Effects of Replacing Yellow Corn with Olive Cake Meal on Growth Performance, Plasma Lipid Profile, and Muscle Fatty Acid Content in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Growth Performance and Carcass Parts
2.3. Nitrogen Retention and Ether Extract Digestibility
2.4. Selected Plasma Parameters
2.5. Breast Meat Fatty Acid Profile
2.6. Statistical Analysis
3. Results
3.1. Bird Performance and Organ Weights
3.2. Selected Plasma Parameters
3.3. Fatty Acid, Vitamin E, and MDA Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahiwe, E.U.; Omede, A.A.; Abdallh, M.B.; Iji, P.A. Managing dietary energy intake by broiler chickens to reduce production costs and improve product quality. Anim. Husb. Nutr. 2018, 115. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.A.; Paray, B.A.; Dawood, M.A. Olive cake meal and Bacillus licheniformis impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals 2020, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Hack, A.; Mohamed, E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.; Bhatt, P. Omega-3 and Omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals 2019, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Pappas, A.C.; Tsiplakou, E.; Papadomichelakis, G.; Mitsiopoulou, C.; Sotirakoglou, K.; Mpekelis, V.; Haroutounian, S.; Fegeros, K.; Zervas, G. Effects of olive pulp addition to broiler diets on performance, selected biochemical parameters and antioxidant enzymes. J. Hell. Vet. Med. Soc. 2019, 70, 1687–1696. [Google Scholar] [CrossRef] [Green Version]
- Yanez, R.D.; Moumen, A.; Martin, G.A.; Molina, A.E. Ruminal fermentation and degradation patterns, protozoa population, and urinary purine derivatives excretion in goats and wethers fed diets based on two-stage olive cake: Effect of PEG supply. J. Anim. Sci. 2004, 82, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Moneim, A.E.; Sabic, E.M. Beneficial effect of feeding olive pulp and Aspergillus awamori on productive performance, egg quality, serum/yolk cholesterol and oxidative status in laying Japanese quails. J. Anim. Feed Sci. 2019, 28, 52–61. [Google Scholar] [CrossRef] [Green Version]
- García, A.M.; Moumen, A.; Ruiz, D.Y.; Alcaide, E.M. Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim. Feed Sci. Technol. 2003, 107, 61–74. [Google Scholar] [CrossRef]
- Saleh, A.A.; Abudabos, A.M.; Ali, M.H.; Ebeid, T.A. The effects of replacing corn with low-tannin sorghum in broiler’s diet on growth performance, nutrient digestibilities, lipid peroxidation and gene expressions related to growth and antioxidative properties. J. Appl. Anim. Res. 2019, 47, 532–539. [Google Scholar] [CrossRef]
- Chiofalo, B.; Liotta, L.; Zumbo, A.; Chiofalo, V. Administration of olive cake for ewe feeding: Effect on milk yield and composition. Small Rumin. Res. 2004, 55, 169–176. [Google Scholar] [CrossRef]
- Al-Harthi, M. The effect of different dietary contents of olive cake with or without Saccharomyces cerevisiae on egg production and quality, inner organs and blood constituents of commercial layers. Eur. Poult. Sci. 2015, 79, 83–87. [Google Scholar]
- Al-Harthi, M.A. The efficacy of using olive cake as a by-product in broiler feeding with or without yeast. Ital. J. Anim. Sci. 2016, 15, 512–520. [Google Scholar] [CrossRef]
- Al-Harthi, M.; Attia, Y. Effect of citric acid on the nutritive value of olive cake in broiler diets. Eur. Poult. Sci. 2016, 76, 1–14. [Google Scholar]
- Ozcan, C.; Cimrin, T.; Yakar, Y.; Alasahan, S. Effects of olive cake meal on serum constituents and fatty acid levels in breast muscle of Japanese quail. S. Afr. J. Anim. Sci. 2020, 50, 874–880. [Google Scholar]
- Al-Harthi, M. The effect of olive cake, with or without enzymes supplementation, on growth performance, carcass characteristics, lymphoid organs and lipid metabolism of broiler chickens. Braz. J. Poult. Sci. 2017, 19, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, H.; Yansari, A.T.; Ansari-Pirsarai, Z. Effects of different olive cake by products on dry matter intake, nutrient digestibility and performance of Zel sheep. Int. J. Agric. Biol. 2009, 11, 39–43. [Google Scholar]
- Sateri, S.; Seidavi, A.; Bouyeh, M.; Kutzler, M.; Neumann, P.; Laudadio, V.; Loperfido, F.; Tufarelli, V. Effect of olive meal and supplemental enzymes on performance traits, blood biochemistry, humoral immunity response and caecal microbiota of broilers. S. Afr. J. Anim. Sci. 2017, 47, 804–812. [Google Scholar] [CrossRef] [Green Version]
- El Hachemi, A.; El Mecherfi, K.E.; Benzineb, K.; Saidi, D.; Kheroua, O. Supplementation of olive mill wastes in broiler chicken feeding. Afr. J. Biotechnol. 2007, 6, 1848–1853. [Google Scholar]
- Sayehban, P.; Seidavi, A.; Dadashbeiki, M.; Ghorbani, A.; de Araújo, W.A.G.; Durazzo, A.; Lucarini, M.; Gabrielli, P.; Omri, B.; Teixeira Albino, L.F. Olive pulp and exogenous enzymes feed supplementation effect on the carcass and offal in broilers: A preliminary study. Agriculture 2020, 10, 359. [Google Scholar] [CrossRef]
- Al-Harthi, M.A.; Attia, Y.A. Effect of citric acid on the utilization of olive cake diets for laying hens. Ital. J. Anim. Sci. 2015, 14, 3966. [Google Scholar] [CrossRef]
- Sayehban, P.; Seidavi, A.; Dadashbeiki, M.; Ghorbani, A.; Araújo, W.; Albino, L. Effects of different levels of two types of olive pulp with or without exogenous enzyme supplementation on broiler performance and economic parameters. Braz. J. Poult. Sci. 2016, 18, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Papadomichelakis, G.; Pappas, A.; Tsiplakou, E.; Symeon, G.; Sotirakoglou, K.; Mpekelis, V.; Fegeros, K.; Zervas, G. Effects of dietary dried olive pulp inclusion on growth performance and meat quality of broiler chickens. Livest. Sci. 2019, 221, 115–122. [Google Scholar] [CrossRef]
- Cayan, H.; Erener, G. Effect of olive leaf (Olea europaea) powder on laying hens performance, egg quality and egg yolk cholesterol levels. Asian-Australas. J. Anim. Sci. 2015, 28, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhou, T.; Kim, I. Effects of dietary olive oil on growth performance, carcass parameters, serum characteristics, and fatty acid composition of breast and drumstick meat in broilers. Asian-Australas. J. Anim. Sci. 2013, 26, 416–421. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrition Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Saleh, A.; Eid, Y.; Ebeid, T.; Ohtsuka, A.; Hioki, K.; Yamamoto, M.; Hayashi, K. The modification of the muscle fatty acid profile by dietary supplementation with Aspergillus awamori in broiler chickens. Br. J. Nutr. 2012, 108, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.A.; Eid, Y.Z.; Ebeid, T.A.; Ohtsuka, A.; Yamamoto, M.; Hayashi, K. Feeding Aspergillus awamori reduces skeletal muscle protein breakdown and stimulates growth in broilers. Anim. Sci. J. 2012, 83, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A. Effects of fish oil on the production performances, polyunsaturated fattyacids and cholesterol levels of yolk in hens. Emir. J. Food Agric. 2013, 9, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Abd El-Samee, L.; Hashish, S. Olive cake in laying hen diets for modification of yolk lipids. J. Agric. Sci. Technol. B 2011, 1, 415–421. [Google Scholar]
- Al-Harthi, M.A.; Attia, Y.A.; El-Shafey, A.S.; Elgandy, M.F. Impact of phytase on improving the utilisation of pelleted broiler diets containing olive by-products. Ital. J. Anim. Sci. 2020, 19, 310–318. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, C.O.; Roll, A.A.P.; Medeiros Gonçalves, F.M.; Lopes, D.C.N.; Xavier, E.G. Olive pomace for the feeding of commercial poultry: Effects on performance, meat and eggs quality, haematological parameters, microbiota and immunity. World Poult. Sci. J. 2021. [Google Scholar] [CrossRef]
- Sanz, M. Higher lipid accumulation in broilers fed on saturated fats than in those fed on unsaturated fats. Br. Poult. Sci. 1999, 40, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Crespo, N.; Esteve-Garcia, E. Dietary polyunsaturated fatty acids decrease fat deposition in separable fat depots but not in the remainder carcass. Poult. Sci. 2002, 81, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, C.; Baucells, M.D.; Cortinas, L.; Hervera, M.; Barroeta, A.C. Chemical composition and energy content of chickens in response to different levels of dietary polyunsaturated fatty acids. Arch. Anim. Nutr. 2005, 59, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Lopez-Bote, C.J.; Menoyo, D.; Bautista, J.M. Abdominal fat deposition and fatty acid synthesis are lower and β-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J. Nutr. 2000, 130, 3034–3037. [Google Scholar] [CrossRef]
- Saleh, A.A.; Amber, K.; El-Magd, M.A.; Atta, M.S.; Mohammed, A.A.; Ragab, M.M.; El-Kader, A. Integrative effects of feeding Aspergillus awamori and fructooligosaccharide on growth performance and digestibility in broilers: Promotion muscle protein metabolism. BioMed Res. Int. 2014, 2014, 946859. [Google Scholar] [CrossRef] [Green Version]
- Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary olive cake reduces the oxidation of lipids, including cholesterol, in lamb meat enriched in polyunsaturated fatty acids. Meat Sci. 2013, 93, 703–714. [Google Scholar] [CrossRef]
- Chamruspollert, M.; Sell, J.L. Transfer of dietary conjugated linoleic acid to egg yolks of chickens. Poult. Sci. 1999, 78, 1138–1150. [Google Scholar] [CrossRef]
- Kirrella, A.A.; Abdo, S.E.; El-Naggar, K.; Soliman, M.M.; Aboelenin, S.M.; Dawood, M.A.O.; Saleh, A.A. Use of Corn Silk Meal in Broiler Diet: Effect on Growth Performance, Blood Biochemistry, Immunological Responses, and Growth-Related Gene Expression. Animals 2021, 11, 1170. [Google Scholar] [CrossRef]
- Saleh, A.A.; Elsawee, M.; Soliman, M.M.; Elkon, R.Y.N.; Alzawqari, M.H.; Shukry, M.; Abdel-Moneim, A.-M.E.; Eltahan, H. Effect of Bacterial or Fungal Phytase Supplementation on the Performance, Egg Quality, Plasma BiochemicalParameters, and Reproductive Morphology of Laying Hens. Animals 2021, 11, 540. [Google Scholar] [CrossRef]
- Gaetani, G.F.; Ferraris, A.M.; Rolfo, M.; Mangerini, R.; Arena, S.; Kirkman, H.N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996, 87, 1595–1599. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ni, X.; Qing, X.; Liu, L.; Xin, J.; Luo, M.; Khalique, A.; Dan, Y.; Pan, K.; Jing, B. Probiotic Lactobacillus johnsonii BS15 improves blood parameters related to immunity in broilers experimentally infected with subclinical necrotic enteritis. Front. Microbiol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Wang, L.J.; Liu, Y.; Li, Y.X.; Xun, A.Y.; Zeng, W.S.; Jia, C.H.; Wei, X.X.; Feng, J.L.; Zhao, L. Antioxidant effects of resveratrol on mice with DSS-induced ulcerative colitis. Arch. Med. Res. 2010, 41, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Shukry, M.; Farrag, F.; Soliman, M.M.; Abdel-Moneim, A.E. Effect of Feeding Wet Feed orWet Feed Fermented by Bacillus Licheniformis on Growth Performance, Histopathology and Growth and Lipid Metabolism Marker Genes in Broiler Chickens. Animals 2021, 11, 83. [Google Scholar] [CrossRef]
- de los Santos, F.S.; Farnell, M.; Tellez, G.; Balog, J.; Anthony, N.; Torres-Rodriguez, A.; Higgins, S.; Hargis, B.; Donoghue, A. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment. Poult. Sci. 2005, 84, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zeng, D.; Wang, H.; Qing, X.; Sun, N.; Xin, J.; Luo, M.; Khalique, A.; Pan, K.; Shu, G. Dietary Probiotic Bacillus licheniformis H2 Enhanced Growth Performance, Morphology of Small Intestine and Liver, and Antioxidant Capacity of Broiler Chickens Against Clostridium perfringens–Induced Subclinical Necrotic Enteritis. Probiotics Antimicrob. Proteins 2019, 9, 1–13. [Google Scholar] [CrossRef]
Ingredient, g/kg | Control | Replaced 5% | Replaced 10% | Replaced 20% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Starter | Grower | Finisher | Starter | Grower | Finisher | Starter | Grower | Finisher | Starter | Grower | Finisher | |
Yellow corn | 530 | 580 | 640 | 503.5 | 551 | 608 | 472 | 522 | 576 | 424 | 464 | 512 |
Soybean meal, 44% | 360 | 304 | 227 | 359 | 304 | 226 | 361 | 303 | 227 | 360 | 303 | 226 |
Corn gluten meal, 62% | 46 | 48 | 61 | 47 | 47 | 62 | 48 | 48 | 61 | 46 | 48 | 62 |
Soybean oil | 24 | 29 | 32 | 24 | 30 | 32 | 26 | 30 | 32 | 24 | 30 | 32 |
Dicalcium phosphate | 16 | 15 | 15 | 16 | 15 | 15 | 16 | 15 | 15 | 16 | 15 | 15 |
Dl Methionine, 99% | 2 | 1.8 | 1.2 | 2 | 1.8 | 1.2 | 2 | 1.8 | 1.2 | 2 | 1.8 | 1.2 |
l-Lysine HCl, 98% | 1.3 | 1.4 | 2.4 | 1.3 | 1.4 | 2.4 | 1.3 | 1.4 | 2.4 | 1.3 | 1.4 | 2.4 |
l-Threonine | 0.5 | 0.3 | 0.1 | 0.5 | 0.3 | 0.1 | 0.5 | 0.3 | 0.1 | 0.5 | 0.3 | 0.1 |
CaCo3 | 12 | 12 | 11 | 12 | 12 | 11 | 12 | 12 | 11 | 12 | 12 | 11 |
NaCl | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Premix ** | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
NaCo3 | 1.5 | 1.5 | 1.6 | 1.5 | 1.5 | 1.6 | 1.5 | 1.5 | 1.6 | 1.5 | 1.5 | 1.6 |
K2Co3 | 0.2 | 0.5 | 2.2 | 0.2 | 0.5 | 2.2 | 0.2 | 0.5 | 2.2 | 0.2 | 0.5 | 2.2 |
Olive cake meal | 0 | 0 | 0 | 26.5 | 29 | 32 | 53 | 58 | 64 | 106 | 116 | 128 |
Chemical Analysis | ||||||||||||
Crude protein, % | 23.00 | 21.00 | 19.00 | 23.05 | 21.03 | 19.02 | 23.04 | 21.04 | 19.02 | 23.05 | 21.074 | 19.03 |
AME kcal/kg | 2950 | 3045 | 3150 | 2950 | 3041 | 3142 | 2950 | 3040 | 3141 | 2950 | 3040 | 3141 |
Ca, % | 0.95 | 0.896 | 0.864 | 0.95 | 0.895 | 0.864 | 0.95 | 0.897 | 0.864 | 0.96 | 0.894 | 0.864 |
Available P, % | 0.422 | 0.408 | 0.388 | 0.422 | 0.408 | 0.388 | 0.422 | 0.408 | 0.388 | 0.422 | 0.408 | 0.388 |
Crude fiber, % | 3.444 | 3.547 | 3.333 | 3.786 | 3.992 | 3.909 | 4.311 | 4.3272 | 4.334 | 5.444 | 5.131 | 5.509 |
Na, % | 0.193 | 0.193 | 0.196 | 0.193 | 0.193 | 0.196 | 0.193 | 0.193 | 0.196 | 0.193 | 0.193 | 0.196 |
Cl, % | 0.250 | 0.250 | 0.25 | 0.250 | 0.250 | 0.249 | 0.250 | 0.2542 | 0.249 | 0.250 | 0.248 | 0.2497 |
Nutrients | Olive Cake Meal |
---|---|
Crude protein, g/kg | 8.2 |
Metabolizable energy, MJ/kg | 13.933 |
Calcium, g/kg | 0.021 |
Total phosphorus, g/kg | 0.46 |
Ether extract, g/kg | 17.8 |
Crude fiber, g/kg | 11.55 |
Fatty acids, g/100 g fatty acids | |
Myristic acid | 0.98 |
Palmatic acid | 7.3 |
Palmitoleic acid | 0.86 |
Stearic acid | 4.4 |
Oleic acid | 72.1 |
Linoleic acid | 9.5 |
Linolenic acid | 4.5 |
Saturated fatty acids, % | 13.54 |
Unsaturated fatty acids, % | 86.46 |
Polyunsaturated fatty acids, % | 14.0 |
Item | Experimental Diets | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Replaced 5% | Replaced 10% | Replaced 20% | |||
Initial body weight, g | 42.2 | 42.0 | 42.2 | 42.3 | 0.3 | 0.881 |
Body weight 35 d, g | 2089 a,b | 2186 a | 2164 a | 2064 b | 26 | 0.040 |
Feed intake 35 d, g | 3384 a | 3355 a,b | 3335 a,b | 3314 b | 54 | 0.035 |
FCR, 35 d | 1.62 a | 1.54 b | 1.54 b | 1.61 a,b | 0.02 | 0.048 |
Nitrogen retention, % | 71 | 73 | 73 | 72 | 5 | 0.097 |
Ether extract digestibility, % | 41 | 43 | 43 | 44 | 3 | 0.124 |
Organ weights, % body weight | ||||||
Carcass | 66.5 | 66.2 | 67.4 | 67.7 | 2.5 | 0.470 |
Breast muscle | 22.42 | 22.51 | 22.53 | 22.32 | 2.70 | 0.743 |
Thigh muscle | 16.46 | 16.38 | 16.27 | 16.41 | 0.98 | 0.349 |
Liver | 2.21 | 2.22 | 2.16 | 2.23 | 0.11 | 0.528 |
Abdominal fat | 2.17 a | 1.90 b | 1.87 b | 1.72 b | 0.18 | 0.023 |
Item | Experimental Diets | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Replaced 5% | Replaced 10% | Replaced 20% | |||
GOT, mg/dL | 243 | 231 | 234 | 225 | 32 | 0.632 |
Uric acid, mg/dL | 6.13 | 6.22 | 6.62 | 6.42 | 0.34 | 0.514 |
Total protein, mg/dL | 3.33 | 3.52 | 3.55 | 3.48 | 0.41 | 0.711 |
Albumin, mg/dL | 1.95 | 2.11 | 2.11 | 2.17 | 0.08 | 0.232 |
Total cholesterol, mg/dL | 151 a | 133 b | 131 b | 129 b | 14 | 0.038 |
HDL-cholesterol, mg/dL | 78 c | 82 b | 86 b | 91 a | 12 | 0.022 |
Item | Experimental Diets | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Replaced 5% | Replaced 10% | Replaced 20% | |||
Myristic acid (C14:0), mg/100 g fat | 1.42 | 1.38 | 1.38 | 1.37 | 0.02 | 0.571 |
Palmitic acid (C16:0), mg/100 g fat | 23.16 a | 22.04 a,b | 21.16 b | 21.03 b | 3.78 | 0.041 |
Palmitoleic acid (C16:1), mg/100 g fat | 5.52 | 5.51 | 5.55 | 5.48 | 0.32 | 0.753 |
Stearic acid (C18:0), mg/100 g fat | 8.71 | 8.33 | 8.46 | 8.31 | 0.88 | 0.431 |
Oleic acid (C18:1 n − 9c), mg/100 g fat | 40.05 b | 42.59 a,b | 44.78 a | 45.15 a | 14.00 | 0.039 |
Vaccenic acid (C18:1 n − 7), mg/100 g fat | 5.51 | 5.72 | 5.47 | 5.66 | 0.54 | 0.632 |
Linoleic acid (C18:2 n − 6), mg/100 g fat | 8.31 b | 9.15 a,b | 9.98 a | 10.10 a | 1.24 | 0.043 |
Linolenic acid (ALA, C18:3 n − 3), mg/100 g fat | 0.76 b | 0.79 a,b | 0.82 a | 0.86 a | 0.06 | 0.047 |
Arachidonic acid (AA, C20:4 n − 6), mg/100 g fat | 2.13 b | 2.76 a,b | 2.87 a | 2.89 a | 0.08 | 0.043 |
Eicosapentaenoic acid (EPA, C20:5 n − 3), mg/100 g fat | 0.033 | 0.037 | 0.036 | 0.036 | 0.002 | 0.821 |
Docosapentaenoic acid (DPA, C22:5 n − 3), mg/100 g fat | 0.224 | 0.214 | 0.211 | 0.217 | 0.005 | 0.712 |
Docosahexaenoic acid (DHA, C22:6 n − 3), mg/100 g fat | 0.971 | 0.983 | 0.979 | 0.993 | 0.009 | 0.069 |
Muscle vitamin E, gm/100 g muscle | 0.26 c | 0.29 b | 0.32 a | 0.40 a | 0.018 | 0.021 |
Liver MDA, nmol/g | 22 a | 19 b | 15 c | 14 c | 1.92 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, A.; Alzawqari, M. Effects of Replacing Yellow Corn with Olive Cake Meal on Growth Performance, Plasma Lipid Profile, and Muscle Fatty Acid Content in Broilers. Animals 2021, 11, 2240. https://doi.org/10.3390/ani11082240
Saleh A, Alzawqari M. Effects of Replacing Yellow Corn with Olive Cake Meal on Growth Performance, Plasma Lipid Profile, and Muscle Fatty Acid Content in Broilers. Animals. 2021; 11(8):2240. https://doi.org/10.3390/ani11082240
Chicago/Turabian StyleSaleh, Ahmed, and Mohammed Alzawqari. 2021. "Effects of Replacing Yellow Corn with Olive Cake Meal on Growth Performance, Plasma Lipid Profile, and Muscle Fatty Acid Content in Broilers" Animals 11, no. 8: 2240. https://doi.org/10.3390/ani11082240
APA StyleSaleh, A., & Alzawqari, M. (2021). Effects of Replacing Yellow Corn with Olive Cake Meal on Growth Performance, Plasma Lipid Profile, and Muscle Fatty Acid Content in Broilers. Animals, 11(8), 2240. https://doi.org/10.3390/ani11082240