M.; Du, H. Effects of Bacillus Subtilis Natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria in vitro. Curr. Microbiol. 2016, 72, 5892013595. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, J.Q.; Deng, L.F. Effects of Bacillus Subtilis Natto on Milk Production, Rumen Fermentation, and Rumimal Microbiome of Dairy Cows. Animal 2012, 7, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the Energetic Feed Value Obtained by Chemical Analysis and in vitro Gas Production using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Stewart, C.S.; Duncan, S.H. The Effect of Avoparcin on Cellulolytic Bacteria of the Ovine Rumen. J. Gen. Microbiol. 1985, 131, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and in vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Zinn, R.A.; Owen, F.N. A Rapid Procedure for Purine Measurement and its Use for Estimating Net Ruminal Protein Synthesis. Can. J. Anim. Sci. 1986, 66, 157–166. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K. Purine Quantification in Digesta from Ruminants by Spectrophotometric and HPLC Methods. Br. J. Nutr. 1999, 81, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.L.; Liu, J.X.; Ye, J.A.; Wu, Y.M.; Guo, Y.Q. Effect of Tea Saponin on Rumen Fermentation in vitro. Anim. Feed Sci. Technol. 2005, 120, 333–339. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, G.A.; Goodrich, K.J.; Gordon, I.J.; et al. QIIME Allows Analysis of High-throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Morrison, M.; Yu, Z. Status of the Phylogenetic Diversity Census of Ruminal Microbiomes. FEMS Microbiol. Ecol. 2011, 76, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Wang, Z.; Dong, C.; Li, F.; Wang, W.; Yuan, Z.; Mo, F.; Weng, X. Rumen Bacteria Communities and Performances of Fattening Lambs with a Lower or Greater Subacute Ruminal Acidosis Risk. Front. Microbiol. 2017, 8, 2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Hu, X.; Yang, S.; Zhou, J.; Zhang, T.; Qi, L.; Sun, X.; Fan, M.; Xu, S.; Cha, M.; et al. Comparative Analysis of the Gut Microbiota Composition between Captive and Wild Forest Musk Deer. Front. Microbiol. 2017, 8, 1705. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.A.; Nisbet, D.J. Effect of Direct-fed Microbials on Rumen Microbial Fermentation. J. Dairy Sci. 1992, 75, 1736–1744. [Google Scholar] [CrossRef]
- Ghorbani, G.R.; Morgavi, D.P.; Beauchemin, K.A.; Leedle, J.A.Z. Effects of Bacterial Direct-fed Microbials on Ruminal Fermentation, Blood Variables, and the Microbial Populations of Feedlot Cattle. J. Anim. Sci. 2002, 80, 1977–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.; Wang, J.Q.; Zhang, H.T. Effects of Supplementation of Bacillus Subtilis Natto Na and N1 Strains on Rumen Development in Dairy Calves. Anim. Feed Sci. Technol. 2011, 164, 154–160. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, Z.; Wang, D.; Liu, J. Nitrogen Partitioning and Microbial Protein Synthesis in Lactating Dairy Cows with Different Phenotypic Residual Feed Intake. J. Anim. Sci. Biotechnol. 2019, 10. [Google Scholar] [CrossRef]
- Esawy, M.A.; Ahmed, E.F.; Helmy, W.A.; Mansour, M.; El-Senousy, W.M.; El-Safty, M.M. Production of Levansucrase from Novel Honey Bacillus Subtilis Isolates Capable of Producing Antiviral Levans. Carbohyd. Polym. 2011, 86, 823–830. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, C.; Huo, D.; Hu, Q.; Peng, Q. Comparative Study of the Gut Microbiome Potentially Related to Milk Protein in Murrah Buffaloes (Bubalus Bubalis) and Chinese Holstein Cattle. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Jiao, S.; Dai, Y.; An, J.; Lv, J.; Yan, X.; Wang, J.; Han, B. Probiotic Bacillus Amyloliquefaciens C-1 Improves Growth Performance, Stimulates GH/IGF-1, and Regulates the Gut Microbiota of Growth-retarded Beef Calves. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.H.; Wang, J.Q.; Peng, H.; Sun, P.; Bu, D.P.; Zhou, L.Y.; Du, H. Survival of Bacillus Subtilis Natto in Rumen and Duodenum of Holstein Dairy Cows. J. China Agric. Univ. 2011, 16, 104–109. [Google Scholar]
- Li, R.W.; Connor, E.E.; Li, C.; Baldwin, V.; Sparks, M.E. Characterization of the Rumen Microbiota of Pre-ruminant Calves Using Metagenomic Tools. Environ. Microbiol. 2012, 14, 129–139. [Google Scholar] [CrossRef]
- You, M.; Mo, S.; Watt, R.M.; Leung, W.K. Prevalence and Diversity of Synergistetestaxa in Periodontal Health and Disease. J. Periodontal Res. 2012, 48, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Jumas-Bilak, E.; Marchandin, H. The Phylum Synergistetes. In The Prokaryotes; Springer: Cham, Switzerland, 2014; pp. 931–954. [Google Scholar]
- Geissinger, O.; Herlemann, D.P.R.; Morschel, E.; Maier, U.G.; Brune, A. The Ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the First Cultivated Representative of the Termite Group 1 Phylum. Appl. Environ. Microbiol. 2009, 75, 2831–2840. [Google Scholar] [CrossRef] [Green Version]
- Huo, W.; Zhu, W.; Mao, S. Impact of Subacute Ruminal Acidosis on the Diversity of Liquid and Solid-associated Bacteria in the Rumen of Goats. World J. Microbiol. Biotechnol. 2014, 30, 669–680. [Google Scholar] [CrossRef]
- Koike, S.; Kobayashi, Y. Development and Use of Competitive PCR Assays for the Rumen Cellulolytic Bacteria: Fibrobacter Succinogenes, Ruminococcus Albus, and Ruminococcus Flavefaciens. FEMS Microbiol. Lett. 2001, 204, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Matsui, S. Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition. In Springer Handbook of Nanotechnology; Springer Handbooks; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 211–229. [Google Scholar]
- Tietyenm, J.L.; Nevins, D.J.; Shoemaker, C.F.; Schneeman, B.O. Hypocholesterolemic Potential of Oat Bran Treated with an Endo-β-D-glucanase from Bacillus Subtilis. J. Food Sci. 1995, 60, 558–560. [Google Scholar] [CrossRef]
- Hosoi, T.; Ametani, A.; Kiuchi, K.; Kaminogawa, S. Improved Growth and Viability of Lactobacilli in the Presence of Bacillus Subtilis (natto), Catalase, or Subtilisin. Can. J. Microbiol. 2000, 46, 892–897. [Google Scholar] [CrossRef]
- Yu, P.; Wang, J.Q.; Liu, K.L.; Bu, D.P.; Li, D.; Zhao, S. Effect of Feeding Bacillus Ssubtilis Natto on Rumen Bacteria Population of Holstein Calves. J. Agric. Biotechol. 2010, 18, 108–113. [Google Scholar]
- Yu, P.; Wang, J.Q.; Bu, D.P.; Liu, K.L.; Li, D.; Zhao, S.G. Effects of Bacillus Subtilis Natto in Diets on Quantities of Gastrointestinal Cellulytic Bacteria in Weaning Calves. J. China Agric. Univ. 2009, 14, 111–116. [Google Scholar]
- Kopecny, J. Butyrivibrio Hungatei sp. nov. and Pseudobutyrivibrio Xylanivorans sp. nov., Butyrate-producing Bacteria from the Rumen. Int. J. Syst. Evol. Microbiol. 2003, 53, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Cotta, M.; Forster, R. The Family Lachnospiraceae, Including the Genera Butyrivibrio, Lachnospira and Roseburia. In The Prokaryotes; Springer: Cham, Switzerland, 2006; pp. 1002–1021. [Google Scholar]
- Iino, T.; Mori, K.; Tanaka, K.; Suzuki, K.; Harayama, S. Oscillibacter Valericigenes gen. nov., sp. nov., a Valerate-producing Anaerobic Bacterium Isolated from the Alimentary Canal of a Japanese Corbicula Clam. Int. J. Syst. Evol. Microbiol. 2007, 57, 1840–1845. [Google Scholar] [CrossRef] [Green Version]
- Ezaki, T. Coprococcus . In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley and Sons: Hoboken, NJ, USA, 2015; pp. 1–3. [Google Scholar]
- Jabari, L.; Gannoun, H.; Cayol, J.L.; Hedi, A.; Sakamoto, M.; Falsen, E.; Ohkuma, M.; Hamdi, M.; Fauque, G.; Ollivier, B.; et al. Macellibacteroides fermentans gen. nov., sp. nov., a Member of the Family Porphyromonadaceae Isolated from an Upflow Anaerobic Filter Treating Abattoir Wastewaters. Int. J. Syst. Evol. Microbiol. 2011, 62, 2522–2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paster, B.J.; Russell, J.B.; Yang, C.M.J.; Chow, M.; Woese, C.R.; Tanner, R. Phylogeny of the Ammonia-producing Ruminal Bacteria Peptostreptococcus Anaerobius, Clostridium Sticklandii, and Clostridium Aminophilum sp. nov. Int. J. Syst. Evol. Microbiol. 1993, 43, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, E.J. Bilophila . In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley and Sons: Hoboken, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Ritalahti, K.M.; Justicia-Leon, S.D.; Cusick, K.D.; Ramos-Hernandez, N.; Rubin, M.; Dornbush, J.; Löffler, E.F. Sphaerochaeta Globosa gen. nov., sp. nov. and Sphaerochaeta Pleomorpha sp. nov., Free-living, Spherical Spirochaetes. Int. J. Syst. Evol. Microbiol. 2011, 62, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.L.; Muramatsu, M.; Hanada, S.; Kamagata, Y.; Guo, R.; Sekiguchi, Y. Oligosphaera Ethanolica gen. nov., sp. nov., an Anaerobic, Carbohydrate-fermenting Bacterium Isolated from Methanogenic Sludge, and Description of Oligosphaeria Classis nov. in the Phylum Lentisphaerae. Int. J. Syst. Evol. Microbiol. 2012, 63, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Masami, M.; Fumiko, N.; Hiroshi, S.; Ryuichiro, T. Paraprevotella Clara gen. nov., sp. nov. and Paraprevotella Xylaniphila sp. nov., Members of the Family ‘Prevotellaceae’ Isolated from Human Faeces. Int. J. Syst. Evol. Microbiol. 2009, 59, 1895–1900. [Google Scholar]
- Hespell, R.B. The Genera Succinivibrio and Succinimonas. In The Prokaryotes; Springer: Cham, Switzerland, 1992; pp. 3979–3982. [Google Scholar]
- Chen, S. Saccharofermentans . In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Board, T.E. Barnesiella . In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley and Sons: Hoboken, NJ, USA, 2015; pp. 1–3. [Google Scholar]
- Bryant, M.P.; Small, N.; Bouma, C.; Chu, H. Bacteroides Ruminicola n. sp. and Succinimonas Amylolytica; the New Genus and Species; Species of Succinic Acid-producing Anaerobic Bacteria of the Bovine Rumen. J. Bacteriol. 1958, 76, 15–23. [Google Scholar] [CrossRef] [Green Version]
Item | % |
---|---|
Ingredient | |
Alfalfa hay | 16.65 |
Corn silage | 20.25 |
Soybean meal | 8.4 |
Rapeseed meal | 1.3 |
Cottonseed meal | 1.1 |
Extruded soybean | 2.1 |
Sugarbeet | 4.2 |
Apple pomace | 2.1 |
Whole cottonseed | 10.5 |
DDGS 1 | 2.6 |
Flaked corn | 10.5 |
Corn | 17.1 |
Fat powder | 1.1 |
Limestone | 0.4 |
Salt | 0.4 |
Premix 2 | 0.5 |
NaHCO3 | 0.8 |
Chemical analysis | |
CP | 15.66 |
EE | 3.45 |
NDF | 26.53 |
ADF | 22.04 |
Ash | 6.11 |
NEL 3, MJ/kg | 6.46 |
Item | Treatment 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CTR | LBS | ABS | Trt 2 | Time | Trt × Time | ||
pH | |||||||
0 h | 6.62 | 6.62 | 6.67 | 0.02 | 0.01 | <0.01 | 0.65 |
6 h | 6.46 b | 6.48 ab | 6.52 a | ||||
12 h | 6.49 | 6.47 | 6.51 | ||||
24 h | 6.43 b | 6.49 a | 6.50 a | ||||
NH3-N, mg/dL | |||||||
0 h | 9.28 b | 18.54 a | 23.14 a | 2.23 | <0.01 | <0.01 | 0.31 |
6 h | 16.69 b | 22.58 a | 25.48 a | ||||
12 h | 23.51 a | 22.76 b | 31.53 a | ||||
24 h | 39.21 b | 42.28 b | 52.23 a | ||||
MCP, mg/mL | |||||||
0 h | 0.43 | 0.39 | 0.46 | 0.05 | 0.02 | 0.11 | 0.32 |
6 h | 0.38 | 0.49 | 0.44 | ||||
12 h | 0.38 b | 0.56 a | 0.46 ab | ||||
24 h | 0.41 b | 0.58 a | 0.57 a | ||||
Acetate, mmol/L | |||||||
0 h | 18.46 | 25.38 | 17.45 | 3.47 | <0.01 | <0.01 | 0.14 |
6 h | 31.57 | 32.72 | 31.80 | ||||
12 h | 23.87 b | 42.95 a | 32.56 b | ||||
24 h | 30.27 b | 49.60 a | 40.08 ab | ||||
Propionate, mmol/L | |||||||
0 h | 5.92 | 7.24 | 5.23 | 1.01 | <0.01 | <0.01 | 0.07 |
6 h | 9.95 | 10.04 | 9.88 | ||||
12 h | 7.02 b | 13.34 a | 10.28 ab | ||||
24 h | 9.42 b | 14.46 a | 11.70 ab | ||||
Iso-butyrate, mmol/L | |||||||
0 h | 0.22 | 0.22 | 0.17 | 0.04 | 0.04 | <0.01 | 0.12 |
6 h | 0.29 | 0.27 | 0.28 | ||||
12 h | 0.21 a | 0.41 a | 0.34 ab | ||||
24 h | 0.40 | 0.53 | 0.45 | ||||
Butyrate, mmol/L | |||||||
0 h | 3.15 | 3.63 | 2.62 | 0.56 | <0.01 | <0.01 | 0.06 |
6 h | 5.16 | 5.00 | 4.89 | ||||
12 h | 3.73 b | 7.09 a | 5.50 ab | ||||
24 h | 5.36 b | 7.97 a | 6.32 ab | ||||
Iso-valerate, mmol/L | |||||||
0 h | 0.33 | 0.36 | 0.27 | 0.07 | 0.02 | <0.01 | 0.14 |
6 h | 0.46 | 0.43 | 0.43 | ||||
12 h | 0.35 b | 0.66 a | 0.56 ab | ||||
24 h | 0.68 b | 0.95 a | 0.79 ab | ||||
Valerate, mmol/L | |||||||
0 h | 0.47 | 0.47 | 0.35 | 0.11 | 0.02 | <0.01 | 0.04 |
6 h | 0.64 | 0.58 | 0.58 | ||||
12 h | 0.45 b | 0.88 a | 0.70 ab | ||||
24 h | 0.75 b | 1.02 a | 0.87 ab | ||||
Total VFA, mmol/L | |||||||
0 h | 28.55 | 37.32 | 26.08 | 5.16 | <0.01 | <0.01 | 0.10 |
6 h | 48.08 | 49.03 | 47.86 | ||||
12 h | 35.64 b | 65.33 a | 49.94 ab | ||||
24 h | 46.88 b | 74.54 a | 60.20 ab | ||||
Acetate/propionate | |||||||
0 h | 3.13 | 3.50 | 3.33 | 0.08 | 0.10 | 0.17 | 0.09 |
6 h | 3.17 | 3.26 | 3.20 | ||||
12 h | 3.36 | 3.21 | 3.18 | ||||
24 h | 3.21 | 3.43 | 3.43 |
Item | Treatment 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CTR | LBS | ABS | Trt 2 | Time | Trt × Time | ||
Chao1 | |||||||
0 h | 4534.84 | 4369.79 | 4866.76 | 273.02 | 0.47 | 0.07 | 0.95 |
6 h | 4105.18 | 4026.20 | 4274.72 | ||||
12 h | 4565.83 | 4441.05 | 4717.21 | ||||
24 h | 4883.78 | 4687.70 | 4622.04 | ||||
ACE | |||||||
0 h | 5259.44 | 4580.10 | 5257.77 | 390.63 | 0.57 | 0.07 | 0.53 |
6 h | 4285.27 | 4663.50 | 5022.65 | ||||
12 h | 5255.84 | 4902.38 | 5196.32 | ||||
24 h | 5966.50 | 5537.83 | 5158.71 | ||||
Shannon | |||||||
0 h | 5.98 | 6.13 | 6.15 | 0.06 | 0.05 | <0.01 | 0.29 |
6 h | 5.72 | 5.73 | 5.66 | ||||
12 h | 5.61 b | 5.84 a | 5.80 a | ||||
24 h | 5.73 | 5.76 | 5.77 | ||||
Simpson | |||||||
0 h | 0.012 | 0.009 | 0.009 | 0.001 | 0.03 | <0.01 | 0.35 |
6 h | 0.016 | 0.014 | 0.015 | ||||
12 h | 0.019 a | 0.015 ab | 0.012 b | ||||
24 h | 0.013 | 0.012 | 0.013 |
Phylum | Treatment 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CTR | LBS | ABS | Trt 2 | Time | Trt × Time | ||
Bacteroidetes | |||||||
0 h | 1.72 | 1.70 | 1.69 | 0.014 | 0.62 | <0.01 | 0.94 |
6 h | 1.84 | 1.83 | 1.83 | ||||
12 h | 1.80 | 1.80 | 1.81 | ||||
24 h | 1.72 | 1.72 | 1.71 | ||||
Firmicutes | |||||||
0 h | 1.63 | 1.65 | 1.65 | 0.024 | 0.66 | <0.01 | 0.35 |
6 h | 1.36 | 1.35 | 1.39 | ||||
12 h | 1.44 | 1.43 | 1.39 | ||||
24 h | 1.47 | 1.48 | 1.53 | ||||
Synergistetes | |||||||
0 h | 0.063 | 0.068 | 0.062 | 0.007 | 0.18 | <0.01 | 0.06 |
6 h | 0.036 | 0.033 | 0.049 | ||||
12 h | 0.059 | 0.069 | 0.049 | ||||
24 h | 0.085 b | 0.100 ab | 0.120 a | ||||
Chloroflexi | |||||||
0 h | 0.053 | 0.058 | 0.067 | 0.006 | 0.04 | <0.01 | 0.04 |
6 h | 0.036 | 0.032 | 0.031 | ||||
12 h | 0.044 | 0.025 | 0.036 | ||||
24 h | 0.083 a | 0.056 b | 0.054 b | ||||
Elusimicrobia | |||||||
0 h | 0.009 | 0.009 | 0.014 | 0.003 | 0.02 | <0.01 | 0.08 |
6 h | 0.024 | 0.020 | 0.018 | ||||
12 h | 0.041 a | 0.028 b | 0.032 ab | ||||
24 h | 0.044 a | 0.037 ab | 0.031 b |
Genus | Treatment 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CTR | LBS | ABS | Trt 2 | Time | Trt × Time | ||
Prevotella | |||||||
0 h | 1.58 b | 1.70 a | 1.64 ab | 0.02 | <0.01 | <0.01 | <0.01 |
6 h | 1.53 b | 1.67 a | 1.44 c | ||||
12 h | 1.50 ab | 1.60 a | 1.43 b | ||||
24 h | 1.69 a | 1.62 a | 1.44 b | ||||
Paraprevotella | |||||||
0 h | 0.45 b | 0.54 a | 0.50 ab | 0.02 | <0.01 | 0.19 | <0.01 |
6 h | 0.50 b | 0.57 a | 0.42 c | ||||
12 h | 0.52 a | 0.49 ab | 0.46 b | ||||
24 h | 0.55 a | 0.54 a | 0.46 ab | ||||
Selenomonas | |||||||
0 h | 0.44 | 0.50 | 0.42 | 0.03 | <0.01 | 0.50 | 0.53 |
6 h | 0.40 b | 0.59 a | 0.45 b | ||||
12 h | 0.44 | 0.54 | 0.45 | ||||
24 h | 0.44 b | 0.59 a | 0.44 b | ||||
Succinivibrio | |||||||
0 h | 0.06 c | 0.35 a | 0.23 b | 0.03 | <0.01 | <0.01 | <0.01 |
6 h | 0.06 c | 0.58 a | 0.26 b | ||||
12 h | 0.09 c | 0.54 a | 0.32 b | ||||
24 h | 0.27 b | 0.51 a | 0.35 b | ||||
Butyrivibrio | |||||||
0 h | 0.24 b | 0.53 a | 0.25 b | 0.03 | <0.01 | <0.01 | <0.01 |
6 h | 0.22 b | 0.44 a | 0.29 b | ||||
12 h | 0.22 b | 0.49 a | 0.29 b | ||||
24 h | 0.24 ab | 0.18 b | 0.29 a | ||||
Ruminococcus | |||||||
0 h | 0.15 b | 0.40 a | 0.15 b | 0.02 | <0.01 | <0.01 | <0.01 |
6 h | 0.18 b | 0.47 a | 0.25 a | ||||
12 h | 0.18 b | 0.42 a | 0.24 b | ||||
24 h | 0.16 b | 0.17 b | 0.27 a | ||||
Saccharofermentans | |||||||
0 h | 0.18 b | 0.43 a | 0.15 b | 0.02 | <0.01 | <0.01 | <0.01 |
6 h | 0.20 b | 0.44 a | 0.13 c | ||||
12 h | 0.17 b | 0.43 a | 0.15 b | ||||
24 h | 0.19 | 0.16 | 0.16 | ||||
Pseudobutyrivibrio | |||||||
0 h | 0.16 b | 0.30 a | 0.20 b | 0.02 | <0.01 | 0.06 | <0.01 |
6 h | 0.17 b | 0.30 a | 0.24 a | ||||
12 h | 0.18 b | 0.28 a | 0.23 ab | ||||
24 h | 0.21 a | 0.13 b | 0.22 a | ||||
Clostridium IV | |||||||
0 h | 0.12 b | 0.22 a | 0.15 b | 0.02 | <0.01 | <0.01 | <0.01 |
6 h | 0.15 b | 0.29 a | 0.24 a | ||||
12 h | 0.19 b | 0.27 a | 0.23 a | ||||
24 h | 0.15 b | 0.14 b | 0.25 a | ||||
Clostridium XIVa | |||||||
0 h | 0.12 b | 0.33 a | 0.15 b | 0.01 | <0.01 | <0.01 | <0.01 |
6 h | 0.15 b | 0.34 a | 0.15 b | ||||
12 h | 0.13 b | 0.32 a | 0.17 b | ||||
24 h | 0.14 b | 0.12 b | 0.18 a | ||||
Oscillibacter | |||||||
0 h | 0.13 b | 0.25 a | 0.14 b | 0.03 | <0.01 | 0.32 | <0.01 |
6 h | 0.16 b | 0.28 a | 0.17 b | ||||
12 h | 0.16 | 0.23 | 0.18 | ||||
24 h | 0.16 | 0.13 | 0.22 | ||||
Barnesiella | |||||||
0 h | 0.10 b | 0.20 a | 0.10 b | 0.02 | <0.01 | 0.21 | 0.02 |
6 h | 0.13 b | 0.22 a | 0.07 b | ||||
12 h | 0.11 b | 0.19 a | 0.09 b | ||||
24 h | 0.13 | 0.10 | 0.09 | ||||
Coprococcus | |||||||
0 h | 0.069 b | 0.17 a | 0.08 b | 0.009 | <0.01 | <0.01 | <0.01 |
6 h | 0.069 c | 0.19 a | 0.10 b | ||||
12 h | 0.093 b | 0.18 a | 0.10 b | ||||
24 h | 0.095 a | 0.06 b | 0.12 a | ||||
Bilophila | |||||||
0 h | 0.05 b | 0.10 a | 0.04 b | 0.012 | <0.01 | <0.01 | <0.01 |
6 h | 0.06 b | 0.17 a | 0.05 b | ||||
12 h | 0.05 c | 0.21 a | 0.10 b | ||||
24 h | 0.04 c | 0.21 a | 0.13 b | ||||
Macellibacteroides | |||||||
0 h | 0.07 b | 0.15 a | 0.07 b | 0.02 | <0.01 | 0.35 | 0.02 |
6 h | 0.10 b | 0.19 a | 0.05 b | ||||
12 h | 0.09 b | 0.17 a | 0.08 b | ||||
24 h | 0.12 | 0.08 | 0.07 | ||||
Sphaerochaeta | |||||||
0 h | 0.02 c | 0.09 a | 0.05 b | 0.006 | <0.01 | <0.01 | <0.01 |
6 h | 0.03 c | 0.12 a | 0.06 b | ||||
12 h | 0.04 c | 0.14 a | 0.09 b | ||||
24 h | 0.06 b | 0.11 a | 0.07 b | ||||
Succinimonas | |||||||
0 h | 0.014 b | 0.068 a | 0.077 a | 0.008 | <0.01 | 0.03 | 0.08 |
6 h | 0.023 b | 0.077 a | 0.069 a | ||||
12 h | 0.021 b | 0.064 a | 0.065 a | ||||
24 h | 0.061 | 0.082 | 0.068 | ||||
Oligosphaera | |||||||
0 h | 0.0086 b | 0.064 a | 0.033 ab | 0.016 | <0.01 | 0.28 | 0.65 |
6 h | 0.0086 b | 0.093 a | 0.022 ab | ||||
12 h | 0.017 b | 0.120 a | 0.045 b | ||||
24 h | 0.027 | 0.079 | 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Ma, F.; Wei, J.; Liu, J.; Nan, X.; Sun, P. Live Bacillus subtilis natto Promotes Rumen Fermentation by Modulating Rumen Microbiota In Vitro. Animals 2021, 11, 1519. https://doi.org/10.3390/ani11061519
Chang M, Ma F, Wei J, Liu J, Nan X, Sun P. Live Bacillus subtilis natto Promotes Rumen Fermentation by Modulating Rumen Microbiota In Vitro. Animals. 2021; 11(6):1519. https://doi.org/10.3390/ani11061519
Chicago/Turabian StyleChang, Meinan, Fengtao Ma, Jingya Wei, Junhao Liu, Xuemei Nan, and Peng Sun. 2021. "Live Bacillus subtilis natto Promotes Rumen Fermentation by Modulating Rumen Microbiota In Vitro" Animals 11, no. 6: 1519. https://doi.org/10.3390/ani11061519
APA StyleChang, M., Ma, F., Wei, J., Liu, J., Nan, X., & Sun, P. (2021). Live Bacillus subtilis natto Promotes Rumen Fermentation by Modulating Rumen Microbiota In Vitro. Animals, 11(6), 1519. https://doi.org/10.3390/ani11061519