Prenatal Exposure to Innately Preferred D-Limonene and Trans-Anethole Does Not Overcome Innate Aversion to Eucalyptol, Affecting Growth Performance of Weanling Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Exp. 1 (Double-Choice Feeding Test)
2.1.1. Experimental Design, Animals, and Housing
2.1.2. Feeding Programme and Dietary Treatments
2.1.3. Experimental Procedures, Data, and Sample Collection
2.1.4. Statistical Analysis
2.2. Exp. 2 (Sensory Maternal Learning)
2.2.1. Experimental Design, Animals, and Housing
2.2.2. Feeding Programme and Dietary Treatments
2.2.3. Experimental Procedures, Data and Sample Collection
2.2.4. Statistical Analysis
3. Results
3.1. Exp. 1 (Double-Choice Feeding Test)
3.1.1. Innate Feed Preference
3.1.2. Piglet’s Growth Performance
3.2. Exp. 2 (Sensory Maternal Learning)
3.2.1. Placental and Milk Maternal Transfer
3.2.2. Piglet’s Growth Performance
4. Discussion
4.1. Innate Preference or Aversive Responses of Weaning Piglets to BCs
4.2. Effects of Prenatal Exposure to BBC on Weaning Piglet’s Growth Performance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roura, E.; Fu, M. Taste, nutrient sensing and feed intake in pigs (130 years of research: Then, now and future). Anim. Feed. Sci. Technol. 2017, 233, 3–12. [Google Scholar] [CrossRef]
- Rozin, P.; Vollmecke, T.A. Food likes and dislikes. Annu. Rev. Nutr. 1986, 6, 433–456. [Google Scholar] [CrossRef] [PubMed]
- Bosi, P.; Smidt, H.; Stokes, C.R.; Lalle, J. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 2021, 260–268. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. Domest. Anim. Endocrinol. 2013, 19, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Murali, R.; Karthikeyan, A.; Saravanan, R. Protective Effects of d-Limonene on Lipid Peroxidation and Antioxidant Enzymes in Streptozotocin-Induced Diabetic Rats. Basic Clin. Pharmacol. Toxicol. 2013, 112, 175–181. [Google Scholar] [CrossRef]
- Marinov, V.; Valcheva-kuzmanova, S. Review on the pharmacological activities of anethole. Scr. Sci. Pharm. 2015, 2, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Bhowal, M.; Gopal, M. Eucalyptol: Safety and Pharmacological Profile. RGUHS J. Pharm. Sci. 2016, 5, 125–131. [Google Scholar] [CrossRef]
- Clouard, C.; Val-Laillet, D. Impact of sensory feed additives on feed intake, feed preferences, and growth of female piglets during the early postweaning period. J. Anim. Sci. 2014, 92, 2133–2140. [Google Scholar] [CrossRef]
- Clouard, C.; Meunier-Salaün, M.C.; Val-Laillet, D. The effects of sensory functional ingredients on food preferences, intake and weight gain in juvenile pigs. Appl. Anim. Behav. Sci. 2012, 138, 36–46. [Google Scholar] [CrossRef]
- Oostindjer, M.; Bolhuis, J.E.; van den Brand, H.; Roura, E.; Kemp, B. Prenatal flavor exposure affects growth, health and behavior of newly weaned piglets. Physiol. Behav. 2010, 99, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Val-Laillet, D.; Elmore, J.S.; Baines, D.; Naylor, P.; Naylor, R. Long-term exposure to sensory feed additives during the gestational and postnatal periods affects sows’ colostrum and milk sensory profiles, piglets’ growth, and feed intake 1. J. Anim. Sci. 2018, 96, 3233–3248. [Google Scholar] [CrossRef]
- Blavi, L.; Solà-Oriol, D.; Mallo, J.J.; Pérez, J.F. Anethol, cinnamaldehyde, and eugenol inclusion in feed affects postweaning performance and feeding behavior of piglets1. J. Anim. Sci. 2016, 94, 5262–5271. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, L.S. Transient receptor potential channels as targets for phytochemicals. ACS Chem. Neurosci. 2014, 5, 1117–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmanov, A.A.; Beauchamp, G.K. Taste receptor genes. Annu. Rev. Nutr. 2007, 27, 389–414. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Solà-Oriol, D.; Roura, E.; Torrallardona, D. Use of double-choice feeding to quantify feed ingredient preferences in pigs. Livest. Sci. 2009, 123, 129–137. [Google Scholar] [CrossRef]
- Roura, E.; Humphrey, B.; Tedó, G.; Ipharraguerre, I. Unfolding the codes of short-term feed appetence in farm and companion animals. A comparative oronasal nutrient sensing biology review. Can. J. Anim. Sci. 2008, 88, 535–558. [Google Scholar] [CrossRef]
- Villagómez-estrada, S.; Pérez, J.F.; van Kuijk, S.; Melo-durán, D.; Karimirad, R.; Solà-oriol, D. Dietary preference of newly weaned pigs and nutrient interactions according to copper levels and sources with different solubility characteristics. Animals 2020, 10, 1133. [Google Scholar] [CrossRef]
- Tybirk, P.E.R. Nutrient Recommendations for Pigs in Denmark, 17th ed.; SEGES-VSP Danish Pig Research Centre: Copenhagen, Denmark, 2015. [Google Scholar]
- FEDNA. Necesidades Nutricionales Para Ganado Porcino, 2nd ed.; FEDNA—Fundación Española para el Desarollo de la Nutrición Animal: Madrid, Spain, 2013. [Google Scholar]
- Beauchamp, G.K.; Mennella, J.A. Early flavor learning and its impact on later feeding behavior. J. Pediatric Gastroenterol. Nutr. 2009, 48. [Google Scholar] [CrossRef]
- Michiels, J.; Missotten, J.; Ovyn, A.; Dierick, N.; Fremaut, D. Effect of dose of thymol and supplemental flavours or camphor on palatability in a choice feeding study with piglets. Czech J. Anim. Sci. 2012, 2012, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.P.; Buber, M.T.; Yang, Q.; Cerne, R.; Cortés, R.Y.; Sprous, D.G.; Bryant, R.W. Thymol and related alkyl phenols activate the hTRPA1 channel. Br. J. Pharmacol. 2008, 153, 1739–1749. [Google Scholar] [CrossRef] [Green Version]
- Frasnelli, J.; Albrecht, J.; Bryant, B.; Lundström, J.N. Perception of specific trigeminal chemosensory agonists. Neuroscience 2011, 189, 377–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mace, O.J.; Marshall, F. Digestive physiology of the pig symposium: Gut chemosensing and the regulation of nutrient absorption and energy supply. J. Anim. Sci. 2013, 91, 1932–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mace, O.J.; Schindler, M.; Patel, S. The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J. Physiol. 2012, 590, 2917–2936. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Peris, J.E.; Redondo, A.; Shimada, T.; Costell, E.; Carbonell, I.; Rojas, C.; Peña, L. Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception. Food Chem. 2017, 217, 139–150. [Google Scholar] [CrossRef]
- McLean, S.; Boyle, R.R.; Brandon, S.; Davies, N.W.; Sorensen, J.S. Pharmacokinetics of 1,8-cineole, a dietary toxin, in the brushtail possum (Trichosurus vulpecula): Significance for feeding. Xenobiotica 2007, 37, 903–922. [Google Scholar] [CrossRef]
- Oostindjer, M.; Bolhuis, J.E.; Van den Brand, H.; Kemp, B. Prenatal flavor exposure affects flavor recognition and stress-related behavior of piglets. Chem. Senses 2009, 34, 775–787. [Google Scholar] [CrossRef]
- Lipchock, S.V.; Reed, D.R.; Mennella, J.A. The Gustatory and Olfactory Systems during Infancy: Implications for Development of Feeding Behaviors in the High-Risk Neonate. Clin. Perinatol. 2011, 38, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, F.; Horst, K.; Ro, W.; Rychlik, M.; Buettner, A. Tracing metabolite profiles in human milk: Studies on the odorant 1, 8-cineole transferred into breast milk after oral intake. Metabolomics 2013, 483–496. [Google Scholar] [CrossRef]
- Forestell, C.A. Flavor Perception and Preference Development in Human Infants. Ann. Nutr. Metab. 2017, 70, 17–25. [Google Scholar] [CrossRef] [Green Version]
Item | Experiment 1 | Experiment 2 | ||
---|---|---|---|---|
Piglets Prestarter | Sows’ Gestation | Sows’ Lactation | Piglets Prestarter | |
Ingredients, % | ||||
White Broken Rice | 60.00 | - | - | - |
Soybean Meal, 47% CP | 28.55 | 2.50 | 13.50 | 5.00 |
Wheat | 3.86 | 9.00 | 25.55 | 10.00 |
Soy Oil | 3.00 | - | - | - |
Barley | - | 35.00 | 10.00 | 15.00 |
Maize | - | 22.70 | 27.01 | 44.00 |
Wheat Middling’s | - | 15.00 | 7.00 | - |
Sweet Milk Whey | - | - | - | 10.26 |
Sunflower Meal | - | 5.65 | 4.50 | - |
Sugar Beet Pulp | - | 3.10 | 2.50 | - |
Maize Flour | - | - | - | 1.01 |
Soybean Protein Concentrate | - | - | - | 5.00 |
Rapeseed Meal | - | 2.50 | 4.50 | - |
Calcium Carbonate | - | 0.99 | 1.25 | - |
Lard | - | 1.05 | 1.00 | - |
Plasma | - | - | - | 1.50 |
Extruded Soybean | - | - | - | 5.13 |
Dicalcium Phosphate | 2.27 | 0.99 | 1.25 | 0.87 |
Salt | 0.57 | 0.40 | 0.50 | 0.25 |
L-Lysine HCl | 0.56 | 0.31 | 0.63 | 0.81 |
DL-Methionine | 0.29 | - | - | 0.23 |
L-Threonine | 0.28 | 0.10 | 0.18 | 0.21 |
L-Valine | 0.15 | - | - | 0.09 |
L-Tryptophan | 0.08 | - | - | 0.03 |
Mycofix Plus 3.E | - | 0.10 | 0.10 | - |
Vit-Min Premix | 0.40 1 | 0.50 2 | 0.50 2 | 0.60 3 |
Calculated Nutrient Composition | ||||
Net Energy, kcal/kg | 2591 | 2261 | 2455 | 2438 |
Crude Protein, % | 19.5 | 13.0 | 16.7 | 17.0 |
Calcium, % | 0.70 | 0.85 | 0.91 | 0.30 |
Total Phosphorus, % | 0.72 | 0.56 | 0.57 | 0.40 |
Digestible Phosphorus, % | 0.38 | 0.35 | 0.37 | 0.30 |
SID Lysine, % | 1.46 | 0.60 | 1.00 | 1.11 |
Botanical Component | g/kg in Premix |
---|---|
Trans-Anethole | 12.17 |
1,8-Cineole | 9.73 |
Camphor | 7.42 |
p-Cymene | 2.56 |
D-Limonene | 2.31 |
α-Terpineol | 2.07 |
Borneol | 1.83 |
α-Pinene | 1.70 |
Linalool | 1.46 |
β-Pinene | 1.34 |
Item | Treatment Groups | ||
---|---|---|---|
D-Limonene | Trans-Anethole | Eucalyptol | |
Feed Preference 1,2, % | 53.8 ± 3.77 | 54.5 ± 5.93 | 41.6 ± 5.74 |
p-Value 3 | 0.021 | 0.049 | 0.002 |
Item | Treatment Groups | SEM 1 | p-Value | ||
---|---|---|---|---|---|
D-Limonene | Trans-Anethole | Eucalyptol | |||
Initial BW, kg | 5.86 | 6.14 | 6.32 | 0.300 | 0.558 |
Final BW, kg | 7.44 | 7.86 | 7.31 | 0.369 | 0.529 |
ADG, g | 225.4 a | 255.1 a | 143.0 b | 0.017 | 0.002 |
ADFI 2, g | 252.9 a | 264.3 a | 213.7 b | 0.014 | 0.040 |
FCR | 1.14 b | 1.05 b | 1.50 a | 0.043 | <0.001 |
Item | Treatments | SEM 1 | p-Value | |
---|---|---|---|---|
Control | BBC | |||
Individual Piglet BW, kg | ||||
Weaning | 5.34 | 5.41 | 0.101 | 0.588 |
Post-Weaning d 7 | 5.43 | 5.14 | 0.098 | 0.037 |
ADG Weaning to Post-Weaning d 7 | 12.5 | −38.9 | 8.932 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Camacho, D.; Pérez, J.F.; Vinyeta, E.; Aumiller, T.; Van der Klis, J.D.; Solà-Oriol, D. Prenatal Exposure to Innately Preferred D-Limonene and Trans-Anethole Does Not Overcome Innate Aversion to Eucalyptol, Affecting Growth Performance of Weanling Piglets. Animals 2021, 11, 2062. https://doi.org/10.3390/ani11072062
Reyes-Camacho D, Pérez JF, Vinyeta E, Aumiller T, Van der Klis JD, Solà-Oriol D. Prenatal Exposure to Innately Preferred D-Limonene and Trans-Anethole Does Not Overcome Innate Aversion to Eucalyptol, Affecting Growth Performance of Weanling Piglets. Animals. 2021; 11(7):2062. https://doi.org/10.3390/ani11072062
Chicago/Turabian StyleReyes-Camacho, David, José F. Pérez, Ester Vinyeta, Tobias Aumiller, Jan D. Van der Klis, and David Solà-Oriol. 2021. "Prenatal Exposure to Innately Preferred D-Limonene and Trans-Anethole Does Not Overcome Innate Aversion to Eucalyptol, Affecting Growth Performance of Weanling Piglets" Animals 11, no. 7: 2062. https://doi.org/10.3390/ani11072062
APA StyleReyes-Camacho, D., Pérez, J. F., Vinyeta, E., Aumiller, T., Van der Klis, J. D., & Solà-Oriol, D. (2021). Prenatal Exposure to Innately Preferred D-Limonene and Trans-Anethole Does Not Overcome Innate Aversion to Eucalyptol, Affecting Growth Performance of Weanling Piglets. Animals, 11(7), 2062. https://doi.org/10.3390/ani11072062