In Vitro Assessment of Anticoccidials: Methods and Molecules
Abstract
:Simple Summary
Abstract
1. Introduction
2. Eimeria Life Cycle, Mechanism of Invasion, and Tools for In Vitro Research
Cell Type | Eimeria spp. | Stage of Development | Reference |
---|---|---|---|
Bovine kidney cells Avian fibroblasts. | E. tenella | Merozoites | [23] |
cEF | E. tenella | Schizonts | [23] |
HeLa, Human Amnion, PCK, cEF, mouse fiboblasts | E. acervulina | Trophozoites | [24] |
PCK cells | E. tenella | Oocysts | [25,26,27,28] |
PCK cells | E. necatrix | Merozoites | [29] |
PCK cells | E. brunetti | Merozoites | [30] |
PCK cells | E. acervulina | Schizonts | [31] |
Caco-2, LMH, BHK, MDBK, HCT-8, VERO, MDCK, RK-13, IEC-6 | E. tenella | Merozoites | [32] |
cIECs | E. tenella | Merozoites | [33] |
CLEC-213 | Transgenic E. tenella | Gametes | [34] |
3. In Vitro and In Ovo Methods to Study Eimeria
3.1. Sample Collection and Purification of Eimeria Stages
3.2. In Vitro Assessment of the Exogenous Phase
3.3. In Vitro Assessment of the Endogenous Phase
3.4. In Ovo Culture
4. In Vitro Assessment of Conventional and Alternative Anticoccidials
4.1. Ionophores and Synthetic Compounds
Anticoccidial Drug | Mode of Action | Target Stage of Eimeria spp. | Eimeria spp. | Lowest Effective Concentration In Vitro | In Vitro Test | Reference |
---|---|---|---|---|---|---|
Amprolium | Inhibition of thiamine uptake | Second generation schizonts | E. tenella | 4 µg/mL | Development assay | [70] |
Clopidol | Inhibition of mitochondrial respiration | Sporozoites and sporulation | E. tenella | 4 µg/mL | Development assay | [70] |
Decoquinate | Inhibition of mitochondrial respiration | Sporozoites and sporulation | E. tenella | 0.01 µg/mL | Development assay | [65] |
Diclazuril | Nucleoside analogue | Late stages of development | E. tenella | 0.125 µg/mL | Sporulation assay | [47] |
Lasalocid | Ionophore | Sporozoite and trophozoite | Various spp. | 0.5 µg/mL | Invasion and development assay | [9] |
Monensin | Ionophore | Sporozoite and trophozoite | Various spp. | 0.001 µg/mL | Development assay | [65] |
Narasin | Ionophore | Sporozoite and trophozoite | Various spp. | 0.01 µg/mL | Electron microscopy | [64] |
1 µg/mL | Invasion and development assay | [66] | ||||
Nicarbazin | Inhibition of succinate dehydrogenase and accumulation of intracellular calcium | Schizonts | Various spp. | 4 µg/mL | Development assay | [70] |
Robenidine | Guanidine derivate | Schizonts | Various spp. | 4 µg/mL | Development assay | [70] |
Salinomycin | Ionophore | Sporozoite and trophozoite | Various spp. | 0.1 µg/mL | Invasion and development assay | [66] |
Toltrazuril | Inhibition of mitochondrial respiration | Sporozoites, schizonts and gametes | Various spp. | 5 µg/mL | Invasion and development assay | [9] |
4.2. Botanicals with Anticoccidial Efficacy In Vitro
4.2.1. Botanicals that Target the Exogenous Phase of Eimeria spp.
4.2.2. Botanicals that Target the Invasion of Eimeria spp.
Compound | Concentration | Eimeria spp. | Method | Reference |
---|---|---|---|---|
Allicin | 1.8 × 10−3–1.8 × 103 µg/mL | E. tenella | Infection on MDBK and qPCR detection | [89] |
Betaine | 0.5 µg/mL | E. tenella | Infection on MDBK and count in HE stain | [85] |
Carvacrol | 20 µg/mL | E. tenella | Infection on MDBK and count in HE stain | [85] |
Curcumin | 73.6 µg/mL | E. tenella | Infection on MDBK and flow cytometry quantification | [84] |
Curcumin | 0.2 µg/mL | E. tenella | Infection on MDBK and count in HE stain | [85] |
Echinacea purpurea extract | 2 µg/mL | E. tenella | Infection on MDBK and count in HE stain | [85] |
Garlic EO | 50 µg/mL | E. tenella | Infection on MDBK and qPCR detection | [88] |
Oregano EO | 100 µg/mL | E. tenella | Infection on MDBK and qPCR detection | [88] |
Saponins | 10 µg/mL | E. tenella, E. acervulina, E. brunetti | Infection on MDBK and extracellular counts and qPCR | [87] |
Thymol and carvacrol | 14 µg/mL | E. tenella, E. acervulina, E. brunetti | Infection on MDBK and extracellular counts and qPCR | [87] |
Thonningia sanguinea extract | 625–40,000 µg/mL | E. tenella, E. necatrix | Infection on MDBK and counts Giemsa stain | [90] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NICs | nature-identical compounds |
EO | essential oil |
PCKs | primary kidney chicken cells |
MDBK | Madin Darby Bovine Kidney |
CLEC-213 | chicken lungs epithelial cell line |
cIECs | chicken intestinal epithelial cells |
DE52 | diethylaminoethyl-cellulose |
CAM | chorioallantoic membrane |
AF | allantoic fluid |
qPCR | quantitative polymerase chain reaction |
MIC | minimal inhibitory concentration |
MTC | minimal toxic concentration |
dhfr | dihydrofolate reductase |
DHPS | dihydropteroate synthase |
References
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Castañeda, R.E.; Dantán-González, E. Control of avian coccidiosis: Future and present natural alternatives. Biomed Res. Int. 2015, 2015, 430610 . [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Györke, A.; Pop, L.; Cozma, V. Prevalence and distribution of Eimeria species in broiler chicken farms of different capacities. Parasite 2013, 20. [Google Scholar] [CrossRef] [Green Version]
- Burrell, A.; Tomley, F.M.; Vaughan, S.; Marugan-Hernandez, V. Life cycle stages, specific organelles and invasion mechanisms of Eimeria species. Parasitology 2020, 147, 263–278. [Google Scholar] [CrossRef]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef] [Green Version]
- Federation of Veterinarians of Europe FVE. Position Paper on Coccidiostats or Anticoccidials; Federation of Veterinarians of Europe: Brussels, Belgium, 2016. [Google Scholar]
- Muthamilselvan, T.; Kuo, T.F.; Wu, Y.C.; Yang, W.C. Herbal remedies for coccidiosis control: A review of plants, compounds, and anticoccidial actions. Evid. Based Complement. Altern. Med. 2016. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; de Martino, L.; Coppola, R. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Thabet, A.; Zhang, R.; Alnassan, A.A.; Daugschies, A.; Bangoura, B. Anticoccidial efficacy testing: In vitro Eimeria tenella assays as replacement for animal experiments. Vet. Parasitol. 2017, 233, 86–96. [Google Scholar] [CrossRef]
- Schmatz, D.M.; Crane, M.S.J.; Murray, P.K. Eimeria tenella: Parasite-Specific Incorporation of 3H-Uracil as a Quantitative Measure of Intracellular Development. J. Protozool. 1986, 33, 109–114. [Google Scholar] [CrossRef]
- Russel, W.M.S.; Burch, R. The Principles of Humane Experimental Technique; Methuen Publishing: London, UK, 1959. [Google Scholar]
- Pance, A. The stem cell revolution revealing protozoan parasites’ secrets and paving the way towards vaccine development. Vaccines 2021, 9, 105. [Google Scholar] [CrossRef]
- Belli, S.I.; Smith, N.C.; Ferguson, D.J.P. The coccidian oocyst: A tough nut to crack! Trends Parasitol. 2006, 22, 416–423. [Google Scholar] [CrossRef]
- Shirley, M.W. Eimeria Species and Strains of Chickens. In Guidelines on Techniques in Coccidiosis Research; Office for Official Publications of the European Communities: Luxembourg, 1995; pp. 1–25. ISBN 9282749703. [Google Scholar]
- Li, M.; Ooi, H. Effect of Chromium Compounds on Sporulation of Eimeria piriformis Oocysts. Exp. Anim. 2008, 57, 79–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryley, J.F.; Meade, R.; Hazelhurst, J.; Robinson, T.E. Methods in coccidiosis research: Separation of oocysts from faeces. Parasitology 1976, 73, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. Coccidiosis in Livestock, Poultry, Companion Animals, and Humans, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Chapman, H.D. Studies on the Excystation of Different Species of Eimeria in vitro H.D. Parasitol. Res. 1978, 56, 115–121. [Google Scholar]
- López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Overview of Poultry Eimeria Life Cycle and Host-Parasite Interactions. Front. Vet. Sci. 2020, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, V.B.; Tomley, F.M. Receptor-ligand interaction and invasion: Microneme proteins in apicomplexans. Subcell Biochem. 2008, 47, 33–45. [Google Scholar]
- Lawn, A.M.; Rose, M.E. Mucosal Transport of Eimeria tenella in the Cecum of the Chicken. J. Parasitol. 1982, 68, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.A.; Ferguson, D.J.P.; Miller, C.M.D.; Smith, N.C. Sex and Eimeria: A molecular perspective. Parasitology 2013, 140, 1701–1717. [Google Scholar] [CrossRef]
- Guyonnet, V.; Johnson, J.; Long, P. Role of Chicken Pancreatic Trypsin, Chymotrypsin and Elastase in the Excystation Process of Eimeria tenella Oocysts and Sporocysts. J. Protozool. Res. 1991, 1, 22–26. [Google Scholar]
- Schmatz, D.M.; Crane, S.J.M.; Murray, P.K. Purification of Eimeria Sporozoites by DE-52 Anion Exchange Chromatography. J. Protozool. 1984, 31, 181–183. [Google Scholar] [CrossRef]
- Dulski, P.; Turner, M. The Purification of Sporocysts and Sporozoites from Eimeria tenella Oocysts Using Percoll Density Gradients. Avian Dis. 1988, 32, 235. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.L. Cell membrane labeling of Eimeria tenella sporozoites with the fluorescent dye PKH-67 GL for tracking parasite-host interactions. Parasitol. Res. 2001, 87, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.C.; Brien, C.N.O.; Fuller, L.; Mathis, G.F.; Fetterer, R. A rapid method for determining salinomycin and monensin sensitivity in Eimeria tenella. Vet. Parasitol. 2014, 206, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Rentería-Solís, Z.; Zhang, R.; Taha, S.; Daugschies, A. A modified method for purification of Eimeria tenella sporozoites. Parasitol. Res. 2020. [Google Scholar] [CrossRef] [Green Version]
- Mattig, F.R.; Drössigk, U.; Entzeroth, R. A simple method for the purification of Eimeria tenella. Appl. Parasitol. 1993, 34, 139–142. [Google Scholar]
- Stotish, R.L.; Wang, C.C. Preparation and Purification of Merozoites of Eimeria tenella. J. Parasitol. 1975, 61, 700–703. [Google Scholar] [CrossRef]
- Pugatsch, T.; Mencher, D.; Wallach, M. Eimeria maxima: Isolation of gametocytes and their immunogenicity in mice, rabbits, and chickens. Exp. Parasitol. 1989, 68, 127–134. [Google Scholar] [CrossRef]
- Debbou-Iouknane, N.; Nerín, C.; Amrane, M.; Ghemghar, M.; Madani, K.; Ayad, A. In Vitro Anticoccidial Activity of Olive Pulp (Olea europaea L. var. Chemlal) Extract Against Eimeria Oocysts in Broiler Chickens. Acta Parasitol. 2019, 64, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Del Cacho, E.; Gallego, M.; Francesch, M.; Quílez, J.; Sánchez-Acedo, C. Effect of artemisinin on oocyst wall formation and sporulation during Eimeria tenella infection. Parasitol. Int. 2010, 59, 506–511. [Google Scholar] [CrossRef]
- Gadelhaq, S.M.; Arafa, W.M.; Abolhadid, S.M. In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens. Vet. Parasitol. 2018, 251, 12–16. [Google Scholar] [CrossRef]
- Hachisu, T.; Inoue, I.; Fujita, M.; Sato, S.; Ohtomo, M. Anticoccidial Effect of Diclazuril in a Field Trial and Susceptibilities of Eimeria tenella isolated in Field against Anticoccidial Drugs. J. Jpn. Vet. Med. Assoc. 1991, 44, 324–327. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, J.; Raether, W. Improved techniques for the in vitro cultivation of Eimeria tenella in primary chick kidney cells. Parasitol. Res. 1990, 76, 479–486. [Google Scholar] [CrossRef]
- Zhang, J.; Wilson, E.; Yang, S.; Healey, M.C. Increasing the Yield of Eimeria tenella Oocysts in Primary Chicken Kidney Cells. Avian Dis. 1996, 40, 63. [Google Scholar] [CrossRef]
- Patton, W.H. Eimeria tenella: Cultivation of the Asexual Stages in Cultured Animal Cells. Science 1965, 150, 767–769. [Google Scholar] [CrossRef]
- Strout, R.G.; Solis, J.; Smith, S.C.; Dunlop, W.R. In Vitro cultivation of Eimeria acervulina (Coccidia). Exp. Parasitol. 1965, 17, 241–246. [Google Scholar] [CrossRef]
- Doran, D.J. Eimeria tenella: From Sporozoites to Oocysts in Cell Culture. Proc. Helminthol. Soc. Wash. 1970, 37, 84–92. [Google Scholar]
- McDougald, L.R.; Jeffers, T.K. Comparative In Vitro Development of Precocious and Normal Strains of Eimeria tenella (Coccidia). J. Protozool. 1976, 23, 530–534. [Google Scholar] [CrossRef]
- Zhang, J.; Wilson, E.; Yang, S.; Healey, M.C. Adapting Eimeria tenella to Grow in Primary Chicken Kidney Cells Following Repeated Passages between Cell Culture and Chickens. Avian Dis. 1997, 41, 111. [Google Scholar] [CrossRef]
- Doran, D.J. Survival and Development of Five Species of Chicken Coccidia in Primary Chicken Kidney Cell Cultures. J. Parasitol. 1971, 57, 1135–1137. [Google Scholar] [CrossRef]
- Ryley, J.F.; Wilson, R.G. The development of Eimeria brunetti in tissue culture. J. Parasitol. 1972, 58, 660–663. [Google Scholar] [CrossRef]
- Naciri-Bontemps, M. Reproduction of the cycle of coccidia Eimeria acervulina (Tyzzer, 1929) in cell cultures of chicken kidneys. Ann. Rech. Vet. 1976, 7, 223–230. [Google Scholar]
- Tierney, J.; Mulcahy, G. Comparative development of Eimeria tenella (Apicomplexa) in host cells in vitro. Parasitol. Res. 2003, 90, 301–304. [Google Scholar] [CrossRef]
- Marugan-Hernandez, V.; Jeremiah, G.; Aguiar-Martins, K.; Burrell, A.; Vaughan, S.; Xia, D.; Randle, N.; Tomley, F. The Growth of Eimeria tenella: Characterization and Application of Quantitative Methods to Assess Sporozoite Invasion and Endogenous Development in Cell Culture. Front. Cell. Infect. Microbiol. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Bussière, F.I.; Niepceron, A.; Sausset, A.; Esnault, E.; Silvestre, A.; Walker, R.A.; Smith, N.C.; Quéré, P.; Laurent, F. Establishment of an in vitro chicken epithelial cell line model to investigate Eimeria tenella gamete development. Parasites Vectors 2018, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dimier-Poisson, I.H.; Bout, D.T.; Quéré, P. Chicken Primary Enterocytes: Inhibition of Eimeria tenella Replication After Activation with Crude Interferon-γ Supernatants. Avian Dis. 2004, 48, 617–624. [Google Scholar] [CrossRef]
- Pereira, C.; Costa, J.; Sarmento, B.; Araújo, F. Cell-Based In Vitro Models for Intestinal Permeability Studies. Concepts Model for Drug Permeability Studies. Cell Tissue Based Vitro Cult. Model. 2016, 57–81. [Google Scholar] [CrossRef]
- Shirley, M.W.; Bedrník, P. Live attenuated vaccines against Avian coccidiosis: Success with precocious and egg-adapted lines of Eimeria. Parasitol. Today 1997, 13, 481–484. [Google Scholar] [CrossRef]
- Long, P.L. Development of Eimeria tenella in Avian Embryos. Nature 1965, 208, 509–510. [Google Scholar] [CrossRef]
- Long, P.L. The growth of some species of Eimeria in avian embryos. Parasitology 1966, 56, 575–581. [Google Scholar] [CrossRef]
- Long, P.L. Eimeria tenella: Reproduction, pathogenicity and immunogenicity of a strain maintained in chick embryos by serial passage. J. Comp. Path 1972, 82. [Google Scholar] [CrossRef]
- Long, P.L. Endogenous stages of a ‘chick embryo-adapted’ strain of Eimeria tenella. Parasitology 1973, 66, 55–62. [Google Scholar] [CrossRef]
- Long, P.L. Eimeria tenella: Chemotherapeutic studies in chick embryos with a description of a new method (chorioallantoic membrane foci counts) for evaluating infections. Z. Parasitenkd. 1970, 33, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.J.; Pittilo, R.M.; Johnson, J.; Long, P.L. Effect of Lasalocid on the Development of Eimeria tenella in Chicken Embryos. Vet. Parasitol. 1990, 36, 337–341. [Google Scholar] [CrossRef]
- Xie, M.Q.; Fukata, T.; Gilbert, J.M.; Mcdougald, L.R. Evaluation of anticoccidial drugs in chicken embryos. Parasitol. Res. 1991, 20, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhao, Q.; Zhu, S.; Han, H.; Dong, H.; Huang, B. Establishment of eimeria tenella (local isolate) in chicken embryos. Parasite 2012, 19, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnassan, A.A.; Shehata, A.A.; Kotsch, M.; Lendner, M.; Daugschies, A.; Bangoura, B. Embryonated chicken eggs as an alternative model for mixed Clostridium perfringens and Eimeria tenella infection in chickens. Parasitol. Res. 2013, 112, 2299–2306. [Google Scholar] [CrossRef]
- Smith, C.K.; Galloway, R.B. Influence of monensin on cation influx and Na+-K +-ATPase activity of Eimeria tenella sporozoites in vitro. J. Parasitol. 1983, 69, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.K.; Strout, R.G. Eimeria tenella: Accumulation and retention of anticoccidial ionophores by extracellular sporozoites. Exp. Parasitol. 1979, 48, 325–330. [Google Scholar] [CrossRef]
- Mehlhorn, H.; Pooch, H.; Raether, W. The Action of Polyether Ionophorous Antibiotics (Coccidia, Sporozoa) in vivo and in vitro: Study by Light and Electron Microscopy. Parasitenkunde 1983, 69, 457–471. [Google Scholar] [CrossRef]
- Smith, C.K.; Strout, R.G. Eimeria tenella: Effect of narasin, a polyether antibiotic on the ultrastructure of intracellular sporozoites. Exp. Parasitol. 1980, 50, 426–436. [Google Scholar] [CrossRef]
- McDougald, L.R.; Galloway, R.B. Anticoccidial drugs: Effects on infectivity and survival intracellularly of Eimeria tenella sporozoites. Exp. Parasitol. 1976, 40, 314–319. [Google Scholar] [CrossRef]
- Smith, C.K.; Galloway, R.B.; White, S.L. Effect of ionophores on survival, penetration, and development of Eimeria tenella sporozoites in vitro. J. Parasitol. 1981, 67, 511–516. [Google Scholar] [CrossRef]
- Long, P.L.; Jeffers, T.K. Studies on the stage of action of ionophorous antibiotics against Eimeria. J. Parasitol. 1982, 68, 363–371. [Google Scholar] [CrossRef]
- Augustine, P.C.; Smith, C.K.; Danforth, H.D.; Ruff, M.D. Effect of ionophorous anticoccidials on invasion and development of Eimeria: Comparison of sensitive and resistant isolates and correlation with drug uptake. Poult. Sci. 1987, 66, 960–965. [Google Scholar] [CrossRef]
- Wang, C.C. Inhibition of the respiration of Eimeria tenella by quinolone coccidiostats. Biochem. Pharmacol. 1976, 25, 343–349. [Google Scholar] [CrossRef]
- McDougald, L.R.; Galloway, R.B. Eimeria tenella: Anticoccidial drug activity in cell cultures. Exp. Parasitol. 1973, 34, 189–196. [Google Scholar] [CrossRef]
- Fry, M.; Williams, R.B. Effects of decoquinate and clopidol on electron transport in mitochondria of Eimeria tenella (Apicomplexa: Coccidia). Biochem. Pharmacol. 1984, 33, 229–240. [Google Scholar] [CrossRef]
- James, S. Thiamine uptake in isolated schizonts of Eimeria tenella and the inhibitory effects of amprolium. Parasitology 1980, 80, 313–322. [Google Scholar] [CrossRef]
- Yoder, C.A.; Graham, J.K.; Miller, L.A. Molecular effects of nicarbazin on avian reproduction. Poult. Sci. 2006, 85, 1285–1293. [Google Scholar] [CrossRef]
- Anadón, A.; Martínez-Larrañaga, M.R. Veterinary Drugs Residues: Coccidiostats. Encycl. Food Saf. 2014, 3, 63–75. [Google Scholar] [CrossRef]
- Zhou, B.-H.; Wang, H.-W.; Wang, X.-Y.; Zhang, L.-F.; Zhang, K.-Y.; Xue, F.-Q. Eimeria Tenella: Effects of Diclazuril Treatment on Microneme Genes Expression in Second-Generation Merozoites and Pathological Changes of Caeca in Parasitized Chickens. Exp. Parasitol. 2010, 125, 264–270. [Google Scholar] [CrossRef]
- Chapman, H.D. Resistance to anticoccidial drugs in fowl. Parasitol. Today 1993, 9, 159–162. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Iqbal, Z.; Blake, D.; Khan, M.N.; Saleemi, M.K. Anticoccidial drug resistance in fowl coccidia: The state of play revisited. Worlds. Poult. Sci. J. 2011, 67, 337–349. [Google Scholar] [CrossRef]
- Remmal, A.; Achahbar, S.; Bouddine, L.; Chami, N.; Chami, F. In vitro destruction of Eimeria oocysts by essential oils. Vet. Parasitol. 2011, 182, 121–126. [Google Scholar] [CrossRef]
- Molan, A.; Faraj, A.M. Effect of Selenium-Rich Green Tea Extract on the Course of Sporulation of Eimeria Oocysts. J. Dent. Med. Sci. 2015, 14, 68–74. [Google Scholar] [CrossRef]
- Jitviriyanon, S.; Phanthong, P.; Lomarat, P.; Bunyapraphatsara, N.; Porntrakulpipat, S.; Paraksa, N. In Vitro study of anti-coccidial activity of essential oils from indigenous plants against Eimeria tenella. Vet. Parasitol. 2016, 228, 96–102. [Google Scholar] [CrossRef]
- Habibi, H.; Firouzi, S.; Nili, H.; Razavi, M. Anticoccidial effects of herbal extracts on Eimeria tenella infection in broiler chickens: In vitro and in vivo study. J. Parasit. Dis. 2016, 40, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Molan, A.L.; Liu, Z.; De, S. Effect of pine bark (Pinus radiata) extracts on sporulation of coccidian oocysts. Folia Parasitol. 2009, 56, 1–5. [Google Scholar] [CrossRef]
- El-Khtam, A.; Shata, A.; El-Hewaity, M.H. Efficacy of turmeric (Curcuma longa) and garlic (Allium sativum) on Eimeria species in broilers. Int. J. Basic Appl. Sci. 2014, 3, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Khalafalla, R.E.; Müller, U.; Shahiduzzaman, M.; Dyachenko, V.; Desouky, A.Y.; Alber, G.; Daugschies, A. Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitol. Res. 2011, 108, 879–886. [Google Scholar] [CrossRef]
- Burt, S.A.; Tersteeg-Zijderveld, M.H.G.; Jongerius-Gortemaker, B.G.M.; Vervelde, L.; Vernooij, J.C.M. In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals. Vet. Parasitol. 2013, 191, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Rossi, B.; Toschi, A.; Piva, A.; Grilli, E. Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr. Res. Rev. 2020, 33, 218–234. [Google Scholar] [CrossRef]
- Felici, M.; Tugnoli, B.; Ghiselli, F.; Massi, P.; Tosi, G.; Fiorentini, L.; Piva, A.; Grilli, E. In vitro anticoccidial activity of thymol, carvacrol, and saponins. Poult. Sci. 2020, 99, 5350–5355. [Google Scholar] [CrossRef]
- Sidiropoulou, E.; Skoufos, I.; Marugan-Hernandez, V.; Giannenas, I.; Bonos, E.; Aguiar-Martins, K.; Lazari, D.; Blake, D.P.; Tzora, A. In Vitro Anticoccidial Study of Oregano and Garlic Essential Oils and Effects on Growth Performance, Fecal Oocyst Output, and Intestinal Microbiota in vivo. Front. Vet. Sci. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Alnassan, A.A.; Thabet, A.; Daugschies, A.; Bangoura, B. In Vitro efficacy of allicin on chicken Eimeria tenella sporozoites. Parasitol. Res. 2015, 114, 3913–3915. [Google Scholar] [CrossRef] [PubMed]
- Kouakou Séverin, K.; Alassane, T.; Karamoko, O.; Djaman Allico, J.; N’Guessan, J.D. In vitro anticoccidial activity of Thonningia sanguinea extract on Eimeria tenella and Eimeria necatrix sporozoites cells. Afr. J. Microbiol. Res. 2012, 6, 22–27. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Szczerbińska, D. Use of essential oils in broiler chicken production—A review. Ann. Anim. Sci. 2017, 17, 317–335. [Google Scholar] [CrossRef] [Green Version]
Species | Site | Pathogenicity |
---|---|---|
E. acervulina | Upper small intestine | Medium |
E. brunetti | Distal small intestine and colon | High |
E. maxima | Mid small intestine | Medium |
E. mitis | Upper small intestine | Low |
E. necatrix | Mid small intestine | High |
E. tenella | Ceca | High |
Method | Pathogen | Method Description | Reference |
---|---|---|---|
Embryo mortality | E. tenella | Percentage of dead embryos 3 days post inoculation was considered as caused by Eimeria spp. | [58] |
Oocyst production | E. tenella | Oocyst count in the allantoic cavities at day 7 post-infection | [57] |
Schizont dimension | E. tenella (egg-adapted) | Absence of large second generation schizonts in the CAM is linked to loss in pathogenicity | [55] |
CAM foci count | E. tenella | Count of foci corresponding to second generation schizonts on the CAM | [56] |
Lesion scoring | E. tenella and C. perfringens dual infection | 0 = no lesion 1 = hemorrhage and congestion 2 = fewer than 10 white foci per cm2 3 = 10 or more white foci per cm3 plus hemorrhage and congestion | [60] |
Histological observation | E. tenella and C. perfringens dual infection | Yellow inflammatory foci containing necrotic material and leukocytic infiltration on the CAM | [60] |
qPCR | E. tenella | Absolute DNA quantification by a plasmid containing ITS1 region insert. The Eimeria sample was collected from the CAMs and AF of chicken embryos | [60] |
Compound | Concentration | Eimeria spp. | Method | Reference |
---|---|---|---|---|
Allium sativum | 10 g/L | E. tenella, E. maxima, E. acervulina, E. necatrix, E. mitis | Sporulation rate | [83] |
Artemisia EO | 4 g/L | E. tenella, E. maxima, E. acervulina, E. necatrix, E. mitis | 273 nm absorbance | [78] |
Artemisia absinthium EO | 50 g/L | E. tenella | Sporulation rate | [81] |
Artemisinin | 0.01–0.017 g/L | E. tenella | Sporulation rate | [45] |
Boesenbergia pandurate EO | 0.125 g/L | E. tenella | Sporulation rate | [80] |
EOBiarum bovei EO | 50 g/L | E. tenella | Sporulation rate | [81] |
Clove EO | 4 g/L | E. tenella, E. maxima, E. acervulina, E. necatrix, E. mitis | 273 nm absorbance | [78] |
Curcumin | 10 g/L | E. tenella, E. maxima, E. acervulina, E. necatrix, E. mitis | Sporulation rate | [83] |
Dorema aucheri EO | 50 g/L | E. tenella | Sporulation rate | [81] |
Nectaroscorum tripedale EO | 50 g/L | E. tenella | Sporulation rate | [81] |
Ocimum basilicum EO | 0.125 g/L | E. tenella | Sporulation rate | [80] |
Olive pulp | 0.023–0.371 g/L | E. acervulina, E. tenella, E. mitis, E. brunetti, E. maxima | 273 nm absorbance | [44] |
Prangos ferulacea, EO | 50 g/L | E. tenella | Sporulation rate | [81] |
Pinus radiata extract | 0.250–1 g/L | E. tenella, E. maxima, E. acervulina | Sporulation rate | [82] |
Thyme EO | 4 g/L | E. tenella, E. maxima, E. acervulina, E. necatrix, E. mitis | 273 nm absorbance | [78] |
Tea tree EO | 4 g/L | E. tenella, E. maxima, E. acervulina, E. necatrix, E. mitis | 273 nm absorbance | [78] |
Green tea extract (Camellia sinensin) | 100 g/L | E. tenella, E. maxima, E. acervulina | Sporulation rate | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felici, M.; Tugnoli, B.; Piva, A.; Grilli, E. In Vitro Assessment of Anticoccidials: Methods and Molecules. Animals 2021, 11, 1962. https://doi.org/10.3390/ani11071962
Felici M, Tugnoli B, Piva A, Grilli E. In Vitro Assessment of Anticoccidials: Methods and Molecules. Animals. 2021; 11(7):1962. https://doi.org/10.3390/ani11071962
Chicago/Turabian StyleFelici, Martina, Benedetta Tugnoli, Andrea Piva, and Ester Grilli. 2021. "In Vitro Assessment of Anticoccidials: Methods and Molecules" Animals 11, no. 7: 1962. https://doi.org/10.3390/ani11071962
APA StyleFelici, M., Tugnoli, B., Piva, A., & Grilli, E. (2021). In Vitro Assessment of Anticoccidials: Methods and Molecules. Animals, 11(7), 1962. https://doi.org/10.3390/ani11071962