Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Basal Diets and Insects
2.2. Donor Animals and Rumen Fluid Collection
2.3. Experimental Design and In Vitro Incubation Procedure
2.4. Incubation Media Sampling
2.5. Chemical Analysis
2.6. Amino Acid and Fatty Acid Composition Analysis
2.7. Gas Composition Analysis
2.8. Volatile Fatty Acids and Ammonia-Nitrogen Analysis
2.9. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Gas Production and Composition
3.3. pH, In Vitro Nutrient Digestibility and Ammonia-Nitrogen Production
3.4. Volatile Fatty Acids Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B. Greenhouse Gas Emmission from Ruminant Supply Chains. A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 978-92-5-107945-4. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock. A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 925-10-7-920-X. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow. Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Smith, P.; Gregory, P.J. Climate change and sustainable food production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Khan, R.; Sultan, A.; Khan, M.; Hayat, S.U.; Shahid, M. Evaluating the suitability of maggot meal as a partial substitute of soya bean on the productive traits, digestibility indices and organoleptic properties of broiler meat. J. Anim. Physiol. Anim. Nutr. 2016, 100, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Jolazadeh, A.; Dehghan-Banadaky, M.; Rezayazdi, K. Effects of soybean meal treated with tannins extracted from pistachio hulls on performance, ruminal fermentation, blood metabolites and nutrient digestion of Holstein bulls. Anim. Feed. Sci. Technol. 2015, 203, 33–40. [Google Scholar] [CrossRef]
- Halloran, A.; Hansen, H.H.; Jensen, L.S.; Bruun, S. Comparing Environmental Impacts from Insects for Feed and Food as an Alternative to Animal Production. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 163–180. [Google Scholar]
- FAO. The Oilcrops Monthly Price and Policy Update (MPPU). Available online: http://www.fao.org/economic/est/publications/oilcrops-publications/monthly-price-and-policy-update/en/ (accessed on 23 April 2021).
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- DiGiacomo, K.; Leury, B. Review: Insect meal: A future source of protein feed for pigs? Animals 2019, 13, 3022–3030. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A. Prospects of insects as food and feed. Org. Agric. 2021, 11, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Sorjonen, J.M.; Valtonen, A.; Hirvisalo, E.; Karhapää, M.; Lehtovaara, V.J.; Lindgren, J.; Marnila, P.; Mooney, P.; Mäki, M.; Siljander-Rasi, H.; et al. The plant-based by-product diets for the mass-rearing of Acheta domesticus and Gryllus bimaculatus. PLoS ONE 2019, 14, e0218830. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed. Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Grmelová, N.H.-E.L.; Deschamps, M.-H.; Vandenberg, G.W.; Ai, Z.; Yumei, Z.; Baoru, Y.; Nemane, V. Insects as food and feed: Laws of the European Union, United States, Canada, Mexico, Australia, and China. Eur. Food Feed. Law Rev. 2017, 12, 22–36. [Google Scholar]
- Digiacomo, K.; Akit, H.; Leury, B.J. Insects: A novel animal-feed protein source for the Australian market. Anim. Prod. Sci. 2019, 59, 2037. [Google Scholar] [CrossRef]
- Cappellozza, S.; Leonardi, M.G.; Savoldelli, S.; Carminati, D.; Rizzolo, A.; Cortellino, G.; Terova, G.; Moretto, E.; Badaile, A.; Concheri, G.; et al. A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals 2019, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Apri, A.D.; Komalasari, K. Feed and animal nutrition: Insect as animal feed. IOP Conf. Ser. Earth Environ. Sci. 2020, 465, 12002. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Józefiak, A.; Kozłowski, K.; Jankowski, J.; Józefiak, D. Tenebrio molitor and Zophobas morio Full-Fat Meals in Broiler Chicken Diets: Effects on Nutrients Digestibility, Digestive Enzyme Activities, and Cecal Microbiome. Animals 2019, 9, 1128. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, L.; Coretti, L.; Dipineto, L.; Bovera, F.; Menna, F.; Chiariotti, L.; Nizza, A.; Lembo, F.; Fioretti, V. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 2017, 7, 16269. [Google Scholar] [CrossRef] [Green Version]
- Dabbou, S.; Gasco, L.; Lussiana, C.; Brugiapaglia, A.; Biasato, I.; Renna, M.; Cavallarin, L.; Gai, F.; Schiavone, A. Yellow mealworm (Tenebrio molitor L.) larvae inclusion in diets for free-range chickens: Effects on meat quality and fatty acid profile. Renew. Agric. Food Syst. 2019, 35, 1–8. [Google Scholar] [CrossRef]
- Cullere, M.; Woods, M.J.; Van Emmenes, L.; Pieterse, E.; Hoffman, L.C.; Zotte, A.D. Hermetia illucens Larvae Reared on Different Substrates in Broiler Quail Diets: Effect on Physicochemical and Sensory Quality of the Quail Meat. Animals 2019, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Gasco, L.; Dabbou, S.; Trocino, A.; Xiccato, G.; Capucchio, M.T.; Biasato, I.; Dezzutto, D.; Birolo, M.; Meneguz, M.; Schiavone, A.; et al. Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. J. Anim. Sci. Biotechnol. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L.; et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chemello, G.; Renna, M.; Caimi, C.; Guerreiro, I.; Oliva-Teles, A.; Enes, P.; Biasato, I.; Schiavone, A.; Gai, F.; Gasco, L. Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic Responses. Animals 2020, 10, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontes, T.V.; De De Oliveira, K.R.B.; Almeida, I.L.G.; Orlando, T.M.M.; Rodrigues, P.B.; Da Costa, D.V.; Rosa, P.V. Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals 2019, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Hoffman, L.C. Why for feed and not for human consumption? The black soldier fly larvae. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2747–2763. [Google Scholar] [CrossRef]
- Byrne, J. EU Authorizes Use of PAPs in Pig and Poultry Feed. Available online: https://www.feednavigator.com/Article/2021/08/17/EU-authorizes-use-of-PAPs-in-pig-and-poultry-feed (accessed on 21 August 2021).
- Jayanegara, A.; Novandri, B.; Yantina, N.; Ridla, M. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study. Vet. World 2017, 10, 1436–1446. [Google Scholar] [CrossRef]
- Jayanegara, A.; Yantina, N.; Novandri, B.; Laconi, E.B.; Nahrowi, N.; Ridla, M. Evaluation of some insects as potential feed ingredients for ruminants: Chemical composition, in vitro rumen fermentation and methane emissions. J. Indones. Trop. Anim. Agric. 2017, 42, 247–254. [Google Scholar] [CrossRef]
- Van Huis, A. Edible Insects. Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 978-92-5-107596-8. [Google Scholar]
- Jongema, Y. Worldwide List of Recorded Edible Insects; Department of Entomology, Wageningen University & Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- MAFF. Japanese Feeding Standard for Dairy Cattle; Agriculture, Forestry and Fisheries Research Council Secretariat, Ministry of Agriculture, Forestry and Fisheries; Japan Livestock Industry Association: Tokyo, Japan, 1999. (In Japanese) [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analyses and gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- McDougall, E.I. Studies on ruminant saliva. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Hahn, T.; Roth, A.; Febel, E.; Fijalkowska, M.; Schmitt, E.; Arsiwalla, T.; Zibek, S. New methods for high-accuracy insect chitin measurement. J. Sci. Food Agric. 2018, 98, 5069–5073. [Google Scholar] [CrossRef]
- Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. The Efficacy of Plant-Based Bioactives Supplementation to Different Proportion of Concentrate Diets on Methane Production and Rumen Fermentation Characteristics In Vitro. Animals 2021, 11, 1029. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Yano, R.; Fujimori, M.; Kand, D.; Hanada, M.; Nishida, T.; Fukuma, N. Impacts of Mootral on Methane Production, Rumen Fermentation, and Microbial Community in an in vitro Study. Front. Vet. Sci. 2021, 7, 1200. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Min, X.; Li, X.; Hasegawa, E.; Sakaguchi, E. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by fructo-oligosaccharide feeding in guinea pigs. Anim. Sci. J. 2014, 86, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Schmitt, E.; Mathys, A. Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resour. Conserv. Recycl. 2019, 144, 285–296. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Zotte, A.D.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Astuti, D.; Anggraeny, A.; Khotijah, L.; Suharti, S.; Jayanegara, A. Performance, Physiological Status, and Rumen Fermentation Profiles of Pre- and Post-Weaning Goat Kids Fed Cricket Meal as a Protein Source. Trop. Anim. Sci. J. 2019, 42, 145–151. [Google Scholar] [CrossRef]
- Jayanegara, A.; Gustanti, R.; Ridwan, R.; Widyastuti, Y. Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Ital. J. Anim. Sci. 2020, 19, 1310–1317. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia-Pac. Entomol. 2014, 17, 407–415. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth per-formance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.-J.; Barroso, F.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Kroeckel, S.; Harjes, A.-G.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364-365, 345–352. [Google Scholar] [CrossRef]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, S.S.; Arakane, Y.; Specht, C.A.; Moussian, B.; Boyle, D.L.; Park, Y.; Kramer, K.J.; Beeman, R.W.; Muthukrishnan, S. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc. Natl. Acad. Sci. USA 2011, 108, 17028–17033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, F.; Qi, S.; Sapienza, D. Invited Review: Applied protein nutrition of ruminants—Current status and future directions. Prof. Anim. Sci. 2014, 30, 150–179. [Google Scholar] [CrossRef]
- Pengpeng, W.; Tan, Z. Ammonia Assimilation in Rumen Bacteria: A Review. Anim. Biotechnol. 2013, 24, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Dewi, S.P.; Laylli, N.; Laconi, E.B.; Nahrowi, N.; Ridla, M. Determination of Cell Wall Protein from Selected Feedstuffs and its Relationship with Ruminal Protein Digestibility in Vitro. Media Peternak. 2016, 39, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Maxin, G.; Ouellet, D.; Lapierre, H. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. J. Dairy Sci. 2013, 96, 5151–5160. [Google Scholar] [CrossRef]
- Hristov, A.; Ropp, J. Effect of Dietary Carbohydrate Composition and Availability on Utilization of Ruminal Ammonia Nitrogen for Milk Protein Synthesis in Dairy Cows. J. Dairy Sci. 2003, 86, 2416–2427. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Patra, A.K. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Eugène, M.; Massé, D.; Chiquette, J.; Benchaar, C. Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci. 2008, 88, 331–337. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honan, M.; Feng, X.; Tricarico, J.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021. [Google Scholar] [CrossRef]
- Martin, C.; Morgavi, D.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animals 2010, 4, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Lopes, J.; Harper, M.; Giallongo, F.; Oh, J.; Smith, L.; Ortega-Perez, A.; Harper, S.; Melgar, A.; Kniffen, D.; Fabin, R.; et al. Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows. J. Dairy Sci. 2017, 100, 1122–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalč, D.; Čertik, M.; Kundrikova, K.; Namestkova, P. Effect of unsaturated C18 fatty acids (oleic, linoleic and α-linolenic acids) on ruminal fermentation and production of fatty acids isomers in artificial rumen. Vet. Med. 2008, 52, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Meile, L.; Kreuzer, M.; Zeitz, J.O. The Effect of Saturated Fatty Acids on Methanogenesis and Cell Viability of Methanobrevibacter ruminantium. Archaea 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Pinloche, E.; Preskett, D.; Newbold, C.J. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol. 2015, 92, 92. [Google Scholar] [CrossRef] [Green Version]
- Goiri, I.; Garcia, A.; Oregui, L. Effect of chitosans on in vitro rumen digestion and fermentation of maize silage. Anim. Feed. Sci. Technol. 2009, 148, 276–287. [Google Scholar] [CrossRef]
- Haryati, R.P.; Jayanegara, A.; Laconi, E.B.; Ridla, M.; Suptijah, P. Evaluation of chitin and chitosan from insect as feed additives to mitigate ruminal methane emission. In Proceedings of the International Conference on Biology and Applied Science (ICOBAS), Malang, Indonesia, 13–14 March 2019; AIP Publishing: Melville, NY, USA, 2019; p. 40008. [Google Scholar]
% | Kleingrass | Soybean Meal |
---|---|---|
Dry matter (in fresh matter) | 91.69 | 88.16 |
Organic matter | 88.86 | 92.82 |
Crude ash | 11.14 | 7.18 |
Crude protein | 10.54 | 48.31 |
Ether extract | 2.75 | 2.33 |
Neutral detergent fibre | 67.40 | 19.51 |
Acid detergent fibre | 35.65 | 9.86 |
Acid detergent lignin | 6.59 | 1.09 |
% | Acheta domesticus | Brachytrupes portentosus | Gryllus bimaculatus | Bombyx mori |
---|---|---|---|---|
Dry matter (in fresh matter) | 95.57 | 96.13 | 95.55 | 96.55 |
Organic matter | 94.60 | 95.16 | 94.81 | 94.67 |
Crude ash | 5.40 | 4.84 | 5.19 | 5.33 |
Crude protein | 61.25 | 53.32 | 56.54 | 52.44 |
Ether extract | 14.63 | 22.29 | 15.82 | 26.71 |
Neutral detergent fibre | 39.31 | 40.38 | 37.65 | 40.37 |
Acid detergent fibre | 17.29 | 17.34 | 24.21 | 20.72 |
Acid detergent lignin | 2.64 | 4.88 | 3.39 | 10.89 |
Chitin | 14.65 | 12.46 | 20.82 | 9.83 |
Fatty Acid | Soybean Meal | Acheta domesticus | Brachytrupes portentosus | Gryllus bimaculatus | Bombyx mori |
---|---|---|---|---|---|
14:0 | 0.1 | 0.6 | 0.6 | 0.6 | 0.2 |
16:0 | 15.2 | 25.3 | 26.3 | 24.2 | 22.0 |
16:1 (cis-9) | 0.2 | 0.7 | 0.6 | 0.8 | 1.0 |
17:0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 |
18:0 | 4.2 | 8.9 | 11.0 | 7.0 | 6.7 |
18:1 (cis-9) | 15.3 | 25.0 | 24.8 | 27.9 | 31.4 |
18:2 n-6 (cis-9,12) | 52.6 | 36.8 | 34.3 | 37.1 | 6.3 |
18:3 n-3 (cis-9,12,15) | 9.8 | 0.8 | 0.9 | 0.9 | 31.7 |
20:0 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 |
unknown | 0.9 | 1.5 | 1.3 | 1.0 | 0.4 |
Amino Acid | Soybean Meal | Acheta domesticus | Brachytrupes portentosus | Gryllus bimaculatus | Bombyx mori |
---|---|---|---|---|---|
Essential amino acids | |||||
Arginine | 7.08 | 7.08 | 7.03 | 6.86 | 5.67 |
Lysine | 6.31 | 6.01 | 6.02 | 5.89 | 6.88 |
Histidine | 2.82 | 2.52 | 2.58 | 2.64 | 3.62 |
Phenylalanine | 5.19 | 3.73 | 3.62 | 3.66 | 5.07 |
Tyrosine | 3.40 | 5.79 | 5.71 | 5.92 | 6.46 |
Threonine | 4.07 | 4.18 | 4.07 | 4.05 | 4.65 |
Leucine | 7.86 | 7.87 | 7.93 | 8.03 | 7.50 |
Isoleucine | 4.69 | 4.50 | 4.43 | 4.36 | 4.53 |
Methionine | 1.40 | 1.76 | 1.71 | 1.61 | 3.10 |
Cysteine | 1.49 | 1.01 | 0.97 | 0.94 | 1.57 |
Valine | 5.02 | 6.31 | 6.32 | 6.47 | 5.85 |
Tryptophan | 1.40 | 1.12 | 1.06 | 1.08 | 1.71 |
Non-essential amino acids | |||||
Alanine | 4.43 | 9.70 | 10.23 | 10.45 | 5.73 |
Glycine | 4.37 | 6.09 | 6.14 | 6.14 | 5.73 |
Proline | 5.21 | 6.21 | 6.29 | 6.33 | 4.75 |
Glutamic acid | 18.45 | 11.88 | 12.07 | 11.79 | 11.95 |
Serine | 5.08 | 5.17 | 4.92 | 5.01 | 4.77 |
Aspartic acid | 11.73 | 9.08 | 8.90 | 8.75 | 10.48 |
Parameter | Treatments | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Kleingrass | Soybean Meal | Acheta domesticus | Brachytrupes portentosus | Gryllus bimaculatus | Bombyx mori | |||
Gas production (mL) | 30.17 c | 40.25 a | 40.29 a | 40.21 a | 35.08 bc | 36.96 ab | 0.71 | <0.001 |
Gas production/DM 1 (mL/g) | 66.30 c | 89.92 a | 88.83 a | 88.33 a | 77.17 bc | 81.06 ab | 1.59 | <0.001 |
Gas production/d.DM 2 (mL/g) | 171.36 b | 198.99 a | 194.82 a | 192.43 a | 177.51 b | 174.58 b | 2.12 | <0.001 |
CO2 (%) | 95.25 a | 94.06 c | 93.97 c | 93.97 c | 94.58 b | 94.36 bc | 0.09 | <0.001 |
CH4 (%) | 4.75 c | 5.94 a | 6.03 a | 6.03 a | 5.42 b | 5.64 ab | 0.09 | <0.001 |
CO2 (mL) | 28.72 c | 37.84 a | 37.85 a | 37.77 ab | 33.16 bc | 34.84 ab | 0.65 | <0.001 |
CH4 (mL) | 1.45 c | 2.41 a | 2.44 a | 2.44 a | 1.93 b | 2.11 ab | 0.07 | <0.001 |
CH4/CO2 ratio (mL/mL) | 0.050 d | 0.063 ab | 0.064 ab | 0.064 a | 0.057 c | 0.060 bc | 0.00 | <0.001 |
CO2/DM (mL/g) | 63.11 c | 84.54 a | 83.44 a | 82.97 ab | 72.93 bc | 76.42 ab | 1.45 | <0.001 |
CH4/DM (mL/g) | 3.19 c | 5.37 a | 5.39 a | 5.36 a | 4.24 b | 4.63 ab | 0.15 | <0.001 |
CO2/d.DM (mL/g) | 163.17 b | 187.12 a | 183.01 a | 180.76 a | 167.82 b | 164.64 b | 1.89 | <0.001 |
CH4/d.DM (mL/g) | 8.19 c | 11.87 a | 11.81 a | 11.67 a | 9.69 b | 9.94 b | 0.26 | <0.001 |
Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | Kleingrass | Soybean Meal | Acheta domesticus | Brachytrupes portentosus | Gryllus bimaculatus | Bombyx mori | SEM | p-Value |
pH | 6.59 bc | 6.58 c | 6.62 a | 6.61 ab | 6.62 a | 6.62 ab | 0.01 | <0.001 |
IVDMD 1 (%) | 38.60 b | 45.14 a | 45.60 a | 45.80 a | 43.28 a | 46.22 a | 1.05 | <0.001 |
IVOMD 2 (%) | 39.27 b | 47.51 a | 46.08 a | 49.77 a | 48.15 a | 45.78 a | 1.54 | 0.010 |
IVNDFD 3 (%) | 31.91 c | 34.28 bc | 42.99 a | 45.95 a | 41.09 ab | 38.54 abc | 1.35 | 0.003 |
IVADFD 4 (%) | 27.50 ab | 28.69 ab | 34.76 ab | 30.70 ab | 27.26 b | 35.20 a | 0.96 | 0.016 |
NH3-N 5 (mg/dL) | 9.33 b | 11.68 b | 23.89 a | 18.69 a | 13.03 b | 19.45 a | 0.84 | <0.001 |
Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | Kleingrass | Soybean Meal | Acheta domesticus | Brachytrupes portentosus | Gryllus bimaculatus | Bombyx mori | SEM | p-Value |
Acetate (mmol/L) | 78.98 c | 84.99 ab | 85.32 a | 85.12 ab | 82.47 b | 84.78 ab | 1.71 | <0.001 |
Propionate (mmol/L) | 21.04 b | 24.45 a | 24.48 a | 24.46 a | 23.49 a | 24.57 a | 0.41 | <0.001 |
Butyrate (mmol/L) | 8.08 c | 9.00 ab | 9.16 a | 9.16 a | 8.71 b | 8.68 b | 0.15 | <0.001 |
Total VFA 1 (mmol/L) | 108.10 b | 118.44 a | 118.96 a | 118.74 a | 114.66 a | 118.02 a | 2.22 | <0.001 |
Acetate (mol/100 mol) | 72.94 a | 71.64 b | 71.60 b | 71.54 b | 71.78 b | 71.70 b | 0.17 | <0.001 |
Propionate (mol/100 mol) | 19.53 b | 20.72 a | 20.66 a | 20.70 a | 20.59 a | 20.91 a | 0.13 | <0.001 |
Butyrate (mol/100 mol) | 7.54 ab | 7.65 a | 7.74 a | 7.75 a | 7.62 a | 7.39 b | 0.06 | <0.001 |
A/P 2 ratio | 3.75 a | 3.46 b | 3.48 b | 3.47 b | 3.50 b | 3.44 b | 0.03 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. Animals 2021, 11, 2648. https://doi.org/10.3390/ani11092648
Ahmed E, Fukuma N, Hanada M, Nishida T. Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. Animals. 2021; 11(9):2648. https://doi.org/10.3390/ani11092648
Chicago/Turabian StyleAhmed, Eslam, Naoki Fukuma, Masaaki Hanada, and Takehiro Nishida. 2021. "Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions" Animals 11, no. 9: 2648. https://doi.org/10.3390/ani11092648
APA StyleAhmed, E., Fukuma, N., Hanada, M., & Nishida, T. (2021). Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. Animals, 11(9), 2648. https://doi.org/10.3390/ani11092648