Shade Modifies Behavioral and Physiological Responses of Low to Medium Production Dairy Cows at Pasture in an Integrated Crop-Livestock-Forest System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Treatments and Experimental Area Description
2.2. Animals and Experimental Design
2.3. Animal Measurements
2.4. Thermal Index Acquisition in Natural Shade and Full Sun
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Thermal Index Obtained in Natural Shade and Full Sun
4.2. Morphological Characteristics of Skin, Coat and Body Measures of Cows in Shaded ICLF and Full Sun Systems
4.3. Animal Behavior and Ingestion
4.4. Surface and Rectal Temperatures
4.5. Panting Score
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Costa, N.S.; Da Silva, M.V.G.B.; do Carmo Panetto, J.C.; Machado, M.A.; Seixas, L.; Peripolli, V.; Guimarães, R.F.; Carvalho, O.A., Jr.; Vieira, R.A.; McManus, C. Spatial dynamics of the Girolando breed in Brazil: Analysis of genetic integration and environmental factors. Trop. Anim. Health Prod. 2020, 52, 3869–3883. [Google Scholar] [CrossRef]
- McManus, C.; Louvandini, H.; Paim, T.P.; Paula, F.C.; Bernal, F.E.M. Factors affecting heat tolerance in crossbred cattle in Central Brazil. Ciência Anim. Bras. 2014, 15, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Kern, E.L.; Cobuci, J.A.; Costa, C.N.; Pimentel, C.M. Factor analysis of linear type traits and their relation with longevity in brazilian holstein cattle. Asian-Australas. J. Anim. Sci. 2014, 27, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Madalena, F.E.; Peixoto, M.G.C.D.; Gibson, J. Dairy cattle genetics and its applications in Brazil. Livest. Res. Rural. Dev. 2012, 24, 1–49. [Google Scholar]
- Canaza-Cayo, A.W.; Lopes, P.S.; Silva, M.V.G.B.; Cobuci, J.A.; de Torres, R.A.; Martins, M.F.; Arbex, W.A. Population structure of the Girolando breed. Ciência Rural 2014, 44, 2072–2077. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, C.C.; Peripolli, V.; Amador, S.A.; Brandão, E.G.; Esteves, G.I.F.; Sousa, C.M.Z.; França, M.F.M.S.; Gonçalves, F.G.; Barbosa, F.A.; Montalvão, T.C.; et al. Physiological and thermographic response to heat stress in zebu cattle. Livest. Sci. 2015, 182, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Vizzotto, E.F.; Fischer, V.; Neto, A.T.; Abreu, A.S.; Stumpf, M.T.; Werncke, D.; Shimidt, F.A.; Mcmanus, C.M. Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics. Animal 2015, 9, 1559–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balbino, L.C.; Cordeiro, L.A.M.; Porfírio-Da-Silva, V.; Moraes, A.D.; Martínez, G.B.; Alvarenga, R.C.; Kichel, A.N.; Fontaneli, R.S.; Santos, H.P.D.; Franchini, J.C.; et al. Technological evolution and productive arrangements of crop-livestock-forest integration systems in Brazil. Pesqui. Agropecuária Bras. 2011, 46, 1–12. [Google Scholar]
- Alves, B.J.R.; Madari, B.E.; Boddey, R.M. Integrated crop-livestock-forestry systems: Prospects for a sustainable agricultural intensification. Nutr. Cycl. Agroecosyst. 2017, 108, 1–4. [Google Scholar] [CrossRef]
- McManus, C.M.; Faria, D.A.; Bem, A.D.; Maranhão, A.Q.; Paiva, S.R. Physiology and genetics of heat stress in cattle. CAB Rev. 2020, 15, 1–12, 1749–8848. [Google Scholar] [CrossRef]
- Salman, A.K.D.; Della Giustina, C.; Martínez, G.B.; Carnevalli, R.A. Agroforestry Systems for Dairy Production in Capítulo em Livro Técnico; INFOTECA-E, Embrapa: Brazilia, Brazil, 2020; Chapter 16; pp. 371–390. ISSN 1413-7054. [Google Scholar]
- Martins, C.F.; Neto, A.M.F.; Bessler, H.C.; Dode, M.N.; Leme, L.; Franco, M.M.; Malaquias, J.V.; Ferreira, I.C. Natural shade from integrated crop-livestock forestry mitigates environmental heat and increases the quantity and quality of oocytes and embryos produced in vitro by Gyr dairy cows. Livestock Sci. 2021, 244, 104341. [Google Scholar] [CrossRef]
- Bungenstab, D.J.; de Almeida, R.G.; Laura, V.A.; Balbino, L.C.; Ferreira, A.D. (Eds.) ICLF: Innovation with Integration of Crop, Livestock and Forest; Embrapa: Brasília, Brazil, 2019; pp. 347–366. ISBN 978-85-7035-922-3. [Google Scholar]
- Silva, R.G. Introduction to Animal Bioclimatology; Nobel: São Paulo, SP, Brazil, 2000; p. 286. ISBN 9788521311218. [Google Scholar]
- Müller, L. Standards for carcass evaluation and steer carcass contest. Dep. Zoot 1980, 1, 3l. [Google Scholar]
- Reis, G.L.; Albuquerque, F.H.M.A.R.; Valente, B.D.; Martins, G.A.; Teodoro, R.L.; Ferreira, M.B.D.; Monteiro, J.B.N.; Silva, M.A.; Madalena, F.E. Live weight prediction from body measurements in Holsteins/Gyr crossbreds. Ciência Rural. 2008, 38, 778–783. [Google Scholar] [CrossRef] [Green Version]
- McManus, C.; Prescott, E.; Paludo, G.R.; Bianchini, E.; Louvandini, H.; Mariante, A.S. Heat tolerance in naturalised Brazilian cattle breeds. Livestock Sci. 2009, 120, 256–264. [Google Scholar] [CrossRef]
- Hodgson, J.; Tayler, J.C.; Lonsdale, C.R. The relationship between intensity of grazing and herbage consumption and growth of calves. J. Br. Grassl. Soc. 1971, 26, 231–237. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pit, D. Black globe-humidity index (ITGU) as comfort equation for dairy cows. Trans. Am. Soc. Agric. Eng. 1981, 24, 711–714. [Google Scholar] [CrossRef]
- Maia, A.S.; Da Silva, R.G.; Loureiro, C.M.B. Latent Heat Loss of Holstein Cows in a Tropical Environment: A prediction Model. Rev. Bras. Zootec. 2008, 37, 1837–1843. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, J.; Araujo, J.P.; Blanco-Penedo, I.; Cantalapiedra, J.; Silvestre, A.; Silva, S. Prediction of heat stress in dairy cows by environmental and physiological indicators. Arch. Zootec. 2016, 65, 357–364, 0004-0592. [Google Scholar] [CrossRef] [Green Version]
- Azevêdo, M.D.; Pires, M.D.F.Á.; Saturnino, H.M.; Lana, Â.M.Q.; Sampaio, I.B.M.; Monteiro, J.B.N.; Morato, L.E. Estimation of upper critical levels of the temperature and humidity index for 1/2, 3/4 and 7/8 Holstein-Zebu dairy cows in lactation. Rev. Bras. Zootec. 2005, 34, 2000–2008. [Google Scholar] [CrossRef] [Green Version]
- Hahn, G.L. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Karvatte, N., Jr.; Alves, F.; Klosowski, E.; De Almeida, R.G.; Tsutsumi, C.; Oliveira, C. Microclimate and Thermal Comfort Indexes in Crop-Livestock-Forest Integration Systems in the Municipality of Campo Grande, Mato Grosso do Sul. In Embrapa Gado de Corte-Documentos (INFOTECA-E); Embrapa: Brasilia, Brazil, 2016; p. 1983-974X. [Google Scholar]
- Silva, R.G.; Maia, A.S.C. Principles of Animal Biometeorology; Springer: Dordrecht, The Netherlands, 2012; Volume 1, p. 261. [Google Scholar] [CrossRef]
- Prayaga, K.C. Evaluation of beef cattle genotypes and estimation of direct and maternal genetic effects in a tropical environment. 1. Growth traits. Aust. J. Agric. Res. 2003, 54, 1013–1025. [Google Scholar] [CrossRef]
- Mata e Silva, B.C.; Marques, L.C.G.; Porto, B.R.; Durães, C.R.S.; Carvalho Júnior, I.S.; Colen, F. Morphological characteristics of the coat of crossbred Holstein cows in the semiarid region of Minas Gerais. Arq. Bras. Med. Vet. Zootec. 2013, 65, 1767–1772. [Google Scholar] [CrossRef]
- Helal, A.; Hashem, A.; Abdel-Fattah, M.; El-Shaer, H. Effect of heat stress on coat characteristics and physiological responses of Balady and Damascus goats in Sinai, Egypt. Am. Eur. J. Agric. Environ. Sci. 2010, 7, 60–69. [Google Scholar]
- Jakper, N.; Kojo, I.A. Effect of coat color, ecotype, location and sex on hair density of West African Dwarf (WAD) goats in Northern Ghana. Sky J. Agric. Res. 2014, 3, 25–30. [Google Scholar]
- Paim, T.P.; Borges, B.O.; de Mello Tavares Lima, P.; Gomes, E.F.; Dallago, B.S.L.; Fadel, R.; McManus, C. Thermographic evaluation of climatic conditions on lambs from different genetic groups. Int. J. Biometeorol. 2013, 57, 59–66. [Google Scholar] [CrossRef]
- Paim, T.D.P.; Martins, R.F.S.; Cardoso, C.; Dallago, B.; Louvandini, H.; McManus, C. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions. Sci. Agric. 2014, 71, 356–361. [Google Scholar] [CrossRef]
- Godfrey, R.W.; Smith, S.D.; Guthrie, M.J.; Stanko, R.L.; Neuendorff, D.A.; Randel, R.D. Physiological responses of newborn Bos indicus and Bos indicus× Bos taurus calves after exposure to cold. J. Anim. Sci. 1991, 69, 258–263. [Google Scholar] [CrossRef]
- Silva, R.G. Estimates of radiation heat balance in sun and shade exposed Holstein cows in a tropical environment. Rev. Bras. Zootec. 1999, 28, 1403–1411. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.S.C.; Silva, R.G.; Bertipaglia, E.C.A. Pelage characteristics of Holstein cows in Tropical environment: An adaptive genetic study. Rev. Bras. Zootec. 2003, 32, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Aiura, A.L.O.; Aiura, F.S.; Santos, P.D.O.; Santos, L.V.; Santana, C.J.L.; Gonçalves, G.A.M.; Martins, S.C.S.G. Morphological characteristics of the pelage of crossbred cows. Rev. Bras. Saúde Produção Anim. 2014, 15, 866–871, 1519–9940. [Google Scholar] [CrossRef]
- Silva, R.G.; La Scala Júnior, N.; Pocay, P.L.B. Transmission of ultraviolet radiation through the pelage and epidermis of cattle. Rev. Bras. Zootec. 2001, 30, 1939–1947. [Google Scholar] [CrossRef] [Green Version]
- Alfonzo, E.P.M.; Silva, M.V.G.B.; Daltro, D.S.; Stumpf, M.T.; Dalcin, V.C.; Kolling, G.; Fischer, V.; McManus, C.M. Relationship between physical attributes and heat stress in dairy cattle from different genetic groups. Int. J. Biometeorol. 2016, 60, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Façanha, D.A.E.; Silva, R.G.D.; Maia, A.S.C.; Guilhermino, M.M.; Vasconcelos, A.M.D. Anual variation of morphologic traits and hair coat surface temperature of Holstein cows in semi-arid environment. Rev. Bras. Zootec. 2010, 39, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.S.; Da Silva, R.G.; Battiston, C.M.L. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment. Int. J. Biometeorol. 2005, 50, 17–22. [Google Scholar] [CrossRef]
- Baliscei, M.A.; Souza, W.; Barbosa, O.R.; Cecato, U.; Krutzmann, A.; Queiroz, E.O. Behavior of beef cattle and the microclimate with and without shade. Acta Scientiarum. Anim. Sci. 2012, 34, 409–415. [Google Scholar] [CrossRef]
- Burfeind, O.; Suthar, V.S.; Heuwieser, W. Effect of heat stress on body temperature in healthy early postpartum dairy cows. Theriogenology 2012, 78, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- Dalcin, V.C.; Fischer, V.; Daltro, D.S.; Alfonzo, E.P.M.; Stumpf, M.T.; Kolling, G.J.; da Silva, M.V.G.B.; McManus, C. Physiological parameters for thermal stress in dairy cattle. Rev. Bras. Zootec. 2016, 45, 458–465. [Google Scholar] [CrossRef] [Green Version]
- McManus, C.; Castanheira, M.; Paiva, S.R.; Louvandini, H.; Fioravanti, M.C.S.; Paludo, G.R.; Oliveira, E.M.B.; Corrêa, P.S. Use of multivariate analyses for determining heat tolerance in Brazilian cattle. Trop. Anim. Health Prod. 2011, 43, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Mwacharo, J.M.; Okeyo, A.; Kamande, G.; Rege, J. The small East African shorthorn zebu cows in Kenya. I: Linear body measurements. Trop. Anim. Health Prod. 2006, 38, 65–74. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.; Louvandini, H.; Carneiro, H.C.; Lima, P.R.M.; Neto, J.B. Production indices for dual purpose cattle in central Brazil. Rev. Bras. Zootec. 2011, 40, 1576–1586. [Google Scholar] [CrossRef] [Green Version]
Parameter | Season | Morning | Afternoon | Significance | ||||
---|---|---|---|---|---|---|---|---|
Full Sun | Morning Shade | Full Sun | Afternoon Shade | Treatment | Time of Day | Treat × Time | ||
BGHI | Dry | 81.4 ± 1.2 | 76.4 ± 1.4 | 88.9 ± 1.1 | 82.4 ± 1.0 | 0.01 | 0.01 | 0.63 |
Rainy | 82.1 ± 2.3 | 79.6 ± 1.1 | 85.9 ± 1.7 | 80.3 ± 1.9 | 0.04 | 0.23 | 0.41 | |
THI | Dry | 76.0 ± 0.8 | 72.0 ± 0.8 | 82.0 ± 0.9 | 80.0 ± 0,8 | 0.01 | 0.01 | 0.17 |
Rainy | 73.8 ± 1.3 | 72.3 ± 1.3 | 78.0 ± 1.4 | 75.5 ± 1.4 | 0.15 | 0.01 | 0.70 | |
AT | Dry | 26.8 ± 0.8 | 24.0 ± 0.7 | 31.5 ± 0.9 | 30.7 ± 0.7 | 0.03 | 0.01 | 0.19 |
Rainy | 24.5 ± 0.9 | 23.4 ± 0.9 | 28.6 ± 1.0 | 26.6 ± 1.0 | 0.14 | 0.01 | 0.65 | |
BG | Dry | 32.1 ± 1.1 | 27.9 ± 1.1 | 38.6 ± 1.1 | 32.9 ± 1.1 | 0.01 | 0.01 | 0.51 |
Rainy | 31.7 ± 1.5 | 29.7 ± 1.6 | 35.0 ± 1.8 | 30.2 ± 1.6 | 0.05 | 0.27 | 0.42 |
Parameter | Full Sun | Shade | p-Value * | Gyr | Girolando | p-Value * |
---|---|---|---|---|---|---|
Number of hairs (hair/cm2) | 805 ± 108 | 795 ± 153 | 0.8 | 791 ± 67 | 809 ± 175 | 0.70 |
Size 10 > hair (mm) | 0.53 ± 0.10 | 0.60 ± 0.20 | 0.36 | 0.49 ± 0.05 | 0.63 ± 0.20 | 0.01 |
Skin color | 7.8 | 7.1 | 0.78 | 9.6 | 5.3 | 0.09 |
Fur color | 13.8 | 12.6 | 0.56 | 18.4 | 8.3 | 0.01 |
Parameter | Gyr | Girolando | p-Value * |
---|---|---|---|
Skin thickness (cm) | 0.62 | 0.61 | 0.83 |
Body length (m) | 1.42 | 1.63 | 0.01 |
Wither height (m) | 1.29 | 1.40 | 0.01 |
Shin circumference (cm) | 21.4 | 20.9 | 0.68 |
Thoracic circumference (cm) | 1.76 | 2.01 | 0.01 |
Treatment | Genetic Breed | |
---|---|---|
Gyr | Girolando | |
Coat thickness in full sun (cm) | 1.09 Aa | 0.91 Aa |
Coat thickness in shade (cm) | 0.82 Ba | 0.95 Aa |
Ingestive Behavior | Air Temperature | Full Sun | Shade | p-Value |
---|---|---|---|---|
Grazing | <30 °C | 484.8 ± 14.6 | 506.6 ± 14.9 | 0.72 |
>30 °C | 518.7 ± 19.5 | 520.1 ± 19.5 | 0.99 | |
p-Value | 0.5155 | 0.9496 | ||
Rumination | <30 °C | 301.0 ± 13.0 | 404.1 ± 13.7 | 0.01 |
>30 °C | 312.5 ± 16.4 | 404.4 ± 16.8 | 0.01 | |
p-Value | 0.9403 | 1.000 | ||
Lying down | <30 °C | 561.0 ± 13.6 | 456.0 ± 14.1 | 0.01 |
>30 °C | 520.5 ± 17.8 | 455.6 ± 18.0 | 0.05 | |
p-Value | 0.2712 | 1.000 | ||
THI Classes | ||||
Grazing | Normal | 492.8 ± 19.3 A | 502.5 ± 14.6 A | 0.99 |
Alert | 486.2 ± 22.3 A | 545.6 ± 27.3 A | 0.54 | |
Danger | 509.6 ± 27.3 A | 510.0 ± 27.3 A | 0.99 | |
Rumination | Normal | 269.0 ± 14.0 B | 384.2 ± 10.6 B | 0.01 |
Alert | 388.7 ± 16.2 A | 424.3 ± 19.8 AB | 0.73 | |
Danger | 269.6 ± 14.0 B | 468.7 ± 19.9 A | 0.01 | |
Lying down | Normal | 561.8 ± 16.3 A | 479.8 ± 12.3 A | 0.01 |
Alert | 477.5 ± 18.9 B | 402.5 ± 23.1 B | 0.13 | |
Danger | 585.3 ± 16.3 A | 424.3 ± 23.0 AB | 0.01 |
Region | Morning | Afternoon | Significance * | ||||
---|---|---|---|---|---|---|---|
Full Sun | Shade | Full Sun | Shade | Treatment | Period | Treat × Per | |
Udder | 32.5 ± 0.1 | 31.6 ± 0.2 | 35.8 ± 0.1 | 34.6 ± 0.2 | 0.01 | 0.01 | 0.30 |
Croup | 32.2 ± 0.3 | 31.7 ± 0.3 | 35.4 ± 0.3 | 34.0 ± 0.3 | 0.01 | 0.01 | 0.18 |
Flank | 32.8 ± 0.2 | 32.3 ± 0.2 | 35.7 ± 0.2 | 34.8 ± 0.2 | 0.01 | 0.01 | 0.52 |
Neck | 32.3 ± 0.2 | 32.1 ± 0.2 | 35.6 ± 0.2 | 34.3 ± 0.2 | 0.01 | 0.01 | 0.04 |
Eye | 32.8 ± 0.2 | 32.4 ± 0.2 | 35.8 ± 0.2 | 34.6 ± 0.2 | 0.01 | 0.01 | 0.08 |
Muzzle | 29.8 ± 0.3 | 28.7 ± 0.3 | 33.4 ± 0.3 | 31.7 ± 0.3 | 0.01 | 0.01 | 0.36 |
Rectum | 37.5 ± 0.07 | 37.9 ± 0.0 | 38.2 ± 0.0 | 38.5 ± 0.0 | 0.01 | 0.01 | 0,83 |
Mean Panting Score | ||||
---|---|---|---|---|
Environment | Full Sun | Shade ICLF | s.e. | Significance * |
0.92 | 0.84 | 0.04 | 0.16 | |
Genetic Breed | Gyr | Girolando | ||
Season | 0.75 | 1.00 | 0.04 | 0.01 |
Rainy | Dry | |||
Period | 0.97 | 0.81 | 0.04 | 0.03 |
Morning | Afternoon | |||
0.51 | 1.28 | 0.03 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, N.S.; Ferreira, I.C.; Mazocco, L.A.; Souza, A.C.B.; Pinho, G.A.S.; da Fonseca Neto, Á.M.; Malaquias, J.V.; Macena, F.A.; Muller, A.G.; Martins, C.F.; et al. Shade Modifies Behavioral and Physiological Responses of Low to Medium Production Dairy Cows at Pasture in an Integrated Crop-Livestock-Forest System. Animals 2021, 11, 2411. https://doi.org/10.3390/ani11082411
Reis NS, Ferreira IC, Mazocco LA, Souza ACB, Pinho GAS, da Fonseca Neto ÁM, Malaquias JV, Macena FA, Muller AG, Martins CF, et al. Shade Modifies Behavioral and Physiological Responses of Low to Medium Production Dairy Cows at Pasture in an Integrated Crop-Livestock-Forest System. Animals. 2021; 11(8):2411. https://doi.org/10.3390/ani11082411
Chicago/Turabian StyleReis, Natani S., Isabel C. Ferreira, Lucas A. Mazocco, Ana Clara B. Souza, Gabriel A. S. Pinho, Álvaro M. da Fonseca Neto, Juaci V. Malaquias, Fernando A. Macena, Artur G. Muller, Carlos F. Martins, and et al. 2021. "Shade Modifies Behavioral and Physiological Responses of Low to Medium Production Dairy Cows at Pasture in an Integrated Crop-Livestock-Forest System" Animals 11, no. 8: 2411. https://doi.org/10.3390/ani11082411
APA StyleReis, N. S., Ferreira, I. C., Mazocco, L. A., Souza, A. C. B., Pinho, G. A. S., da Fonseca Neto, Á. M., Malaquias, J. V., Macena, F. A., Muller, A. G., Martins, C. F., Balbino, L. C., & McManus, C. M. (2021). Shade Modifies Behavioral and Physiological Responses of Low to Medium Production Dairy Cows at Pasture in an Integrated Crop-Livestock-Forest System. Animals, 11(8), 2411. https://doi.org/10.3390/ani11082411