A Basic Model to Predict Enteric Methane Emission from Dairy Cows and Its Application to Update Operational Models for the National Inventory in Norway
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Basic Model Database
2.2. Development of Basic Models
2.3. Basic Model Evaluation
2.4. Update of Operational Models
3. Results
3.1. Development and Evaluation of Basic Models
3.2. Update of Operational Models
4. Discussion
4.1. Relationship between Methane Production and Dietary Factors in the Basic Models
4.2. Update of Operational Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- American Meteorological Society. An Information Statement of the American Meteorological Society (Adopted by the AMS Council on 15 April 2019). 2019. Available online: https://www.ametsoc.org/index.cfm/ams/about-ams/ams-statements/statements-of-the-ams-in-force/climate-change1/ (accessed on 10 May 2021).
- Hammond, K.J.; Crompton, L.A.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.R.; O’Kiely, P.; Kebreab, E.; Eugène, M.A.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Hindrichsen, I.K.; Wettstein, H.-R.; Machmüller, A.; Jörg, B.; Kreuzer, M. Effect of the carbohydrate composition of feed concentrates on methane emission from dairy cows and their slurry. Environ. Monit. Assess. 2005, 107, 329–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [CrossRef]
- Zimmerman, P. Method and System for Monitoring and Reducing Ruminant Methane Production. U.S. Patent No. 7966971B2, 28 June 2011. [Google Scholar]
- Nielsen, N.I.; Volden, H.; Åkerlind, M.; Brask, M.; Hellwing, A.L.F.; Storlien, T.; Bertilsson, J. A prediction equation for enteric methane emission from dairy cows for use in NorFor. Acta Agric. Scand. Sect. A Anim. Sci. 2013, 63, 126–130. [Google Scholar] [CrossRef]
- Storlien, T.M.; Volden, H.; Almøy, T.; Beauchemin, K.A.; McAllister, T.A.; Harstad, O.M. Prediction of enteric methane production from dairy cows. Acta Agric. Scand. Sect. A Anim. Sci. 2014, 64, 98–109. [Google Scholar] [CrossRef]
- Volden, H.; Nes, S.K. Methane emissions from enteric fermentation in Norway’s cattle and sheep population. Method description. In The Norwegian Emission Inventory; Sandmo, T., Ed.; 2010; pp. 220–229. Available online: https://www.ssb.no/a/english/publikasjoner/pdf/doc_201021_en/doc_201021_en.pdf (accessed on 10 May 2020).
- Niu, M.; Kebreab, E.; Hristov, A.N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R.; Brito, A.F.; Boland, T.; Casper, D.; et al. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob. Chang. Biol. 2018, 24, 3368–3389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollmann, M.; Powers, W.J.; Fogiel, A.C.; Liesman, J.S.; Bello, N.M.; Beede, D.K. Enteric methane emissions and lactational performance of Holstein cows fed different concentrations of coconut oil. J. Dairy Sci. 2012, 95, 2602–2615. [Google Scholar] [CrossRef]
- Chung, Y.H.; He, M.L.; McGinn, S.M.; McAllister, T.A.; Beauchemin, K.A. Linseed suppresses enteric methane emissions from cattle fed barley silage, but not from those fed grass hay. Anim. Feed Sci. Technol. 2011, 166–167, 321–329. [Google Scholar] [CrossRef]
- Patel, M.; Wredle, E.; Börjesson, G.; Danielsson, R.; Iwaasa, A.D.; Spörndly, E.; Bertilsson, J. Enteric methane emissions from dairy cows fed different proportions of highly digestible grass silage. Acta Agric. Scand. Sect. A Anim. Sci. 2011, 61, 128–136. [Google Scholar] [CrossRef]
- Willén, A. Methane Production from Dairy Cows; #335. Master’s Thesis, Department of Animal Nutrition and Management, SLU, Uppsala, Sweden, 2011. [Google Scholar]
- Yunta, B.C. Methane Production of Dairy Cows Fed Cereals with or without Protein Supplement and High-Quality Silage; #317. Master Thesis, Department of Animal Nutrition and Management, SLU, Uppsala, Sweden, 2010. [Google Scholar]
- Van Dorland, H.A.; Wettstein, H.R.; Leuenberger, H.; Kreuzer, M. Effect of supplementation of fresh and ensiled clovers to ryegrass on nitrogen loss and methane emission of dairy cows. Livest. Sci. 2007, 111, 57–69. [Google Scholar] [CrossRef]
- Dohme, F.; Machmueller, A.; Sutter, F.; Kreuzer, M. Digestive and metabolic utilization of lauric, myristic and stearic acid in cows, and associated effects on milk fat quality. Arch. Anim. Nutr. 2004, 58, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Kincaid, R.L.; Westberg, H.H.; Gaskins, C.T.; Lamb, B.K.; Cronrath, J.D. The effect of oilseeds in diets of lactating cows on milk production and methane emissions. J. Dairy Sci. 2002, 85, 1509–1515. [Google Scholar] [CrossRef]
- Storlien, T.M.; Adler, S.; Thuen, E.; Harstad, O.M. Effect of silage botanical composition on greenhouse gas emissions from dairy cows. Unpublished manuscript.
- Storlien, T.M.; Nes, S.K.; Garmo, T.; Thuen, E.; Harstad, O.M. Effects of maturity of ensiled grass on enteric methane emissions from non-lactating dairy cows offered with two levels of concentrate. Unpublished manuscript.
- Nes, S.K.; Garmo, T.; Chaves, A.V.; Prestløkken, E.; Volden, H.; Iwaasa, A.D.; Krizsan, S.J.; Beauchemin, K.A.; McAllister, T.A.; Norell, L.; et al. Effects of maturity of ensiled grass on enteric methane emissions from dairy cows offered with two levels of concentrate. Unpublished.
- Kidane, A.; Øverland, M.; Mydland, L.T.; Prestløkken, E. Interaction between feed use efficiency and level of dietary crude protein on enteric methane emission and apparent nitrogen use efficiency with Norwegian Red dairy cows. J. Anim. Sci. 2018, 96, 3967–3982. [Google Scholar] [CrossRef]
- Jonker, A.; Farrell, L.; Scobie, D.; Dynes, R.; Edwards, G.; Hague, H.; McAuliffe, R.; Taylor, A.; Knight, T.; Waghorn, G. Methane and carbon dioxide emissions from lactating dairy cows grazing mature ryegrass/white clover or a diverse pasture comprising ryegrass, legumes and herbs. Anim. Prod. Sci. 2018, 59, 1063–1069. [Google Scholar] [CrossRef]
- Johansen, M.; Hellwing, A.L.F.; Lund, P.; Weisbjerg, M.R. Metabolisable protein supply to lactating dairy cows increased with increasing dry matter concentration in grass-clover silage. Anim. Feed Sci. Technol. 2017, 227, 95–106. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Brask, M.; Weisbjerg, M.R.; Højberg, O.; Larsen, M.K.; Dijkstra, J.; Erlandsen, E.J.; Lund, P. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci. 2016, 99, 6191–6205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandl, F.; Luzi, S.P.; Furger, M.; Zeitz, J.O.; Leiber, F.; Ortmann, S.; Clauss, M.; Kreuzer, M.; Schwarm, A. Biological implications of longevity in dairy cows: 1. Changes in feed intake, feeding behavior and digestion with age. J. Dairy Sci. 2016, 99, 3457–3471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandl, F.; Amelchanka, S.L.; Furger, M.; Clauss, M.; Zeitz, J.O.; Kreuzer, M.; Schwarm, A. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age. J. Dairy Sci. 2016, 99, 3472–3485. [Google Scholar] [CrossRef] [Green Version]
- Alstrup, L.; Hellwing, A.L.F.; Lund, P.; Weisbjerg, M.R. Effect of fat supplementation and stage of lactation on methane production in dairy cows. Anim. Feed Sci. Technol. 2015, 207, 10–19. [Google Scholar] [CrossRef]
- Staerfl, S.M.; Amelchanka, S.L.; Kälber, T.; Soliva, C.R.; Kreuzer, M.; Zeitz, J.O. Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows. Livest. Sci. 2012, 150, 293–301. [Google Scholar] [CrossRef]
- Brask, M.; Lund, P.; Hellwing, A.L.F.; Poulsen, M.; Weisbjerg, M.R. Enteric methane production, digestibility and rumen fermentation in dairy cows fed different forages with and without rapeseed fat supplementation. Anim. Feed Sci. Technol. 2013, 184, 67–79. [Google Scholar] [CrossRef]
- Brask, M.; Lund, P.; Weisbjerg, M.R.; Hellwing, A.L.F.; Poulsen, M.; Larsen, M.K.; Hvelplund, T. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows. J. Dairy Sci. 2013, 96, 2356–2365. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Grainger, C.; Hannah, M.C.; Ponnampalam, E.N.; Eckard, R.J. Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Anim. Feed Sci. Technol. 2011, 166–167, 254–264. [Google Scholar] [CrossRef]
- O’Neill, B.F.; Deighton, M.H.; O’Loughlin, B.M.; Mulligan, F.J.; Boland, T.M.; O’Donovan, M.; Lewis, E. Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production. J. Dairy Sci. 2011, 94, 1941–1951. [Google Scholar] [CrossRef] [Green Version]
- Grainger, C.; Williams, R.; Clarke, T.; Wright, A.-D.G.; Eckard, R.J. Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J. Dairy Sci. 2010, 93, 2612–2619. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Odongo, N.E.; Or-Rashid, M.M.; Kebreab, E.; France, J.; McBride, B.W. Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J. Dairy Sci. 2007, 90, 1851–1858. [Google Scholar] [CrossRef]
- Hindrichsen, I.K.; Wettstein, H.-R.; Machmüller, A.; Kreuzer, M. Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agric. Ecosyst. Environ. 2006, 113, 150–161. [Google Scholar] [CrossRef]
- Cammell, S.B.; Sutton, J.D.; Beever, D.E.; Humphries, D.J.; Phipps, R.H. The effect of crop maturity on the nutritional value of maize silage for lactating dairy cows 1. Energy and nitrogen utilization. Anim. Sci. 2000, 71, 381–390. [Google Scholar] [CrossRef]
- Wilkerson, V.A.; Glenn, B.P.; McLeod, K.R. Energy and nitrogen balance in lactating cows fed diets containing dry or high moisture corn in either rolled or ground form. J. Dairy Sci. 1997, 80, 2487–2496. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- St-Pierre, N.R. Invited review: Integrating quantitative findings from multiple studies using mixed model methodology. J. Dairy Sci. 2001, 84, 741–755. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill Irwin: New York, NY, USA, 2005. [Google Scholar]
- Bibby, J.; Toutenburg, H. Prediction and Improved Estimation in Linear Models; Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar]
- Storlien, T.M.; Harstad, O.M. Measures in Livestock Production; Potential for Reduction in Emissions of Nitrous Oxide and Enteric Methane from the Milk Dome Population Final Report. Report M-471. 2016. Available online: https://evalueringsportalen.no/evaluering/tiltak-i-husdyrproduksjonen-potensial-for-reduksjon-i-utslipp-av-lystgass-og-enterisk-metan-fra-mjolkekupopulasjonen-sluttrapport/M471.pdf/@@inline (accessed on 10 May 2020).
- Van Es, A.J.H. Feed evaluation for dairy cows. Livest. Prod. Sci. 1975, 2, 95–107. [Google Scholar] [CrossRef]
- Charmley, E.; Williams, S.R.O.; Moate, P.; Hegarty, R.S.; Herd, R.M.; Oddy, V.H.; Reyenga, P.; Staunton, K.; Anderson, A.; Hannah, M.C. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 2016, 56, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Ramin, M.; Huhtanen, P. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 2013, 96, 2476–2493. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Van Lingen, H.J.; Niu, M.; Kebreab, E.; Filho, S.C.V.; Rooke, J.A.; Duthie, C.-A.; Schwarm, A.; Kreuzer, M.; Hynd, P.I.; Caetano, M.; et al. Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agric. Ecosyst. Environ. 2019, 283, 106575. [Google Scholar] [CrossRef]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Bell, M.; Eckard, R.; Moate, P.J.; Yan, T. Modelling the effect of diet composition on enteric methane emissions across sheep, beef cattle and dairy cows. Animals 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; Kreuzer, M.; O’mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Toprak, N.N. Do fats reduce methane emission by ruminants?—A review. Anim. Sci. Pap. Rep. 2015, 33, 305–321. [Google Scholar]
- McAllister, T.A.; Cheng, K.J.; Okine, E.K.; Mathison, G.W. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 1996, 76, 231–243. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyrrell, H.F. Methane production in dairy cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Jayanegara, A.; Togtokhbayar, N.; Makkar, H.P.; Becker, K. Tannins determined by various methods as predictors of methane production reduction potential of plants by an in vitro rumen fermentation system. Anim. Feed Sci. Technol. 2009, 150, 230–237. [Google Scholar] [CrossRef]
- Jaurena, G.; Cantet, J.M.; Arroquy, J.I.; Palladino, R.A.; Wawrzkiewicz, M.; Colombatto, D. Prediction of the Ym factor for livestock from on-farm accessible data. Livest. Sci. 2015, 177, 52–62. [Google Scholar] [CrossRef]
- Kennedy, P.M.; Charmley, E. Methane yields from Brahman cattle fed tropical grasses and legumes. Anim. Prod. Sci. 2012, 52, 225–239. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- IPCC. Agriculture, forestry and other land use: Emissions from livestock and manure management. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories 4; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; pp. 10.1–10.87. [Google Scholar]
- Hellwing, A.L.F.; Weisbjerg, M.R.; Brask, M.; Alstrup, L.; Johansen, M.; Hymøller Larson, M.K.; Lund, P. Prediction of the methane conversion factor (Ym) for dairy cows on the basis of national farm data. Anim. Prod. Sci. 2016, 56, 535–540. [Google Scholar] [CrossRef]
- Lesschen, J.P.; van den Berg, M.; Westhoek, H.J.; Witzke, H.P.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 2011, 166–167, 16–28. [Google Scholar] [CrossRef]
- Bannink, A.; Van Schijndel, M.W.; Dijkstra, J. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Anim. Feed Sci. Technol. 2011, 166, 603–618. [Google Scholar] [CrossRef]
- Eugène, M.; Sauvant, D.; Nozière, P.; Viallard, D.; Oueslati, K.; Lherm, M.; Mathias, E.; Doreau, M. A new Tier 3 method to calculate methane emission inventory for ruminants. J. Environ. Manag. 2019, 231, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Kirchgessner, M.; Windisch, W.; Müller, H.L. Nutritional factors for the quantification of methane production. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction; Engelhardt, V.S., Leonhard-Marek, S., Breves, G., Giesecke, D., Eds.; Delmar Publishers: Albany, Germany, 1995; pp. 333–348. [Google Scholar]
- Bonesmo, H.; Beauchemin, K.A.; Harstad, O.M.; Skjelvåg, A.O. Greenhouse gas emission intensities of grass silage based dairy and beef production: A systems analysis of Norwegian farms. Livest. Sci. 2013, 152, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Climate-Smart Agriculture. 2020. Available online: https://klimasmartlandbruk.no/klimakalkulatoren/ (accessed on 10 May 2021).
Data-Base a | Stage b | N c | Roughage | Concentrate | Forage Proportion (% of DM) | DMI (kg/day) d | CH4 Collection Technique e | CH4 (MJ/day) f | References |
---|---|---|---|---|---|---|---|---|---|
D | L | 4 | Maize silage | Ground maize | 50 | 20 | 1 | 20 (14–26) | [10] |
D | NL | 4 | Grass hay or barley silage | Barley grain | 95 | 11 | 1 | 12 (11–17) | [11] |
D | L | 3 | Grass silage | Oats, barley, peas and rapeseed cake | 69 | 16 | 1 | 17 (16–18) | [12] |
D | L | 2 | Grass silage | Barley, wheat and maize | 73 | 23 | 1 | 32 (28–36) | [13] |
D | L | 3 | Grass silage | Barley, wheat and oats | 77 | 20 | 1 | 26 (24–28) | [14] |
D | L | 6 | Ryegrass, white and red clover | Pelleted barley | 77 | 19 | 2 | 24 (23–26) | [15] |
D | L | 3 | Grass and maize silage | Barley | 67 | 17 | 2 | 19 (17–21) | [16] |
D | L | 3 | Alfalfa hay and alfalfa silage | Barley, maize and peas | 51 | 26 | 1 | 23 (22–25) | [17] |
D | L | 4 | Grass silage | Barley | 70 | 17 | 1 | 25 (21–30) | [18] |
D | NL | 4 | Grass silage | Wheat starch (non-NDF concentrate) | 83 | 8 | 1 | 11 (10–12) | [19] |
D | L | 6 | Grass silage | Wheat starch (non-NDF concentrate) | 69 | 15 | 1 | 18 (17–19) | [20] |
D * | L | 4 | Grass silage | Oats, barley and rye | 50 | 19 | 1 | 26 (25–28) | [21] |
D * | L | 2 | Rye grass, white clover or mature diverse pasture | 0 | 100 | 21 | 4 | 27 (26–28) | [22] |
D * | L | 1 | Grass clover silage | 0 | 100 | 12 | 2 | 17 | [23] |
D * | L | 1 | Maize, grass/clover silage | Barley, sugar beet pulp and rapeseed cake | 50 | 19 | 2 | 18 (16–20) | [24] |
D * | L | 2 | Hay, maize silage and grass pellets | Wheat, maize, barley, rapeseed cake | 80 | 21 | 2 | 27 (26–28) | [25,26] |
D * | L | 2 | Maize and grass/clover silage | Whole cracked rapeseed | 55 | 21 | 2 | 25 (23–27) | [27] |
D * | L | 6 | Maize, grass silage and hay | Oat, soybean, wheat and apple pulp | 50 | 17 | 2 | 22 (18–25) | [3] |
D * | L | 3 | Ryegrass | 0 | 100 | 15 | 2 | 17 (16–19) | [28] |
E | L | 4 | Grass and maize silage | Rapeseed meal, rapeseed cake, cracked rapeseed | 51 | 18 | 1 | 20 (17–23) | [29] |
E | L | 6 | Grass silage and maize silage | Rapeseed meal, whole crushed rapeseed | 64 | 17 | 1 | 20 (18–22) | [30] |
E | L | 4 | Alfalfa hay and ryegrass silage | Cracked wheat grain | 63 | 20 | 2 | 26 (25–28) | [31] |
E | L | 2 | Maize and grass silage | Soybean meal and rolled barley | 80 | 17 | 1 | 18 (14–22) | [32] |
E | L | 2 | Maize silage and alfalfa haylage | Cracked wheat grain | 67 | 16 | 1 | 23 (21–25) | [33] |
E | L | 4 | Barley silage | Steam rolled barley and pelleted supplement | 45 | 18 | 2 | 15 (13–16) | [34] |
E | L | 2 | Haylage, maize silage and high moisture maize | Maize gluten and soybean meal | 59 | 15 | 3 | 19 (15–23) | [35] |
E | L | 4 | Hay, grass and maize silage | Barley and wheat bran | 75 | 17 | 2 | 22 (18–24) | [36] |
E | L | 4 | Maize and grass silage | Rapeseed meal, sunflower meal, ground wheat and maize gluten feed | 56 | 20 | 2 | 23 (22–23) | [37] |
E | L | 4 | Alfalfa silage | High moisture maize and dry maize | 88 | 24 | 2 | 25 (24–26) | [38] |
Yield (ECM, kg) | Silage b | Concentrate c | Concentrate Share, % DM d | DMI, kg/d | GEI, MJ/day |
---|---|---|---|---|---|
5000 | 1 | I | 11 (0–37) | 15 (12–17) | 279 (232–312) |
2 | II | 20 (0–53) | 15 (12–17) | 282 (228–327) | |
3 | II | 25 (0–50) | 16 (12–18) | 292 (233–340) | |
5500 | 1 | III | 13 (0–40) | 15 (13–17) | 289 (242–323) |
2 | III | 16 (0–38) | 16 (13–17) | 292 (245–323) | |
3 | II | 29 (10–51) | 16 (12–19) | 305 (232–355) | |
6000 | 1 | III | 14 (0–40) | 16 (14–18) | 300 (255–331) |
2 | I | 23 (3–47) | 16 (14–19) | 307 (253–352) | |
3 | II | 32 (9–52) | 17 (14–20) | 319 (252–368) | |
6500 | 1 | III | 16 (0–43) | 17 (14–18) | 310 (261–342) |
2 | III | 22 (4–47) | 17 (14–19) | 316 (268–350) | |
3 | III | 35 (11–52) | 18 (14–20) | 333 (267–383) | |
7000 | 1 | II | 21 (1–53) | 17 (15–19) | 324 (276–359) |
2 | III | 23 (7–45) | 17 (15–19) | 322 (276–354) | |
3 | II | 39 (16–55) | 19 (15–21) | 347 (279–398) | |
7500 | 1 | III | 20 (4–47) | 18 (15–19) | 330 (284–362) |
2 | I | 32 (15–53) | 18 (15–21) | 345 (278–394) | |
3 | II | 42 (21–57) | 19 (16–22) | 361 (292–412) | |
8000 | 1 | III | 22 (7–49) | 18 (16–20) | 340 (294–371) |
2 | I | 35 (17–54) | 19 (16–22) | 359 (291–407) | |
3 | II | 45 (26–59) | 20 (16–23) | 376 (307–427) | |
8500 | 1 | III | 24 (10–50) | 19 (16–20) | 350 (303–383) |
2 | I | 37 (18–55) | 20 (16–22) | 372 (308–422) | |
3 | II | 47 (30–61) | 21 (17–24) | 390 (320–442) | |
9000 | 1 | III | 26 (12–52) | 19 (17–21) | 360 (313–393) |
2 | I | 40 (21–57) | 21 (17–23) | 386 (319–436) | |
3 | II | 50 (34–63) | 22 (18–24) | 405 (334–457) | |
9500 | 1 | I | 38 (23–59) | 21 (17–23) | 387 (315–437) |
2 | I | 43 (25–59) | 21 (18–24) | 400 (332–451) | |
3 | I | 49 (35–61) | 22 (18–25) | 413 (346–464) | |
10,000 | 1 | I | 39 (23–60) | 21 (18–24) | 401 (332–452) |
2 | I | 45 (29–60) | 22 (18–25) | 414 (346–466) | |
3 | I | 52 (38–62) | 23 (19–25) | 427 (358–477) | |
10,500 | 1 | I | 41 (23–62) | 22 (19–25) | 415 (348–467) |
2 | I | 48 (32–61) | 23 (19–25) | 429 (359–480) | |
3 | I | 54 (41–64) | 23 (20–26) | 441 (370–491) | |
11,000 | 1 | I | 43 (25–63) | 23 (19–26) | 429 (358–480) |
2 | I | 50 (35–62) | 24 (20–26) | 443 (372–495) | |
3 | I | 57 (43–67) | 24 (20–27) | 454 (381–504) | |
11,500 | 1 | I | 46 (29–64) | 24 (20–26) | 443 (373–496) |
2 | I | 52 (38–63) | 24 (21–27) | 457 (388–510) | |
3 | I | 59 (46–70) | 25 (21–27) | 468 (393–518) | |
12,000 | 1 | I | 48 (32–65) | 24 (21–27) | 458 (387–511) |
2 | I | 54 (41–65) | 25 (21–28) | 472 (401–525) | |
3 | I | 59 (48–68) | 26 (21–28) | 484 (404–537) |
Feed Type | Code | Nutritional Value | DM b (g/kg) | Ash (g) | Crude Protein (g) | Crude Fat (g) | NDF c (g) | Total Acids (g) | Sugar (g) | Starch (g) | Net Energy for Lactation (MJ) |
---|---|---|---|---|---|---|---|---|---|---|---|
Silage | 1 | Very high | 332 | 77 | 167 | 39 | 436 | 62 | 92 | n.d. | 7.0 |
2 | Medium | 325 | 70 | 157 | 35 | 511 | 63 | 53 | n.d. | 6.1 | |
3 | Low | 320 | 68 | 150 | 34 | 538 | 64 | 43 | n.d. | 5.7 | |
Concentrate d | I | High | 879 | 83 | 200 | 59 | 182 | n.d. | n.d. | 301 | 8.0 |
II | Medium | 873 | 76 | 194 | 52 | 208 | n.d. | n.d. | 307 | 7.7 | |
III | Low | 873 | 76 | 182 | 46 | 202 | n.d. | n.d. | 390 | 7.5 |
Model | n | Prediction Equation | |||||||
---|---|---|---|---|---|---|---|---|---|
Model 2 | 36 | CH4 = −3.01 + 1.19 × DMI − 0.103 × FAs + 0.017 × NDF | 13.8 | 0.2 | 86.1 | 13.7 | 0.703 | 0.70 | 1.00 |
Model 3 | 36 | CH4 = 1.13 × DMI − 0.114 × FAs + 0.012 × NDF | 13.9 | 0.1 | 87.3 | 12.6 | 0.694 | 0.69 | 1.00 |
[6] | 36 | CH4 = 1.23 × DMI − 0.145 × FAs + 0.012 × NDF | 15.3 | 3.1 | 73.1 | 23.8 | 0.677 | 0.69 | 0.99 |
Model 1 | 36 | CH4 = 4.92 + 1.13 × DMI − 0.118 × FAs | 15.0 | 0.9 | 82.8 | 16.3 | 0.650 | 0.65 | 1.00 |
[7] | 36 | CH4 = 6.80 + 1.09 × DMI − 0.15 × FAs | 15.3 | 0.6 | 79.3 | 20.1 | 0.649 | 0.65 | 1.00 |
[9] | 36 | CH4 = 26.0 + 15.3 × DMI + 3.42 × NDF/10 × 0.05565 | 13.0 | 0.0 | 97.6 | 2.40 | 0.611 | 0.70 | 0.87 |
[46] | 36 | CH4 = (38.0 + 19.22 × DMI) × 0.05565 | 15.6 | 5.2 | 89.0 | 5.80 | 0.547 | 0.58 | 0.95 |
[9] | 36 | CH4 = [160 + 14.2 × DMI − 13.5 × EE/10] × 0.05565 | 15.6 | 14.8 | 84.0 | 1.20 | 0.528 | 0.60 | 0.87 |
[9] | 36 | CH4 = (107 + 14.5 × DMI) × 0.05565 | 14.8 | 0.7 | 99.2 | 0.00 | 0.504 | 0.58 | 0.87 |
[47] | 36 | CH4 = (20 + 35.8 × DMI − 0.5 × DMI2) × 0.716 × 0.05565 | 15.4 | 8.2 | 90.9 | 0.90 | 0.434 | 0.57 | 0.76 |
Model a | CH4, kg/Year Per Cow b | Ymc, % | GEI d, MJ/Cow and Day |
---|---|---|---|
GEI = 159 + 0.02 × ECM + 1.39 × conc.share | |||
6000 kg ECM and 38.0% concentrate share | |||
Ym(S) = 7.11 − 7 × 10−5 × ECM − 4.1 × 10−3 × conc.share | 127.7 | 6.53 | 298 |
Ym(M) = 7.65 − 1.1 × 10−4 × ECM − 5.4 × 10−3 × conc.share | 130.2 | 6.66 | 298 |
Ym(N) = 7.71 − 1 × 10−4 × ECM − 4.4 × 10−3 × conc.share | 131.5 | 6.72 | 298 |
8000 kg ECM and 43.5% concentrate share | |||
Ym(S) = 7.11 − 7 × 10−5 × ECM − 4.1 × 10−3 × conc.share | 146.5 | 6.40 | 349 |
Ym(M) = 7.65 − 1.1 × 10−4 × ECM − 5.4 × 10−3 × conc.share | 147.8 | 6.45 | 349 |
Ym(N) = 7.71 − 1 × 10−4 × ECM − 4.4 × 10−3 × conc.share | 150.6 | 6.57 | 349 |
10,000 kg ECM and 50.0% concentrate hare | |||
Ym(S) = 7.11 − 7 × 10−5 × ECM − 4.1 × 10−3 × conc.share | 164.5 | 6.25 | 401 |
Ym(M) = 7.65 − 1.1 × 10−4 × ECM − 5.4 × 10−3 × conc.share | 163.7 | 6.22 | 401 |
Ym(N) = 7.71 − 1 × 10−4 × ECM − 4.4 × 10−3 × conc.share | 168.2 | 6.39 | 401 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, P.; Schwarm, A.; Bonesmo, H.; Kidane, A.; Aspeholen Åby, B.; Storlien, T.M.; Kreuzer, M.; Alvarez, C.; Sommerseth, J.K.; Prestløkken, E. A Basic Model to Predict Enteric Methane Emission from Dairy Cows and Its Application to Update Operational Models for the National Inventory in Norway. Animals 2021, 11, 1891. https://doi.org/10.3390/ani11071891
Niu P, Schwarm A, Bonesmo H, Kidane A, Aspeholen Åby B, Storlien TM, Kreuzer M, Alvarez C, Sommerseth JK, Prestløkken E. A Basic Model to Predict Enteric Methane Emission from Dairy Cows and Its Application to Update Operational Models for the National Inventory in Norway. Animals. 2021; 11(7):1891. https://doi.org/10.3390/ani11071891
Chicago/Turabian StyleNiu, Puchun, Angela Schwarm, Helge Bonesmo, Alemayehu Kidane, Bente Aspeholen Åby, Tonje Marie Storlien, Michael Kreuzer, Clementina Alvarez, Jon Kristian Sommerseth, and Egil Prestløkken. 2021. "A Basic Model to Predict Enteric Methane Emission from Dairy Cows and Its Application to Update Operational Models for the National Inventory in Norway" Animals 11, no. 7: 1891. https://doi.org/10.3390/ani11071891
APA StyleNiu, P., Schwarm, A., Bonesmo, H., Kidane, A., Aspeholen Åby, B., Storlien, T. M., Kreuzer, M., Alvarez, C., Sommerseth, J. K., & Prestløkken, E. (2021). A Basic Model to Predict Enteric Methane Emission from Dairy Cows and Its Application to Update Operational Models for the National Inventory in Norway. Animals, 11(7), 1891. https://doi.org/10.3390/ani11071891