Learn to Train: Improving Training Data for a Neural Network to Detect Pecking Injuries in Turkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Related Work
3. Animals, Materials, and Methods
3.1. Data Collection
3.2. Annotation Assessment
4. Results
4.1. Naive Annotations
4.2. High-Quality Annotations
4.3. Network-Assisted Annotations
5. Discussion
5.1. Quality of Raw Data
5.2. Annotation Method
5.3. Improving Training Data
5.4. Choice of Neural Network Architecture
5.5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Dalton, H.A.; Wood, B.J.; Torrey, S. Injurious pecking in domestic turkeys: Development, causes, and potential solutions. World’s Poult. Sci. J. 2013, 69, 865–876. [Google Scholar] [CrossRef]
- Huber-Eicher, B.; Wechsler, B. Feather pecking in domestic chicks: Its relation to dustbathing and foraging. Anim. Behav. 1997, 54, 757–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, J.; Stehle, E.; Bartels, T. Beschäftigungsmaterial: Eine Möglichkeit zur Reduktion von “Beschädigungspicken” bei Mastputen mit unkupierten Schnäbeln? Der Prakt. Tierarzt 2017, 99, 190–201. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Lewis, P.D.; Perry, G.C. Effects of environmental enrichment, fluorescent and intermittent lighting on injurious pecking amongst male turkey poults. Br Poult. Sci. 1999, 40, 592–598. [Google Scholar] [CrossRef]
- Spindler, B.; Bisping, M.; Giersberg, M.; Hartung, J.; Kemper, N. Development of pecking damage in Turkey hens with intact and trimmed beaks in relation to dietary protein source. Berl. Und Munch. Tierarztl. Wochenschr. 2017, 130, 241–249. [Google Scholar] [CrossRef]
- Krautwald-Junghanns, M.-E.; Ellerich, R.; Mitterer-Istyagin, H.; Ludewig, M.; Fehlhaber, K.; Schuster, E.; Berk, J.; Dressel, A.; Petermann, S.; Kruse, W.; et al. Examination of the prevalence of skin injuries in debeaked fattened turkeys. Berl. Und Munch. Tierarztl. Wochenschr. 2011, 124, 8–16. [Google Scholar]
- Nds. Ministerium für Ernährung, L.u.V. Tierschutzplan Niedersachsen, Puten. Available online: https://www.ml.niedersachsen.de/startseite/themen/tiergesundheit_tierschutz/tierschutzplan_niedersachsen_2011_2018/puten/puten-110863.html (accessed on 8 June 2021).
- Kulke, K.; Spindler, B.; Kemper, N. A waiver of beak-trimming in turkeys—Current situation in Germany. Züchtungskunde 2016, 88, 456–474. [Google Scholar]
- Vieira Rios, H.; Waquil, P.D.; Soster de Carvalho, P.; Norton, T. How Are Information Technologies Addressing Broiler Welfare? A Systematic Review Based on the Welfare Quality® Assessment. Sustainability 2020, 12, 1413. [Google Scholar] [CrossRef] [Green Version]
- Neves, D.P.; Mehdizadeh, S.A.; Tscharke, M.; Nääs, I.d.A.; Banhazi, T.M. Detection of flock movement and behaviour of broiler chickens at different feeders using image analysis. Inf. Process. Agric. 2015, 2, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Peña Fernández, A.; Norton, T.; Tullo, E.; van Hertem, T.; Youssef, A.; Exadaktylos, V.; Vranken, E.; Guarino, M.; Berckmans, D. Real-time monitoring of broiler flock’s welfare status using camera-based technology. Biosyst. Eng. 2018, 173, 103–114. [Google Scholar] [CrossRef]
- Okinda, C.; Lu, M.; Liu, L.; Nyalala, I.; Muneri, C.; Wang, J.; Zhang, H.; Shen, M. A machine vision system for early detection and prediction of sick birds: A broiler chicken model. Biosyst. Eng. 2019, 188, 229–242. [Google Scholar] [CrossRef]
- Carpentier, L.; Vranken, E.; Berckmans, D.; Paeshuyse, J.; Norton, T. Development of sound-based poultry health monitoring tool for automated sneeze detection. Comput. Electron. Agric. 2019, 162, 573–581. [Google Scholar] [CrossRef]
- Gonzalez, J.J.; Nasirahmadi, A.; Knierim, U. Automatically Detected Pecking Activity in Group-Housed Turkeys. Animals (Basel) 2020, 10, 2034. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.F.; Miyamoto, B.C.B.; Maia, G.D.N.; Tatiana Sales, G.; Magalhães, M.M.; Gates, R.S. Machine vision to identify broiler breeder behavior. Comput. Electron. Agric. 2013, 99, 194–199. [Google Scholar] [CrossRef]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Mortensen, A.K.; Lisouski, P.; Ahrendt, P. Weight prediction of broiler chickens using 3D computer vision. Comput. Electron. Agric. 2016, 123, 319–326. [Google Scholar] [CrossRef]
- Xiong, X.; Lu, M.; Yang, W.; Duan, G.; Yuan, Q.; Shen, M.; Norton, T.; Berckmans, D. An Automatic Head Surface Temperature Extraction Method for Top-View Thermal Image with Individual Broiler. Sensors (Basel) 2019, 19, 5286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, D.F.; Lopes, F.A.A.; Filho, L.R.A.G.; Salgado, D.D.A.; Neto, M.M. Cluster index for estimating thermal poultry stress (gallus gallus domesticus). Comput. Electron. Agric. 2020, 177. [Google Scholar] [CrossRef]
- Aydin, A. Development of an early detection system for lameness of broilers using computer vision. Comput. Electron. Agric. 2017, 136, 140–146. [Google Scholar] [CrossRef]
- Kristensen, H.H.; Cornou, C. Automatic detection of deviations in activity levels in groups of broiler chickens—A pilot study. Biosyst. Eng. 2011, 109, 369–376. [Google Scholar] [CrossRef]
- Hughes, B.O.; Grigor, P.N. Behavioural Time-budgets and Beak Related Behaviour in Floor-housed Turkeys. Anim. Welf. 1996, 5, 189–198. [Google Scholar]
- Sherwin, C.M.; Kelland, A. Time-budgets, comfort behaviours and injurious pecking of turkeys housed in pairs. Br Poult Sci 1998, 39, 325–332. [Google Scholar] [CrossRef]
- Bartels, T.; Stuhrmann, R.A.; Krause, E.T.; Schrader, L. Research Note: Injurious pecking in fattening turkeys (Meleagris gallopavo f. dom.)-video analyses of triggering factors and behavioral sequences in small flocks of male turkeys. Poult. Sci. 2020, 99, 6326–6331. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock classification and counting in quadcopter aerial images using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 8121–8142. [Google Scholar] [CrossRef] [Green Version]
- Brunger, J.; Gentz, M.; Traulsen, I.; Koch, R. Panoptic Segmentation of Individual Pigs for Posture Recognition. Sensors (Basel) 2020, 20, 3710. [Google Scholar] [CrossRef] [PubMed]
- Philipsen, M.P.; Dueholm, J.V.; Jorgensen, A.; Escalera, S.; Moeslund, T.B. Organ Segmentation in Poultry Viscera Using RGB-D. Sensors (Basel) 2018, 18, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neethirajan, S. Automated Tracking Systems for the Assessment of Farmed Poultry. Preprints 2021. [Google Scholar] [CrossRef]
- Brunger, J.; Dippel, S.; Koch, R.; Veit, C. ‘Tailception’: Using neural networks for assessing tail lesions on pictures of pig carcasses. Animal 2019, 13, 1030–1036. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Rahman, M.; Wang, Y. Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D., Sadagic, A., et al., Eds.; Springer: Cham, Switzerland, 2016; Volume 10072, pp. 234–244. [Google Scholar]
- Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and Applications of Convolutional Neural Network-Based Computer Vision Systems in Animal Farming: A Review. Sensors 2021, 21, 1492. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar]
- Prechelt, L. Early Stopping—But When. In Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science; Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1524, pp. 55–69. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Kashiha, M.; Pluk, A.; Bahr, C.; Vranken, E.; Berckmans, D. Development of an early warning system for a broiler house using computer vision. Biosyst. Eng. 2013, 116, 36–45. [Google Scholar] [CrossRef]
- Peterson, J.C.; Battleday, R.; Griffiths, T.; Russakovsky, O. Human Uncertainty Makes Classification More Robust. In Proceedings of the 17th IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9616–9625. [Google Scholar]
- Kashiha, M.; Bahr, C.; Haredasht, S.A.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. The automatic monitoring of pigs water use by cameras. Comput. Electron. Agric. 2013, 90, 164–169. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Richter, U.; Hensel, O.; Edwards, S.; Sturm, B. Using machine vision for investigation of changes in pig group lying patterns. Comput. Electron. Agric. 2015, 119, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, J.; Bueno, G.; Deniz, O.; Vallez, N.; Cristobal, G. Semantic versus instance segmentation in microscopic algae detection. Eng. Appl. Artif. Intell. 2020, 87, 103271. [Google Scholar] [CrossRef]
- Yang, A.; Huang, H.; Yang, X.; Li, S.; Chen, C.; Gan, H.; Xue, Y. Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow. Comput. Electron. Agric. 2019, 167, 105048. [Google Scholar] [CrossRef]
- Wu, D.; Yin, X.; Jiang, B.; Jiang, M.; Li, Z.; Song, H. Detection of the respiratory rate of standing cows by combining the Deeplab V3+ semantic segmentation model with the phase-based video magnification algorithm. Biosyst. Eng. 2020, 192, 72–89. [Google Scholar] [CrossRef]
- Achour, B.; Belkadi, M.; Filali, I.; Laghrouche, M.; Lahdir, M. Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on Convolutional Neural Networks (CNN). Biosyst. Eng. 2020, 198, 31–49. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Reitsma, J.B.; Rutjes, A.W.; Khan, K.S.; Coomarasamy, A.; Bossuyt, P.M. A review of solutions for diagnostic accuracy studies with an imperfect or missing reference standard. J. Clin. Epidemiol. 2009, 62, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, I.; Rubio-Celorio, M.; Garcia-Gil, N.; Guàrdia, M.D.; Fulladosa, E. Computer image analysis as a tool for classifying marbling: A case study in dry-cured ham. J. Food Eng. 2015, 166, 148–155. [Google Scholar] [CrossRef]
- Rowe, E.; Dawkins, M.S.; Gebhardt-Henrich, S.G. A Systematic Review of Precision Livestock Farming in the Poultry Sector: Is Technology Focussed on Improving Bird Welfare? Animals (Basel) 2019, 9, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchewka, J.; Estevez, I.; Vezzoli, G.; Ferrante, V.; Makagon, M.M. The transect method: A novel approach to on-farm welfare assessment of commercial turkeys. Poult. Sci. 2015, 94, 7–16. [Google Scholar] [CrossRef]
Comparison | IoU 1 (1) | IoU 1 (2) |
---|---|---|
OBS1 vs. OBS2 | 0.27 | 0.30 |
OBS1 vs. OBS3 | 0.43 | 0.36 |
OBS2 vs. OBS3 | 0.25 | 0.29 |
OBS1 vs. OBS1a | 0.56 |
NA | NAA | |
---|---|---|
F1 | 0.07 | 0.14 |
PRECESION | 0.21 | 0.11 |
RECALL | 0.04 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkmann, N.; Brünger, J.; Stracke, J.; Zelenka, C.; Koch, R.; Kemper, N.; Spindler, B. Learn to Train: Improving Training Data for a Neural Network to Detect Pecking Injuries in Turkeys. Animals 2021, 11, 2655. https://doi.org/10.3390/ani11092655
Volkmann N, Brünger J, Stracke J, Zelenka C, Koch R, Kemper N, Spindler B. Learn to Train: Improving Training Data for a Neural Network to Detect Pecking Injuries in Turkeys. Animals. 2021; 11(9):2655. https://doi.org/10.3390/ani11092655
Chicago/Turabian StyleVolkmann, Nina, Johannes Brünger, Jenny Stracke, Claudius Zelenka, Reinhard Koch, Nicole Kemper, and Birgit Spindler. 2021. "Learn to Train: Improving Training Data for a Neural Network to Detect Pecking Injuries in Turkeys" Animals 11, no. 9: 2655. https://doi.org/10.3390/ani11092655
APA StyleVolkmann, N., Brünger, J., Stracke, J., Zelenka, C., Koch, R., Kemper, N., & Spindler, B. (2021). Learn to Train: Improving Training Data for a Neural Network to Detect Pecking Injuries in Turkeys. Animals, 11(9), 2655. https://doi.org/10.3390/ani11092655