Effects of Heated Drinking Water on the Growth Performance and Rumen Functionality of Fattening Charolaise Beef Cattle in Winter
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Groups and Animal Care
2.2. Feeding Protocol
2.3. Experimental Parameters
2.3.1. Growth, Feed and Water Intake, Feed Conversion Rate and Slaughtering Performances
2.3.2. Rumen Environment Health and Functionality
2.4. Statistical Analysis
2.4.1. Growth Performance
2.4.2. Feed Intake and Feed Conversion Rate
2.4.3. Slaughtering Performance
2.4.4. Water Consumption
2.4.5. Rumen pH and Temperature
3. Results
3.1. Growth, Feed Intake, Feed Conversion Rate and Slaughtering Performance
3.2. Water Intake
3.3. Rumen Environment Health and Functionality: pH
3.4. Rumen Health and Functionality: Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Capper, J.L.; Cady, R.A. The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017. J. Anim. Sci. 2020, 98, skz291. [Google Scholar] [CrossRef]
- Compiani, R.; Grossi, S.; Morandi, N.; Rossi, C.A.S. Evaluation of meloxicam included in a modern health management of beef cattle adaptation phase. Large Anim. Rev. 2020, 26, 155–158. [Google Scholar]
- Hejna, M.; Moscatelli, A.; Onelli, E.; Baldi, A.; Pilu, S.; Rossi, L. Evaluation of concentration of heavy metals in animal rearing system. Ital. J. Anim. Sci. 2019, 18, 1372–1384. [Google Scholar] [CrossRef] [Green Version]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Review: Nutritional ecology of heavy metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaninelli, M.; Rossi, L.; Tangorra, F.M.; Costa, A.; Agazzi, A.; Savoini, G. On-line monitoring of milk electrical conductivity by fuzzy logic technology to characterise health status in dairy goats. Ital. J. Anim. Sci. 2014, 13, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Kenny, D.A.; Fitzsimons, C.; Waters, S.M.; Mcgee, M. Invited review: Improving feed efficiency of beef cattle—The current state of the art and future challenges. Animal 2018, 12, 1815–1826. [Google Scholar] [CrossRef] [Green Version]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgoifo Rossi, C.A.; Compiani, R.; Baldi, G.; Muraro, M.; Marden, J.P.; Rossi, R.; Pastorelli, G.; Corino, C.; Dell’Orto, V. Organic selenium supplementation improves growth parameters, immune and antioxidant status of newly received beef cattle. J. Anim. Feed. Sci. 2017, 26, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.; Munro, J.C.; Zhou, M.; Guan, L.L.; Schenkel, F.S.; Steele, M.A.; Miller, S.P.; Montanholi, Y.R. Associations of rumen parameters with feed efficiency and sampling routine in beef cattle. Animal 2018, 7, 1442–1450. [Google Scholar] [CrossRef]
- Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Kim, S.H.; Kang, S.H.; Kim, E.T.; Cho, Y.I.; Lee, S.S.; Lee, S.S. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals 2021, 11, 838. [Google Scholar] [CrossRef] [PubMed]
- Linville, K.; Casper, D.P.; Osorio, J.S. In vitro analysis of rumen microbial fermentation at different temperatures. J. Anim. Sci. 2017, 95, 182–183. [Google Scholar] [CrossRef]
- Wahrmund, J.L.; Ronchesel, J.R.; Krehbiel, C.R.; Goad, C.L.; Trost, S.M.; Richards, C.J. Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. J. Anim. Sci. 2012, 90, 2794–2801. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.C.; Holman, D.B.; Alexander, T.W.; Kiri, K.; Breves, G.; Chaves, A.V. Incubation Temperature, But Not Pequi Oil Supplementation, Affects Methane Production, and the Ruminal Microbiota in a Rumen Simulation Technique (Rusitec) System. Front. Microbiol. 2017, 8, 1076. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhou, G.; Tian, G.; Liu, Y.; Dong, N.; Li, L.; Zhang, S.; Chai, H.; Chen, Y.; Yang, Y. Changes in Rumen Microbiota Affect Metabolites, Immune Responses and Antioxidant Enzyme Activities of Sheep under Cold Stimulation. Animals 2021, 11, 712. [Google Scholar] [CrossRef]
- Bewley, J.M.; Grott, M.W.; Einstein, M.E.; Schutz, M.M. Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J. Dairy Sci. 2008, 10, 3880–3887. [Google Scholar] [CrossRef]
- Petersen, M.K.; Muscha, J.M.; Mulliniks, J.T.; Roberts, A.J. Water temperature impacts water consumption by range cattle in winter. J. Anim. Sci. 2016, 94, 4297–4306. [Google Scholar] [CrossRef]
- Cantor, M.C.; Costa, J.H.C.; Bewley, J.M. Impact of Observed and Controlled Water Intake on Reticulorumen Temperature in Lactating Dairy Cattle. Animals 2018, 31, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, V.R.; Hacker, R.R.; McBride, B.W. Effects of heated drinking water on the production responses of lactating Holstein and Jersey cows. Can. J. Anim. Sci. 2002, 82, 267–273. [Google Scholar] [CrossRef]
- Diao, X.; Wang, M.; Chen, Z.; Liu, J.; Zhou, J.; Zhu, Y. Effects of thermostatic apparatus for drinking water and roof-lighting system on improvement of growth rate of beef cattle in winter. Trans. Chin. Soc. Agric. Eng. 2012, 24, 164–172. [Google Scholar]
- Chen, Z.; Pang, C.; Jin, W.; Liu, J.; Zhu, Y. Optimization of water supply system with constant temperature in winter based on effect of water temperature on growth performance of beef cattle. Trans. Chin. Soc. Agric. Eng. 2015, 31, 212–218. [Google Scholar]
- Mottram, T. Animal board invited review: Precision livestock farming for dairy cows with a focus on oestrus detection. Animal 2016, 10, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timsit, E.; Assié, S.; Quiniou, R.; Seegers, H.; Fourichon, C.; Bareille, N. Improved detection of bovine respiratory disease in the young bull with a rumen temperature bolus. In Proceedings of the 61st Annual Meeting of the European Association for Animal Production, Heraklion, Greece, 23–27 August 2010; p. 69. [Google Scholar]
- Penner, G.B.; Beauchemin, K.A.; Mutsvangwa, T. An evaluation of the accuracy and precision of a stand-alone submersible continuous ruminal pH measurement system. J. Dairy Sci. 2006, 89, 2132–2140. [Google Scholar] [CrossRef] [Green Version]
- McKiernan, W.A. Muscle scoring beef cattle. In Primefact No. 328; NSW Department of Primary Industries: Orange, Australia, 2007. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle, 8th ed.; National Academy Press: Washington, DC, USA, 2016. [Google Scholar]
- Gasteiner, J.; Fallast, M.; Rosenkranz, S.; Hausler, J.; Schneider, K.; Guggenberger, T. Zum Einsatz einer intraruminalen pH-Datenmesseinheit mit kabelloser Daten¨ubertragung bei Rindern unter verschiedenen F¨utterungsbedingungen. Vet. Med. Austria 2009, 96, 1188–1194. [Google Scholar]
- Penner, G.B.; Beauchemin, K.A.; Mutsvangwa, T. Severity of ruminal acidosis in primiparous Holstein cows during the periparturient period. J. Dairy Sci. 2007, 90, 365–375. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.; Christensen, R. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Programming with ggplot2. In ggplot2. Use R! Springer: Cham, Switzerland, 2016. [Google Scholar]
- Rutherford, N.H.; Gordon, A.W.; Lively, F.O.; Arnott, G. The Effect of Behaviour and Diet on the Rumen Temperature of Holstein Bulls. Animals 2019, 9, 1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sexson, J.L.; Wagner, J.J.; Engle, T.E.; Eickhoff, J. Predicting water intake by yearling steers. J. Anim. Sci. 2012, 90, 1920–1928. [Google Scholar] [CrossRef]
- Steiger, B.M.; Senn, M.; Sutter, F.; Kreuzer, M.; Langhans, W. Effect of water restriction on feeding and metabolism in dairy cows. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 256, R418–R427. [Google Scholar]
- Daros, R.R.; Bran, J.A.; Hötzel, M.J.; von Keyserlingk, M.A.G. Readily Available Water Access is Associated with Greater Milk Production in Grazing Dairy Herds. Animals 2019, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Umar, S.; Munir, M.T.; Azeem, T.; Ali, S.; Umar, W.; Rehman, A.; Shah, M.A. Effects of water quality on productivity and performance of livestock: A mini review. Veterinaria 2014, 2, 11–15. [Google Scholar]
- Dijkstra, J.; Ellis, J.; Kebreab, E.; Strathe, A.B.; López, S.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
Month | Temperature, T °C |
---|---|
November | 12.4 |
December | 9.1 |
January | 7.4 |
February | 7.1 |
March | 11.8 |
April | 15.2 |
May | 17.1 |
Arrival | Base | Fattening | Finishing | |
---|---|---|---|---|
Days on Feed | 0–30 | 30–60 | 60–130 | 130–180 |
Raw Material (kg) | ||||
Corn silage | 7.00 | 8.00 | 8.00 | 6.00 |
Corn meal | 1.80 | 3.50 | 6.00 | 7.50 |
Soybean meal 44% CP 1 | 0.90 | 1.50 | 1.50 | 1.50 |
Wheat straw | 1.20 | 0.90 | 0.90 | 0.90 |
Beet pulp | 1.10 | 1.00 | 1.00 | 1.00 |
Minerals and Vitamins | 0.20 | 0.20 | 0.20 | 0.20 |
Nutritional Values (% DM 2) | ||||
DM 2 | 57.55 | 60.46 | 64.44 | 70.00 |
MJ 3 | 10.60 | 11.32 | 12.04 | 12.53 |
UFV 4 | 0.88 | 0.94 | 1.00 | 1.04 |
CP 1 | 12.16 | 13.53 | 12.55 | 12.37 |
Sugars | 5.06 | 4.54 | 3.92 | 3.37 |
Starch | 29.64 | 36.29 | 42.68 | 46.26 |
NDF 5 | 41.54 | 34.60 | 29.96 | 26.92 |
Fat | 2.53 | 2.83 | 3.06 | 3.19 |
Ca tot | 0.61 | 0.62 | 0.51 | 0.47 |
P tot | 0.29 | 0.33 | 0.32 | 0.32 |
Parameter | HW 1 | RTW 1 | SE 2 | p Value |
---|---|---|---|---|
Live weight, kg (±ds) | ||||
d0 | 405 (±38) | 408 (±34) | 6.045 | 0.59 |
d90 | 546 (±40) | 544 (±34) | 6.045 | 0.74 |
d180 | 719 (±59) | 711 (±57) | 6.045 | 0.28 |
ADG 3, kg/head/day | ||||
ADG0–180 | 1.471 | 1.419 | 0.023 | 0.047 |
ADG0–90 | 1.560 | 1.513 | 0.033 | 0.160 |
ADG90–180 | 1.413 | 1.357 | 0.033 | 0.158 |
Feed intake, kg/head/day DM 4 | ||||
Average d0–d180 | 11.19 | 10.50 | 0.044 | <0.001 |
FCR | ||||
Average d0–d180 | 7.80 | 7.58 | 0.193 | 0.260 |
Slaughtering performance | ||||
CCW 5, kg | 421.29 | 413.56 | 4.45 | 0.084 |
CY 5, % | 59.80 | 59.72 | 0.031 | 0.059 |
Parameter | HW 1 | RTW 1 | SE | p Value |
---|---|---|---|---|
Rumen pH | ||||
average | 6.59 | 6.44 | 0.09 | <0.001 a |
min | 4.75 | 4.73 | ||
max | 7.86 | 7.64 | ||
Rumen pH, time under the thresholds, min/day | ||||
<5.8 | 20.32 | 31.04 | 0.56 | <0.001 |
<5.5 | 8.69 | 12.39 | 0.36 | <0.001 |
Parameter | HW 1 | RTW 2 | SE | p Value |
---|---|---|---|---|
Rumen T°C | ||||
average | 39.7 | 39.5 | 0.056 | |
min | 31.9 | 32.5 | <0.001 a | |
max | 41.8 | 42.6 | ||
Rumen T°C, time under the thresholds, min/day | ||||
<38 °C | 35.50 | 66.76 | 0.15 | <0.001 |
<37 °C | 9.41 | 29.46 | 0.09 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossi, S.; Rossi, L.; Dell’Anno, M.; Biffani, S.; Sgoifo Rossi, C.A. Effects of Heated Drinking Water on the Growth Performance and Rumen Functionality of Fattening Charolaise Beef Cattle in Winter. Animals 2021, 11, 2218. https://doi.org/10.3390/ani11082218
Grossi S, Rossi L, Dell’Anno M, Biffani S, Sgoifo Rossi CA. Effects of Heated Drinking Water on the Growth Performance and Rumen Functionality of Fattening Charolaise Beef Cattle in Winter. Animals. 2021; 11(8):2218. https://doi.org/10.3390/ani11082218
Chicago/Turabian StyleGrossi, Silvia, Luciana Rossi, Matteo Dell’Anno, Stefano Biffani, and Carlo Angelo Sgoifo Rossi. 2021. "Effects of Heated Drinking Water on the Growth Performance and Rumen Functionality of Fattening Charolaise Beef Cattle in Winter" Animals 11, no. 8: 2218. https://doi.org/10.3390/ani11082218
APA StyleGrossi, S., Rossi, L., Dell’Anno, M., Biffani, S., & Sgoifo Rossi, C. A. (2021). Effects of Heated Drinking Water on the Growth Performance and Rumen Functionality of Fattening Charolaise Beef Cattle in Winter. Animals, 11(8), 2218. https://doi.org/10.3390/ani11082218