The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Essential Oil
2.2. Broiler Chickens’ Experiment
2.2.1. Growth Performance Parameters
2.2.2. Animal Welfare Statement
2.2.3. Blood Parameters
2.3. In Vitro Experiment
2.3.1. Antioxidant Activity
2.3.2. Antibacterial Activity—Microdilution Checkerboard Method
3. Statistical Analysis
3.1. Chicken Experiment
3.2. In Vitro Experiment
4. Results
4.1. Chicken Experiment
4.2. Serum Biochemical, Immunological and Antioxidant Indices
4.3. In Vitro Experiment
4.3.1. Antioxidant Activity
4.3.2. Synergy Test: Microdilution Checkerboard Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fancher, C.A.; Zhang, L.; Kiess, A.S.; Adhikari, P.A.; Dinh, T.T.N.; Sukumaran, A.T. Avian pathogenic Escherichia coli and Clostridium perfringens: Challenges in no antibiotics ever broiler chicken production and potencial solutions. Microorganisms 2020, 8, 1533. [Google Scholar] [CrossRef] [PubMed]
- Paskudska, A.; Kołodziejczyk, D.; Socha, S. The use of herbs in animal nutrition. Acta Sci. Pol. Zootech. 2018, 17, 3–14. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. Use of essential oils in broiler chicken production—A review. Ann. Anim. Sci. 2017, 2, 317–335. [Google Scholar] [CrossRef] [Green Version]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. The effect of lavender (Lavandula angustifolia) essential oil as a drinking water supplement on the production performance, blood biochemical parameters, and ileal microflora in broiler chickens. Poult. Sci. 2019, 98, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Yarmohammadi Barbarestania, S.; Jazib, V.; Mohebodinic, H.; Ashayerizadehb, A.; Shabanib, A.; Toghyani, M. Effects of dietary lavender essential oil on growth performance, intestinal function, and antioxidant status of broiler chickens. Livest. Sci. 2020, 233, 103958. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. The antimicrobial activity of lavender essential oil (Lavandula angustifolia) and its influence on the production performance of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula essential oils: A current review of applications in medicinal, food, and cosmetic industries of lavender. Nat. Prod. Commun. 2018, 13, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Sander, G.; Heckmann, M.; Weghuber, J. Immunomodulatory activities of selected essential oils. Biomolecules 2020, 10, 1139. [Google Scholar] [CrossRef]
- Zheng, A.; Lin, S.; Pirzado, S.A.; Chen, Z.; Chang, W.; Cai, H.; Liu, G. Stress associated with simulated transport, changes serum biochemistry, postmortem muscle metabolism, and meat quality of broilers. Animals 2020, 10, 1442. [Google Scholar] [CrossRef] [PubMed]
- Sassi, B.N.; Averós, X.; Estevez, I. Technology and poultry welfare. Animals 2016, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Ross Broiler Management Handbook. 2018. Available online: https://en.aviagen.com/tech-center/ (accessed on 5 May 2018).
- Hodek, P.; Stiborova, M. Chicken antibodies—Superior alternative to conventional immunoglobulins. Proc. Indian Natl. Sci. Acad. Part B 2003, 69, 461–468. [Google Scholar]
- Zhao, Q.; Bowlesb, E.J.; Zhanga, H. Antioxidant activities of eleven Australian essential oils. Nat. Prod. Commun. 2008, 3, 837–842. [Google Scholar] [CrossRef]
- Van Vuuren, S.; Viljoen, A. Plant-based antimicrobial studies. Methods and approaches to study the interaction between natural products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosato, A.; Piarulli, M.; Corbo, F.; Muraglia, M.; Carone, A.; Vitali, M.E.; Vitali, C. In vitro synergistic action of certain combinations of gentamicin and essential oils. Curr. Med. Chem. 2010, 17, 3289–3295. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, S.; Rahati, M.; Seidavi, A.; Haq, Q.M.I.; Kadim, I.; Laudadio, V.; Tufarelli, V. Effects of feed supplementation with lavender (Lavandula angustifolia) essence on growth performance, carcass traits, blood constituents and caecal microbiota of broiler chickens. Eur. Poult. Sci. 2018, 82. [Google Scholar] [CrossRef]
- Torki, M.; Mohebbifar, A.; Mohammadi, H. Effects of supplementing hen diet with Lavandula angustifolia and/or Mentha spicata essential oils on production performance, egg quality and blood variables of laying hens. Vet. Med. Sci. 2021, 7, 184–193. [Google Scholar] [CrossRef]
- Küçükyilmaz, K.; Bozkurt, M.; Selek, N.; Güven, E.; Eren, H.; Atasever, A.; Bintaş, E.; Çatl, A.; Çınar, M. Effects of vaccination against coccidiosis, with and without a specific herbal essential oil blend, on performance, oocyst excretion and serum IBD titers of broilers reared on liter. Ital. J. Anim. Sci. 2012, 11, 2012. [Google Scholar] [CrossRef]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: In vitro antimicrobial activities and effects on growth performance. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [CrossRef]
- Basit, A.M.; Kadir, A.A.; Loh, T.C.; Aziz, S.A.; Salleh, A.; Kaka, U.; Idris, B.S. Effects of inclusion of different doses of Persicaria odorata leaf meal (POLM) in broiler chicken feed on biochemical and haematological blood indicators and liver histomorphological changes. Animals 2020, 10, 1209. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Comparison of the effect of two phytogenic compounds on growth performance and immune response of broilers. J. Appl. Anim. Res. 2017, 45, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Abo Ghanima, M.M.; Elsadek, M.F.; Taha, A.E.; Abd El-Hack, M.E.; Alagawany, M.; Ahmed, B.M.; Elshafie, M.M.; El-Sabrout, K. Effect of housing system and rosemary and cinnamon essential oils on layers performance, egg quality, haematological traits, blood chemistry, immunity, and antioxidant. Animals 2020, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Liu, W.; Geng, B.; Lei, Q.; Han, H.; Zhou, Y.; Liu, J.; Cao, D.; Li, H.; Li, F. Effect of plant essential oil on growth performance and immune function during rearing period in laying hens. Braz. J. Poult. Sci. Rev. Bras. De Ciência Avícola 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Mahrous, H.S.; El-Far, A.H.; Sadek, K.M.; Abdel-Latif, M.A. Effects of different levels of clove bud (Syzygium aromaticum) dietary supplementation on immunity, antioxidant status, and performance in broiler chickens. Alex. J. Vet. Sci. 2017, 54, 29–39. [Google Scholar] [CrossRef]
- Aami-Azghadi, M.; Golian, A.; Kermanshahi, H.; Sedghi, M. Comparison of dietary supplementation with cumin essential oil and prebiotic fermacto on humoral immune response, blood metabolites and performance of broiler chickens. Glob. Vet. 2010, 4, 380–387. [Google Scholar]
- Alp, M.; Midilli, M.; Kocabağli, N.; Yilmaz, H.; Turan, N.; Gargili, A.; Acar, N. The effects of dietary oregano essential oil on live performance, carcass yield, serum immunoglobulin G level, and oocyst count in broilers. J. Appl. Poult. Res. 2012, 21, 630–636. [Google Scholar] [CrossRef]
- Ryzner, M.; Takáčová, J.; Čobanová, K.; Plachá, I.; Venglovská, K.; Faix, S. Effect of dietary Salvia officinalis essential oil and sodium selenite supplementation on antioxidative status and blood phagocytic activity in broiler chickens. Acta Vet. Brno 2013, 82, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D.; Zych, S. Antibacterial activity of lavender essential oil and linalool combined with gentamicin on selected bacterial strains. Med. Weter. 2020, 76, 115–118. [Google Scholar] [CrossRef]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. Res. 2019, 10, 2–63. [Google Scholar] [CrossRef]
- Talei, G.R.; Mohmmadi, M.; Bahmani, M.; Kopaei, M.R. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Int. J. Pharm. Investig. 2017, 2, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Gadisa, E.; Weldearegay, G.; Desta, K. Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary Altern. Med. 2019, 19, 24. [Google Scholar] [CrossRef]
- Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.E.; Pagès, J.M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection-bacteria and their synergistic potential with antibiotics. Phytomedicine 2012, 19, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Božik, M.; Cejnar, P.; Maršík, P.; Klouček, P. Data on low-molecular weight proteins of Escherichia coli treated by essential oils components, tetracycline, chlorine and peroxide by MALDI-TOF MS. Data Brief. 2018, 21, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Kemegne, G.A.; Njayou, F.N.; Penlap, V.; Mbacham, W.F.; Kamdem, S.L.S. Chemical composition, antibiotic promotion and in vivo toxicity of Piper nigrum and Syzygium aromaticum essential oil. Afr. J. Biochem. Res. 2017, 11, 58–71. [Google Scholar] [CrossRef] [Green Version]
Item | Starter (0–12 day) | Grower I (13–22 day) | Grower II (23–32 day) | Finisher (33–42 day) |
---|---|---|---|---|
Ingredient | ||||
Wheat | 37.00 | 38.00 | 33.00 | 40.00 |
Soybean meal | 29.05 | 24.94 | 27.16 | 24.0 |
Maize | 25.93 | 27.39 | 28.74 | 25.32 |
Soya oil | 2.68 | 2.78 | 3.79 | 3.66 |
Canola meal | - | 2.50 | 2.50 | 3.01 |
Potato protein | 1.50 | 1.0 | 0.50 | - |
Limestone | 1.27 | 0.85 | 0.78 | 0.67 |
Monocalcium phosphate | 0.92 | 0.43 | 0.30 | 0.11 |
Vitamin and mineral premix 1 | 0.53 | 0.53 | 0.60 | 0.59 |
Poultry fat | - | 0.50 | 1.50 | 1.50 |
L-Lys-HCl | 0.39 | 0.40 | 0.41 | 0.43 |
DL-Met | 0.26 | 0.17 | 0.18 | 0.17 |
Salt | 0.24 | 0.27 | 0.28 | 0.28 |
NaHCO3 | 0.14 | 0.13 | 0.15 | 0.14 |
Threonine | 0.07 | 0.06 | 0.07 | 0.07 |
Choline chloride | - | 0.03 | 0.02 | 0.03 |
Phytase premix and coccidiostat 2 | 0.02 | 0.02 | 0.02 | 0.02 |
Calculated analysis | ||||
ME 3 (kcal/kg) | 2800 | 2865 | 2984 | 3020 |
Lys | 1.27 | 1.17 | 1.15 | 1.07 |
Met | 0.56 | 0.42 | 0.40 | 0.44 |
Ca | 0.86 | 0.63 | 0.56 | 0.65 |
p | 0.56 | 0.46 | 0.43 | 0.39 |
Na | 0.15 | 0.15 | 0.15 | 0.15 |
Analysed nutrient composition 4 | ||||
Crude protein | 21.05 | 19.47 | 19.40 | 18.52 |
Crude fibre | 3.18 | 3.47 | 3.62 | 3.38 |
Crude fat | 4.51 | 4.85 | 6.75 | 7.36 |
Crude ash | 5.24 | 3.96 | 3.76 | 4.00 |
Measurement Per Period 3 (day) | Dietary Treatment 2 | SEM 4 | ||
---|---|---|---|---|
Control | LEO1–42 | LEO22–42 | ||
BW (g) | ||||
1 | 40 | 40 | 41 | 0.14 |
21 | 1021 | 1028 | 1013 | 11.80 |
42 | 2612 a | 2791 b | 2751 b | 18.89 |
ADG (g/day) | ||||
1–21 | 47 | 47 | 46 | 0.70 |
22–42 | 76 a | 84 b | 88 b | 0.15 |
1–42 | 61 a | 66 b | 65 b | 0.21 |
FI (g/day) | ||||
1–21 | 58 | 61 | 59 | 0.25 |
22–42 | 171 | 176 | 172 | 1.72 |
1–42 | 105 | 106 | 105 | 0.46 |
FCR (g/g) | ||||
1–21 | 1.25 | 1.30 | 1.28 | 0.02 |
22–42 | 2.26 a | 2.09 b | 2.08 b | 0.05 |
1–42 | 1.72 a | 1.62 b | 1.63 b | 0.04 |
WI (mL/day) | ||||
1–21 | 143 | 149 | 145 | 1.07 |
22–42 | 351 | 350 | 353 | 2.88 |
1–42 | 229 | 224 | 219 | 1.02 |
EBI values | ||||
1–21 | 364 | 354 | 353 | 1.51 |
22–42 | 325 a | 394 b | 411 b | 7.04 |
1–42 | 345 a | 396 b | 387 b | 8.12 |
p-value | Period | Treatment | Period × Treatment | |
BW | <0.01 | <0.01 | <0.01 | |
ADG | <0.01 | <0.01 | <0.01 | |
FI | <0.01 | 0.99 | 0.98 | |
FCR | <0.01 | <0.01 | <0.01 | |
WI | <0.01 | 0.97 | 0.98 | |
EBI | <0.01 | <0.01 | <0.01 |
Blood Serum Parameters | Control | Group 1 | LEO22–42 | SEM 2 | p-Value |
---|---|---|---|---|---|
LEO1–42 | |||||
Alkaline phosphatase (U/L) | 630.60 | 582.60 | 532.40 | 18.11 | 0.822 |
Alanine transaminase (U/L) | 19.40 | 20.20 | 20.60 | 0.97 | 0.910 |
Aspartate aminotransferase (U/L) | 509.60 | 402.00 | 307.80 | 19.61 | 0.134 |
Cholesterol (mmol/L) | 3.30 | 3.49 | 3.07 | 0.18 | 0.442 |
Glucose (mmol/L) | 10.82 | 10.34 | 10.65 | 0.51 | 0.401 |
Total protein (g/L) | 39.40 | 38.80 | 38.00 | 1.21 | 0.873 |
Triglyceride (mmol/L) | 0.54 | 0.63 | 0.57 | 0.08 | 0.361 |
Uric acid (μmol/L) | 287.60 | 325.20 | 319.40 | 9.33 | 0.716 |
IgG 3(mg/mL) | 10.21 | 12.40 | 11.91 | 0.62 | 0.164 |
IgM 4(mg/mL) | 1.89 | 2.10 | 1.46 | 0.33 | 0.228 |
IgA 5(mg/mL) | 0.79 | 0.78 | 0.70 | 0.08 | 0.791 |
Total antioxidant status (mmol/L) | 1.55 a | 2.26 b | 2.22 b | 0.67 | <0.001 |
Item | MIC0 | MICc | FIC | FICI | Type of Interaction |
---|---|---|---|---|---|
Escherichia coli ATCC 25922 (Susceptible-35 mm) 1 | |||||
LEO (% v/v) | 0.50 | 0.08 | 0.16 | 0.66 | additive |
Enrofloxacin (µg/mL) | 0.01 | 0.005 | 0.50 | ||
Escherichia coli (Susceptible-30 mm) 1 | |||||
LEO (% v/v) | 1.0 | 0.75 | 0.75 | 1.0 | additive |
Enrofloxacin (µg/mL) | 0.02 | 0.005 | 0.25 | ||
Escherichia coli (Intermediate-21 mm) 1 | |||||
LEO (% v/v) | 1.0 | 0.625 | 0.625 | 0.75 | additive |
Enrofloxacin (µg/mL) | 0.320 | 0.04 | 0.125 | ||
Escherichia coli (Intermediate-17 mm) 1 | |||||
LEO (% v/v) | 1.0 | 0.50 | 0.50 | 0.56 | additive |
Enrofloxacin (µg/mL) | 5.0 | 0.32 | 0.06 | ||
Escherichia coli (Resistant-12 mm) 1 | |||||
LEO (% v/v) | 1.0 | 0.50 | 0.50 | 0.50 | synergistic |
Enrofloxacin (µg/mL) | 10.0 | 0.04 | 0.004 | ||
Escherichia coli (Resistant ≤ 6 mm) 1 | |||||
LEO (% v/v) | 1.0 | 0.16 | 0.16 | 0.22 | synergistic |
Enrofloxacin (µg/mL) | 40.0 | 2.50 | 0.062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adaszyńska-Skwirzyńska, M.; Szczerbińska, D.; Zych, S. The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin. Animals 2021, 11, 1535. https://doi.org/10.3390/ani11061535
Adaszyńska-Skwirzyńska M, Szczerbińska D, Zych S. The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin. Animals. 2021; 11(6):1535. https://doi.org/10.3390/ani11061535
Chicago/Turabian StyleAdaszyńska-Skwirzyńska, M., D. Szczerbińska, and S. Zych. 2021. "The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin" Animals 11, no. 6: 1535. https://doi.org/10.3390/ani11061535
APA StyleAdaszyńska-Skwirzyńska, M., Szczerbińska, D., & Zych, S. (2021). The Use of Lavender (Lavandula angustifolia) Essential Oil as an Additive to Drinking Water for Broiler Chickens and Its In Vitro Reaction with Enrofloxacin. Animals, 11(6), 1535. https://doi.org/10.3390/ani11061535