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Simple Summary: Although genomic selection is being used in many livestock species, it has not
yet been considered in local breeds due to the lower population size and the potential less effective
impact on the genetic evaluation of these breeds. The current research aims to investigate how
genomic data can impact the accuracy of genetic predictions for beef traits in Rendena, a small local
cattle breed of the North-East of Italy selected for a dual purpose. Classical animal models using
only phenotypic information were compared with two models that integrated genomic data with
pedigree information. The genomic models presented better accuracy in estimated breeding values
of the animals than the ‘classical’ animal model, especially the ‘simpler’ one assuming homogeneous
variances of single nucleotide polymorphisms. Our results show that the inclusion of genomic
information can be successfully applied to breeding selection scenarios even in small local cattle
breeds such as Rendena.

Abstract: The maintenance of local cattle breeds is key to selecting for efficient food production,
landscape protection, and conservation of biodiversity and local cultural heritage. Rendena is an
indigenous cattle breed from the alpine North-East of Italy, selected for dual purpose, but with
lesser emphasis given to beef traits. In this situation, increasing accuracy for beef traits could
prevent detrimental effects due to the antagonism with milk production. Our study assessed the
impact of genomic information on estimated breeding values (EBVs) in Rendena performance-tested
bulls. Traits considered were average daily gain, in vivo EUROP score, and in vivo estimate of
dressing percentage. The final dataset contained 1691 individuals with phenotypes and 8372 animals
in pedigree, 1743 of which were genotyped. Using the cross-validation method, three models
were compared: (i) Pedigree-BLUP (PBLUP); (ii) single-step GBLUP (ssGBLUP), and (iii) weighted
single-step GBLUP (WssGBLUP). Models including genomic information presented higher accuracy,
especially WssGBLUP. However, the model with the best overall properties was the ssGBLUP,
showing higher accuracy than PBLUP and optimal values of bias and dispersion parameters. Our
study demonstrated that integrating phenotypes for beef traits with genomic data can be helpful to
estimate EBVs, even in a small local breed.

Keywords: local cattle breeds; genomic prediction; ssGBLUP; cross-validation

1. Introduction

Rendena is a dual-purpose cattle breed indigenous to the North-East of Italy. This
breed is included within the “European Federation of Cattle Breeds of the Alpine System”
(FERBA), an organization whose main purpose consists in the preservation and promotion
of local cattle breeds of the alpine system (http://www.ferba.info, accessed on 20 April
2021). As is the case with many indigenous breeds, a greater genetic diversity than
specialized and cosmopolitan breeds is expected also for the Rendena [1]. This remarkable
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biodiversity is of great ecological importance and can be a beneficial factor for the survival
of the local population. Moreover, traditional breeds such as Rendena provide additional
benefits to the local human population such as economic advantages, ecosystem services,
and also cultural benefits, such as preservation of cultural heritage and tradition of a
specific area [1]. Rendena cattle also shows excellent values for traits concerning fertility
and longevity, maintains a median milk production (5000 kg per lactation), and possesses a
fairly good beef conformation [2]. Rendena cows are selected for both milk and meat, but
with more emphasis on dairy production in the selection index [3], with dairy accounting
for 65% and beef traits for 35% [4]. Although beef attitude plays a less important role
than milk in the selection index, an increase in the accuracy of the selection for this feature
over time could prevent its detriment due to the antagonism with milk production [3].
Estimations of breeding values (EBVs) have until now mostly taken place using classical
animal model analysis in Rendena through best linear unbiased predictor (BLUP; [3]) for
traits related to milk, meat production, and linear type traits. However, several studies
have shown how the use of genomic data can lead to an increase in prediction accuracy
compared to using only pedigree information [5].

For a long time, two major limitations to the genomic selection approach on small
populations such as Rendena have been the prohibitive cost of genotyping a sufficient
number of single nucleotide polymorphisms (SNPs) per individual and the equations for
EBVs’ estimation, which were based on a multistep approach [6]. In fact, the drawback of
the multistep approach in small populations is the scarce number of genotyped animals
with a phenotype to be used as the reference population to ensure a good accuracy of
prediction [6]. This is even more noticeable when sex-limited traits are considered [7].
To overcome this problem, methods such as the use of de-regressed proof [8,9] have
been developed to allow the inclusion of animals whose only genotype is known, using
progeny yield deviation adjusted for mates as a pseudo-phenotype. However, this method
presented some biases and lower accuracy whenever animals have few progenies with the
phenotype [10,11].

However, in the last few years, both limitations preventing the use of the genomic
selection approach in small breeds with limited diffusion such as Rendena have subsided.
Firstly, the constant decline in prices of SNP platforms has allowed genomic selection to
become much more cost-efficient. Secondly, equations such as the single-step genomic
best linear unbiased prediction (ssGBLUP) have been developed and found to be suitable
even in small-breed contexts [12]. The ssGBLUP simultaneously evaluates genotyped and
non-genotyped animals by substituting the pedigree-based relationship matrix (A) present
on BLUP, with a relationship matrix that combines pedigree and genomic information,
usually called H [13]. Single-step GBLUP represents a simple alternative to de-regressed
proofs. Moreover, ssGBLUP offers the advantage of avoiding double counting contribu-
tions, and it implicitly limits the bias of preselection for genotyped animals without the
phenotype [14–16]. Several studies have shown that ssGBLUP outperformed other meth-
ods in different livestock species in the context of genomic selection [17]. On the other hand,
ssGBLUP might have its own drawback: the genomic relationship matrix (G) included in a
single step assumes that all SNPs explain the same amount of variance [18]. This may be
a limit in the presence of traits influenced by many quantitative traits loci (QTL), such as
some beef-related traits such as carcass weight and daily gain [19,20]. Indeed, some studies
reported that SNP regression equations, in which prior assumption of SNPs’ effect and
variance are modeled with different a priori assumptions, outperformed the prediction
of ssGBLUP [21]. On this point, Zhang et al. [22] proposed to “relax” the assumption of
the G matrix in which all SNPs equally contribute to the genomic variance of the traits
by adding specific SNPs weights. These methods are called weighted single-step GBLUP
(WssGBLUP), and in a recent study, it has been shown to be effective by increasing the accu-
racy with respect to ssGBLUP for phenotypes such as those related to the beef attitude [23].
In this study, we investigated if the inclusion of genomic data in the estimate of breeding
values for three key beef traits measured during performance tests in Rendena might
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increase their predictive accuracy with respect to traditional pedigree BLUP (PBLUP). In
particular, the objective of this study was both to test different single-step GBLUP methods
for beef traits and to measure their difference in accuracy using alternative weighting
strategies, i.e., among different weighted single-step GBLUPs.

2. Materials and Methods
2.1. Data Availability
2.1.1. Phenotypic and Pedigree Data

Phenotypic and pedigree information was provided by the National Breeder Asso-
ciation of Rendena Cattle (www.anare.it, accessed on 18 March 2021). The phenotypes
consisted of data recorded on Rendena young bulls during performance tests conducted
from 1985 to the present. The phenotypes used were the average daily gain (ADG) obtained
by linear regression of weight on age recorded at least 11 times during the stay of bulls at
the test performance test station, the mean in vivo fleshiness score (EUROP grade), and the
mean in vivo estimate of dressing percentage (DP) evaluated by three skilled classifiers at
the end of the test, i.e., about 11 months of age, distribution of phenotype are reported in
Table 1. In vivo fleshiness score (EUROP grade) was linearly transformed as previously
reported [4]. In the final dataset, 1691 animals and as many phenotypes were present. The
animals present in this dataset were born between 1985 and 2020. In addition, 8372 animals
in the pedigree were retrieved tracing back up to the 10th generation.

Table 1. Descriptive statistics of the target phenotypic data obtained from Rendena young bulls
under performance test.

Taits 1 Number 2 Mean CV % Min Max

ADG (kg/d) 1691 (690) 1024.00 12.06 474.00 1562
EUROP (points) 1691 (690) 99.05 3.84 80.00 111.10

DP (points) 1691 (690) 54.18 1.74 50.00 57.70
1 ADG = Average daily gain; EUROP = in vivo fleshiness score, DP = in vivo estimate of dressing percentage.
2 Number of animals with records and (genotype).

2.1.2. Genotype Data

Two genotyping platforms were used in this study, Illumina Bovine LD GGP v3,
including 26,497 SNP markers (LD; no. = 1427) and Bovine 150K Array GGPv3 Bead Chip,
comprising 138,974 SNPs (HD; no. = 554; Illumina Inc., San Diego, CA, USA). The higher
density panel was used only in 554 males, whereas the remaining males (no; = 174) and
all the females (no. = 1253) were genotyped with the LD platform. Males genotyped
with LD chips were all animals with at least one father and one full sib genotyped with
the HD chip. The two panels shared about 60% of markers. Females with a call rate
(CR) lower than 95% and males with a CR lower than 90% were discarded before the
analysis. In addition, for both platforms, SNPs with a minor allele frequency (MAF)
<0.01 and call rate lower than 0.90 were removed with the plink program [24]. Before
genomic imputation, possible progeny conflicts were corrected with the seekparentsf90
program [25]. The imputation of LD samples to HD density was performed with the
AlphaImpute2 program [26], which combines algorithms of population imputation with
the use of imputation from pedigree information utilizing a sort of multi-locus iterative
peeling [26]. To avoid excessive computational demand, we imputed one chromosome at
each time. The threshold of loci inclusion to HD panels was set to 0.90, and a conservative
genotype threshold for imputation of 0.99 was chosen. A further genomic quality control
was then made for whole imputed panels (1953 individuals): SNPs with MAF lower
than 0.05 with Hardy–Weinberg equilibrium lower than 0.15 and a call-rate under 0.90
were removed from the dataset. In addition, animals with a call-rate under 0.90 were
removed, in this case, using the preGSf90 program [25]. At the end of genotype editing,
1743 animals were retained for further analysis, 690 of which had both phenotype and

www.anare.it
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genotype, consistency of this information are reported on Figure 1. The genotyped females
are close relatives with the male in the performances test, i.e., dams or grad-dams.
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2.2. Prediction Model
2.2.1. Pedigree Best Linear Unbiased Prediction (PBLUP)

The same fixed and random effects were used for all analyzed traits with the follow-
ing model:

y = Xb + Za + e (1)

where y is the vector of phenotypes, X represents the incident matrix for systematic fixed
effects, and b is the vector of fixed effects. Two cross-classified effects were used as in [4]:
the contemporary group (142 levels) and the parity order of the cow (four classes: first
parity, second parity, third to seventh parity, and above the eighth parity included). Z is
the incident matrix of random genetic additive effects, while a represents the vector of the
additive genetic effects (EBVs) and e is the vector of residuals sampled from a distribution
N
(
0, Iσ2

e
)
, where σ2

e is the residual variance. The additive genetic effect was sampled
from a normal distribution with mean zero and variance σ2

a and a covariance structure
depending on the model used. In the PBLUP, the model covariance of the random genetic
effect was sampled from a distribution N

(
0, Aσ2

a
)
, with A, which represents the identical by

descendent (IBD) matrix constructed from pedigree information. All genetic and genomic
prediction models were carried out with the blupf90 suite of programs [27].

The variance components used in all prediction scenarios were estimated under this
model using the univariate approach. In addition, genetic and residual correlation among
traits was estimated with multi-traits models. Covariances’ structures were G⊗A and
R⊗I with G and R, are 3 × 3 matrices, respectively, including the additive genetic and the
residual (co)variances matrices, ⊗ is the Kronecker product, and A and I are the additive
relationships matrix and an identity matrix, respectively. Prior distributions for G and R
matrices were independent inverse Wishart. Genetic and residual correlations (ra) were
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calculated between trait pairs as the ratio of the covariance on the square root of the product
of the respective variances.

Variances were estimated using Gibbs’s sampling algorithm with gibbs3f90 pro-
gram [27]. A chain of 200,000 iterations was used in both models. The first 5000 samples
were discarded as burn-in. Samples were stored every 100 iterations to leave 1950 samples
for inference.

2.2.2. Single-Step Genomic Best Linear Unbiased Prediction (ssGBLUP)

In ssGBLUP, the inverse of the IBS matrix A−1 was replaced by the H−1 matrix
as follows:

H−1 = A−1 +

[
0 0
0 (αG + βA22)

−1 −A−1
22

]
(2)

where A−1 and A−1
22 represent the inverses of the IBD matrix for all individuals and only

genotyped animals, respectively. To avoid singularity problems, the bending coefficient α
and β were set to 0.95 and 0.05, respectively. A−1 was computed accounting for inbreeding
to avoid inflation (bias) and to reduce the distance between the two matrices, as suggested
elsewhere [28]. G is the genomic relationship matrix, built using the first method proposed
in [18]:

G =
MM′

2 ∑ pi(1− pi)
(3)

where M is a matrix of SNP content centered by twice the current allele frequencies, and pi
is the allele frequency for the ith SNP. In addition, variance components were re-estimated
under this model to evaluate variances changes by the inclusion of genomic data. Therefore,
G in ssGWAS is adjusted so that the average diagonal and off-diagonal matches the averages
of A22.

2.2.3. Weighted Single-Step Genomic Best Linear Unbiased Prediction (WssGBLUP)

The last method used for genetic prediction was WssGBLUP, which differs from
ssGBLUP in the construction of G. Particularly, the Gw matrix was built using the following
method [17]:

Gw =
MDM′

2 ∑ pi(1− pi)
(4)

where D is a diagonal matrix in which the elements of the diagonal correspond to the
weight or effect of each SNP. Generally, SNPs’ effects (û) are obtained as a function of the
SNPs effect through a back-solving procedure from the EBVs’ solution obtained iteratively
with the (W)ssGBLUP [29] as follows:

û = δα
1

2 ∑ p(1− p)
DM′

[
MDM′

]−1 â (5)

where â is the vector of solutions of the genomic breeding values of the genotyped animals, and
δ accounts for the difference in genetic base between the pedigree and genomic relationship.

An iterative algorithm following that reported in [16] was used. This algorithm
consists of the subsequent steps:

1. Initial parameters are set to t = 1, D(t) = I, G(t) =
MD(t)M′

2 ∑ pi(1−pi)
.

2. GEBV (â) is obtained using ssGBLUP algorithm.
3. Allele substitution effects for each SNP (û) are reported in [5] with postGSf90 [22].

4. Each di(t+1) element of D(t+1), such as CT
|ûi |

sd(û)−2, is then calculated as in [18], where
CT is a shrinkage factor determining how much the distribution of SNP effects departs
from normality.
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5. SNP weights are normalized by keeping genetic variance constant among iteration:

D(t+1) =
tr
(

D(1)

)
tr
(

D(t+1)

) tr
(

D(t+1)

)
.

6. G is then re-built with the new obtained weights as G(t+1) =
MD(t+1)M′

2 ∑ pi(1−pi)
.

7. Further iterations are carried out up to convergence using WssGBLUP.

2.2.4. Weighted Strategies

A further aim of this study was to identify optimal weight strategies to achieve higher
accuracy and less biased genomic prediction. NonlinearA methods [18,30] were used as the
weighting strategies. We focus on the effect of variance limitations (limit) and the shrinkage
factor (CT). Other strategies such as linear weight [22,31] or Bayesian variable selection
methods [32] were not applied in this study because of their excessive shrinkage that led
to high biased prediction and incompatibility between the A and G matrix, as reported in
Supplementary Material S1.

Three values of CT were used in this study (1.105, 1.125, and 1.250), considering that
values greater than one deviate proportionally from a normal distribution and exhibit
grater shrinkage. By default, the postGSf90 program set maximum change in SNPs variance
equal to CT(5−2); thus, default limitations for the three parameters were automatically set
to 1.350, 1.424, and 1.953 for CT equal to 1.105, 1.125, and 1.250. Other scenarios have been
explored, setting the maximum change on variance equal to 5.

2.3. LR Cross-Validations

Estimators of bias, dispersion, and accuracy were adopted to evaluate the different
prediction models. The LR cross-validation method was used on this behalf [33]. In this
approach, two datasets (whole and partial) were used, and the parameters described above
were estimated in a set of focal individuals. The whole dataset contains all populations’
information, while the partial dataset includes a subset of phenotypic data up to a given
date. In this study, 2015 was set as the cut-off year, and the focal individuals are the
younger bulls with only genotype information (i.e., born after 2015; 109 animals). The
focal individuals represented the young animals of interest for selection, and in most of the
cases, they represented the young “genomic” candidate for selection [33]. Simply speaking,
focal individuals are the animals for which accuracy of prediction is of greater interest
for selection.

LR defined bias as bias = ûp − ûw, where ûp is the estimate of individual EBV in the
partial dataset and ûw is the estimate of individual EBV in the whole dataset. Bias equal to
0 stands for unbiased prediction. Due to the different magnitudes of each trait, bias was
also standardized by the genetic standard deviation of each trait analyzed.

Dispersion was described by the slope of the regression between EBVs in the whole

dataset to EBVs in the partial one, i.e., disp =
cov(ûw,ûp)

var(ûp)
, with an expectation of 1, i.e.,

disp <1 designate over-dispersion, while disp>1 indicates an under-dispersion.
In this study, we describe as accuracy (acc) the correlation of breeding values estimated

in the two datasets [33]: acc =
cov(ûw,ûp)√

var(ûp)var(ûw)
. This estimator stands for the inverse of

accuracy gain when the phenotype was added, moving from the partial dataset to the
whole one. Low values of the “acc” estimator mean that the EBV estimate of the focal group
is mainly influenced by the addition of new phenotypic information with respect to the
conditional kinship information. Thus, E(acc) ≈ accp

accw
.

Furthermore, reliability, the squared accuracy, was obtained through the following

approximated expression: rel =
cov(ûw ,ûp)
(1−F̂)σ2

u
, where F̂ is the average population inbreeding
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coefficient and σ2
u is the genetic variance estimated in the whole dataset. The expected

value for rel is equal to acc2, and the adequacy of this estimator was proofed in Appendix 1
in [34]. Note that no differences were observed in terms of variance components between
the whole dataset and the focal groups; thus, for that reason, adjustment by selected
reliability proposed in [35] was not applied.

In addition, according to [34], the increase in accuracy when genomic data are in-

troduced was estimated as inc = ρA,G
−1 − 1, where ρA,G =

cov(ûA,ûG)√
var(ûA)var(ûG)

, ûA is the

EBV estimated with PBLUP in the partial dataset and ûG is EBV estimated using genomic
information in the partial dataset. In fact, using the same reasoning done for acc, ρA,G
quantifies the increase of the inverse of accuracy when genomic data are added, because its
expected value is accA

accG
. A further evaluation of the increase in accuracy due to genomic data

was also obtained following [34], which suggested adjusting the increase in accuracy for
the ratio of genetic variances of two models accounting or not for genomic information, i.e.,

incadj =
σ2

A
σ2

G
inc, where σ2

A is the genetic variance estimated with only pedigree information

and σ2
G is the variance when genomic information is included. For the matter of simplicity,

only inc_adj has been reported as a parameter that identifies the increase of accuracy. Note
that EBV in the focal populations is normally distributed; thus, conditions under the LR
assumption were not violated.

3. Results
3.1. Variance Components

Heritability (h2) and genetic and residual correlations estimated using PBLUP are
reported in Table 2. All traits presented a medium to high heritability. EUROP was the
trait with lowest heritability, 0.304, while ADG and DP showed an h2 of 0.335 and 0.392,
respectively. In addition, all traits’ pairs, as expected, presented medium to high genetic
and residual correlations. ADG presented a medium-positive genetic correlation with the
other two traits (0.38 on average), while DP and EUROP were strongly correlated (0.981) to
be considered a unique trait.

Table 2. Mean of genetic (upper diagonal) and residual (lower diagonal) correlations and heritability
(diagonal) between traits in the Rendena population, estimated with PBLUP. Numbers in parenthesis
are the lower and the upper 95% highest posterior density.

ADG EUROP DP

ADG 0.335
(0.204 ± 0.335)

0.364
(0.100 ± 0.597)

0.398
(0.148 ± 0.6315)

EUROP 0.572
(0.660 ± 0.742)

0.304
(0.174 ± 0.446)

0.981
(0.962 ± 0.997)

DP 0.613
(0.517 ± 0.702)

0.792
(0.753 ± 0.836)

0.392
(0.248 ± 0.541)

ADG = Average daily gain, EUROP = and in vivo fleshiness score CY, DP = in vivo estimate of dressing percentage.

Table 3 reported estimated heritability and genetic and residual correlations using
ssGBLUP. In this case, both h2 and correlations had similar results to those estimated
with the PBLUP. For what concerns h2, ADG decreased by about 0.02, while EUROP
increased by about 0.04 in ssGBLUP as compared to PBLUP. On the other hand, DP
remained basically unchanged comparing the two approaches. Correlations presented
almost the same values in both analyses, with the only exceptions of the genetic and
residual correlations between ADG and EUROP that resulted in an increase in ssGBLUP of
about 0.02 and 0.08, respectively.
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Table 3. Mean of genetic (upper diagonal) and residual (lower diagonal) correlation and heritability
(diagonal) between traits in Rendena population, estimated with ssGBLUP. Numbers in parenthesis
are the lower and the upper 95% highest posterior density.

ADG EUROP DP

ADG 0.313
(0.223 ± 0.489)

0.385
(0.153 ± 0.597)

0.392
(0.160 ± 0.622)

EUROP 0.651
(0.651 ± 0.718)

0.345
(0.216 ± 0.487)

0.985
(0.961 ± 0.999)

CY 0.616
(0.530 ± 0.671)

0.790
(0.753 ± 0.826)

0.396
(0.250 ± 0.530)

ADG = Average daily gain, EUROP = and in vivo fleshiness score CY, DP = in vivo estimate of dressing percentage.

3.2. Weighting Strategies

Figure 2 shows how different values of CT and the limitation of SNPs’ variance can
affect genomic prediction.
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Figure 2. Accuracy (A), dispersion (B), and bias corrected by genetic standard deviations (C) of
breeding value estimated using different weighting strategies along the 10 iterations process of the
algorithm used in WssGBLUP. The dotted line in Graphs B and C represents the expected value.

As expected, higher accuracy (Figure 2A) was reached in the WssGBLUP analyses
with the increase of the number of iterations, although in most cases, the asymptote
was reached at the second iteration, with the only exception of the CT 1.25 with the
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limit of maximum variance established at 5, which reached the maximum accuracy after
3–4 iterations. Variance limits did not affect accuracy using a CT of 1.105 or 1.125.

Bias (Figure 2C) followed the same trends in all phenotypes; at first, iteration bias
was even lower than with ssGBLUP, but when iterations increased, bias rapidly increased.
ADG presented higher biases, even if the difference in magnitude was considered by
standardizing values obtained. Even dispersion (spread; Figure 2B) followed the same
trends as accuracy with an increase after 2/4 iterations depending mainly on the value
attributed to CT. For all traits, as the interactions increased, dispersion departed from the
expected value of 1, although for EUROP, the use of CT at 1.125 was maintained steadily
close to 1.

In general, higher CT values (that is, greater departures from normality) presented
better accuracy but more under-dispersion and biases. When CT changed from 1.105 to
1.125, accuracy increased by 2% in all phenotypes, and a substantial increase in accuracy
was observed, moving to a CT value of 1.250 (+20% on average). When the threshold for
maximum SNPs variance was raised up to 5, accuracy increased slightly, especially from
the third to tenth iteration.

Figures 3–5 show the percentage of variance explained by a sliding window of 20 non-
overlapping SNPs. These plots show how the different values of CT and limit influenced the
shrinkage SNPs. Furthermore, observing the peaks in the Manhattan plots, it can be seen
how these traits are potentially controlled by few QTLs. The high peak found on chromo-
some 22 for EUROP and DP can explain why these traits are highly genetically correlated.

3.3. Model Comparison

From the previous analysis, for each phenotype, two weighting strategies were re-
trieved: the one presenting a value of bias close to the optimal value (WssGBLUP_1) and
the one with highest accuracy (WssGBLUP_2) The weighting strategies that produced
the lowest bias were associated with a CT = 1.105, default value for limit, and iteration
1. On the other hand, as reported previously, CT = 1.250 and limit equal to 5 produced
the best results in terms accuracy of prediction. For ADG and DP, maximum accuracy
value was found on iteration 4, while for EUROP, iteration 7 was the most successful
(Figure 2). Table 4 shows the different performances of prediction of PBLUP, ssGBLUP,
and the two selected WssGBLUP obtained under the LR cross-validation method. EUROP
presented the highest accuracy in all models considered, followed by DP and ADG. All
traits presented a bias value close to 0, although DP presented a slightly positive bias of
about 0.02 on average. Generally, all models except WssGBLUP_2 showed very low biased
prediction, also considering that estimated genetic progress per year is consistent, being
positive and equivalent to 0.58, 0.42, and 0.33 standard deviations for ADG, EUROP, and
DP, respectively (Figure 6).
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Table 4. Accuracy, bias, dispersion (Disp.), and reliability (Rel.) and adjusted increased of accuracy
(Incr_adj) of estimated breeding values under different models: pedigree BLUP (PBLUP), single-
step genomic BLUP (ssGBLUP), and weight single-step with bias value closet to optimal value
(WssGBLUP_1) and weight single-step with highest accuracy; for average daily gain (ADG), EUROP,
and dressing percentage (DP).

Trait Model Accuracy Bias Disp. Rel. Incr_adj

ADG

PBLUP 0.366 −0.040 1.140 0.060 -
ssGBLUP 0.472 0.010 1.045 0.117 45.10%

WssGBLUP_1 0.551 0.003 1.182 0.127 45.10%
WssGBLUP_2 0.693 0.020 1.562 0.206 49.21%

EUROP

PBLUP 0.509 −0.009 0.902 0.081 -
ssGBLUP 0.596 0.009 1.100 0.124 39.98%

WssGBLUP_1 0.653 0.004 0.958 0.135 39.98%
WssGBLUP_2 0.749 0.014 1.165 0.192 45.17%

DP

PBLUP 0.464 −0.021 1.114 0.114 -
ssGBLUP 0.528 0.021 1.056 0.158 26.70%

WssGBLUP_1 0.600 0.017 1.156 0.184 27.40%
WssGBLUP_2 0.727 0.025 1.468 0.277 33.90%
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For what concerned the dispersion parameter, in this study, we found that ADG and
DP were slightly under-dispersed, while EUROP was a little over-dispersed for PBLUP
and WssGBLUP_1, showing values of dispersion <1.

When only pedigree information was used, lower accuracy was observed for all traits:
ADG presented a value of 0.366, EUROP of 0.464, and DP of 0.506. Lower reliability values
were also found in this model. Interesting, PBLUP is the only prediction model in which
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a marginally negative bias was observed. PBLUP presented similarly biased values as
WssGBLUP_1 and ssGBLUP for EUROP and DP (same absolute value but opposite sign),
while for ADG, it presented a greater absolute value of bias than for the other two methods.

When genomic information was added, a global increase in accuracy and reliability
was observed. In ssGBLUP models, increases in accuracy of 0.106, 0.087, and 0.064 were
observed for ADG, EUROP, and DP, respectively. Reliability estimators showed the same
trend. The ssGBLUP had higher accuracy values with respect to PBLUP, and it also
presented bias and dispersion closest to optimal value. As can be seen from Figure 2 and
Table 4, higher accuracy and reliability values were observed as SNPs shrinkage increased
(that is, for higher values of CT); however, in parallel, more under-dispersion and biased
predictions were found.

The inc_adj estimator represents the increase of accuracy when genomic models were
used. ADG is the trait that was most favored from the introduction of genomic data, with
a value of 45%, and DP is the one with lower benefits (26.7%). WssGBLUP_1 presents a
similar inc_adj value than ssGBLUP, while in WssGBLUP_2, value rises to 4 percentage
points in ADG as well as to 5 and 7 percentage points in EUROP and DP.

4. Discussion

In this study, we evaluated how the use of genomic data can improve the estimates
of breeding values in the local dual-purpose Rendena cattle. We used data relative to
beef traits collected in the performance tests of young bulls, both because these traits are
accounted for in the selection index and also because of the smaller number of genotyped
individuals needed with respect to traits such as milk production. In addition, this was the
first approach to apply genomic selection in a small local cattle breed.

The three performance test phenotypes i.e., ADG, EUROP, and DP, presented medium
to high heritability, ranging from 0.30 to 0.40. We recorded little difference from the study
of [4], even if our dataset was greater by an amount of about 40%. The heritabilities of these
traits were similar to the ones observed in other dual-purpose (i.e., Alpine Grey; [36] or beef
specialized breeds [37–39]). All traits appeared highly genetically correlated, especially
EUROP and DP, as expected and widely reported in the literature [38,40,41]. Interestingly,
after we introduced genomic data, we did not observe many discrepancies in terms of
genetic (co)variance(s) with respect to those estimated with PBLUP. This is in agreement
with what was reported in [42], i.e., that even for non-random genotyping strategies, the
population variances in ssGBLUP are not influenced by the selective genotyping strategies
as much as they are with GBLUP [43]. In fact, thanks to the contribution of non-genotyped
animals present in the pedigree, the bias due to the preselection of genotyped animals in
ssGBLUP is reduced. Furthermore, the genotypes were homogeneously distributed over
years, and this factor may have undoubtedly contributed to reducing discrepancy in terms
of variance estimates.

The usefulness of genomic selection was assessed using LR as a cross-validation
method, which provided accuracies, bias, and dispersion of the genetic evaluations. LR
presents several advantages [33]: the robustness of genetic evaluations is inferred on a
target group of animals, i.e., accuracy can be evaluated at the level of the preferred sub-
group of the population. In our study, our focus was on young bulls and close relatives,
the sub-group in which phenotypic data were collected. In addition, another advantage
consists of the fact that LR does not require the precorrection of phenotypes, thus avoiding
potentially biased prediction due to the heterogeneity of the contemporary groups (number
of animals range from 4 to 20 animals per group [33]).

Results confirmed that when genomic data were integrated with pedigree, there was
a substantial increase in the accuracy of (G)EBVs prediction. Accuracy increased by about
30% on average when switching from BLUP to ssGBLUP. Moreover, an additional increase
in accuracy was observed when weighting strategies were applied, i.e., from 0.366 to 0.472
for ADG, from 0.509 to 0.569 for EUROP, and from 0.464 to 0.528 for DP, respectively.
These outcomes suggest that the genomic information can potentially capture variation in
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Mendelian sampling, thus leading to a greater accuracy of prediction when only kinship
information is used [44]. A similar impact of ssGBLUP on the accuracy of performance
test traits has been observed in Hanwoo beef cattle [45], in which the same number of
phenotypes and genotypes were used; however, results cannot be compared numerically
due to the different cross-validation strategies implemented.

The findings of previous studies report that the ssGBLUP led to more accurate pre-
dictions than the BLUP. Other research conducted on a different type of beef-related traits
presented a substantial increase in breeding value prediction when ssGBLUP was used.
However, those investigations were conducted with breeds with much larger popula-
tion sizes, and results were expressed in terms of reliability [46–48]. Interestingly, in
Cesarani et al. [49], an analogous number of animals was used, and results in terms of bias
and dispersion agree with results obtained in this manuscript, with a similar influence of
weighting strategies, although the number of animals with genotype in their study is much
lower than ours. While generally, different weighting strategies have led to different in-
creases in the accuracy of the breeding value predictions [21], extreme shrinkage strategies
(i.e., quadratic weight) can lead rapidly to a decline in accuracy as the interactions increase
and generally present greater biased prediction [23]. These weighting strategies have thus
been discarded from this study due to the excessive shrinkage caused by the influence of
major QTLs (Supplementary Materials S1–S3). In addition, an extreme shrinkage can lead
to an incompatibility between G and A matrix, consequently losing some properties of the
single step such as unbiasedness of selection.

For that reason, nonlinearA methods were chosen over the other weighting strategies.
The consistency of nonlinearA methods in a single-step framework has been reported
by [30]. The augment of the accuracy of weighting strategies is particularly relevant
when small datasets are used, such as in the present study [50]; moreover, the use of
heterogeneous SNP weighting is useful when the number of SNPs exceeds the number
of animals [50]. This point could be relevant for our study, since redundant information
can be produced also by the genomic imputation [51]. In fact, according to [52], when the
trait is controlled by a few QLTs and few genotyped animals are present, the information
relative to the trait in the genome is usually divided into few blocks, and consequently
most of the SNPs information is considered redundant. Assigning different values to SNPs
or to chromosome segments can remove redundant SNPs information [53]. The presence
of major QTLs has a positive impact on WssGBLUP, because the relationships between
animals are focused on SNPs, which are clearly linked to the QTLs [54].

Despite this, LR cross-validation methods pointed out that major under-dispersion
and bias are observed by applying WssGBLUP. In our study population, proven and/or
young animals are evaluated with the rest of the performance test animals. The higher bias
present in some of the weighting models led to an inaccurate estimation of genetic trends
than in turn led a potentially biased selection decision, i.e., selecting only young animals
with respect to the older ones [35]. Because of that, the bias and dispersion parameters
must be considered alongside the accuracy of selection [55]. For this reason, models over
the second iteration can be discarded from the choice of model with “best” properties,
due to the lack of mean’s exact estimation in selected animals [33]. Interestingly, a decline
in biases was observed in the first iteration for all phenotypes. Conversely, PBLUP and
ssGBLUP confirmed their unbiasedness prediction and ability to account implicitly for
selection [17]. In addition, ssGBLUP presented dispersion parameters closest to the optimal
value of one, and it demonstrated the consistency of this estimator of this type of model.
Indeed, dispersion represents regression of EBV from whole to partial data, thus making
the model less affected by the addition/subtraction of information, and therefore the best
model to be applied.

Our finding supports the use of genomic data, and in particular the use of ssGBLUP,
as the new model for the routinary genetic evaluation on selected bulls of a local breed, the
Rendena cattle. In local breeds, genomic information has mainly been used to assess genetic
variability or to study specific biological pathways underscoring peculiar traits such as [56].
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As mentioned above, this is a first study investigating the impact of genomic information
on selection in indigenous breeds [57]. We focused on performance test traits because of
the antagonistic relation to milk traits, but genomic selection can be successfully applied
also for other traits, depending on the amount of phenotypic and genomic information
available. Notably, the increase in the accuracy of selection can impact the economic value
of the breed [58], which is a pragmatic and effective strategy to guarantee the conservation
of local breeds.

The present study shows that genomic imputation and the combination of genotyped
and non-genotyped data through ssGBLUP could be a cost-efficiency strategy, compen-
sating for the limited genotype information available on local breeds. This could make
genomic selection for limited populations an appealing strategy, as it already is in more
cosmopolite breeds such as Holstein [59] However, the LR cross-validation demonstrated
that accuracy increased only in young bulls with genotypes, while the accuracy of non-
genotyped animals was only marginally higher than that obtained with the PBLUP in the
subgroups of individuals with a genotyped close. For this reason, we would recommend,
to keep increasing selection accuracy, that a majority of animals for each performance test
cycle should still continue to be genotyped.

5. Conclusions

All models that included genomic data presented higher accuracy and reliability than
the ones using only kinship information. These two estimators were particularly higher in
models in which high heterogeneous variances among SNPs had been assumed; however,
the same models presented under-dispersion and higher bias, and for that reason, they can
be discarded as models to be used in the selection. Models with “best properties” can be
identified in the ssGBLUP or in the WssGBLUP, in which weighting strategies presented
less shrinkage. Although these two models presented similar proprieties, ssGBLUP could
be chosen as the “best” model, because it was neither under- nor over-dispersed, presenting
appropriate properties for long-term selection. In conclusion, the present study demon-
strated how the use of genomic data in addition to ssGBLUP can lead to a better prediction
of genetic effects even with a modest amount of molecular data, as typically happens
in local populations. Therefore, we demonstrated how genomic data can be a suitable
tool for breeding selection scenarios in local cattle breeds such as Rendena, guaranteeing
the competitiveness and thus the conservation of the breed through its improvement of
selection’s accuracy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11061815/s1, Supplementary Material S1: Value of accuracy, dispersion, and bias divided
by the genetic standard deviations (bias_std) for average daily gain. (1) Models presented are Pedigree
BLUP (PBLUP), single-step genomic BLUP (ssGBLUP), and different weighting single-step described
as follow: non_linear refers to the nonlinear weighting strategies presented in the manuscript with
the respective CT value, and limit_5 refers to when variance was set up to a maximum of 5. Quadratic
refers to the quadratic weight applied to the SNP solutions, and sliding stands for the quadratic
weight applied to a window of sliding SNPs. iter stands for the number of iterations, and NA values
mean that it was not possible to obtain the solution due to blending problem between between A−1

and G−1. Supplementary Material S2: Value of accuracy, dispersion, and bias divided by the genetic
standard deviations (bias_std) for EUROP (1) Models presented are pedigree BLUP (PBLUP), single-
step genomic BLUP (ssGBLUP), and different weighting single-step described as follow: non_linear
refers to the nonlinear weighting strategies presented in the manuscript with the respective CT value,
and limit_5 refers to when variance was set up to a maximum of 5. Quadratic refers to the quadratic
weight applied to the SNP solutions, and sliding stands for the quadratic weight applied to a window
of sliding SNPs. iter stands for the number of iterations, and NA values mean that it was not possible
to obtain the solution due to blending problem between between A−1 and G−1. Supplementary
Material S3: Value of accuracy, dispersion, and bias divided by the genetic standard deviations
(bias_std) for Dressing Percentage (DP). Models presented are pedigree BLUP (PBLUP), single-step
genomic BLUP (ssGBLUP), and different weighting single-step described as follow: non_linear refers
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to the nonlinear weighting strategies presented in the manuscript with the respective CT value, and
limit_5 refers to when variance was set up to a maximum of 5. Quadratic refers to the quadratic
weight applied to the SNP solutions, and sliding stands for the quadratic weight applied to a window
of sliding SNPs. iter stands for the number of iterations, and NA values mean that it was not possible
to obtain the solution due to blending problem between A−1 and G−1.
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