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Simple Summary: There are various systems available for health monitoring and heat detection
in dairy cows. By continuously monitoring different behavioral patterns (e.g., lying, ruminating,
and feeding), these systems detect behavioral changes linked to health disorders and estrous. Most
of the systems were developed for cows kept indoors, and only a few systems are available for
pasture-based farms. The systems developed for the barn failed to detect the targeted behavior and
thereby its changes on the pasture and vice versa. Therefore, our goal was to train and validate
a machine learning model for the automated prediction of lying behavior in dairy cows kept on
pastures, as well as indoors. Data collection was conducted on three dairy farms where cows were
equipped with the collar-based prototype of the monitoring system and recorded with cameras in
parallel. The derived dataset was used to develop the machine learning model. The model performed
well in predicting lying behavior in dairy cows both on the pasture and in the barn. Therefore, the
building of the model presents a successful first step towards the development of a monitoring
system for dairy cows kept on pasture and in the barn.

Abstract: Monitoring systems assist farmers in monitoring the health of dairy cows by predicting
behavioral patterns (e.g., lying) and their changes with machine learning models. However, the
available systems were developed either for indoors or for pasture and fail to predict the behavior in
other locations. Therefore, the goal of our study was to train and evaluate a model for the prediction
of lying on a pasture and in the barn. On three farms, 7–11 dairy cows each were equipped with the
prototype of the monitoring system containing an accelerometer, a magnetometer and a gyroscope.
Video observations on the pasture and in the barn provided ground truth data. We used 34.5 h of
datasets from pasture for training and 480.5 h from both locations for evaluating. In comparison,
random forest, an orientation-independent feature set with 5 s windows without overlap, achieved
the highest accuracy. Sensitivity, specificity and accuracy were 95.6%, 80.5% and 87.4%, respectively.
Accuracy on the pasture (93.2%) exceeded accuracy in the barn (81.4%). Ruminating while standing
was the most confused with lying. Out of individual lying bouts, 95.6 and 93.4% were identified on
the pasture and in the barn, respectively. Adding a model for standing up events and lying down
events could improve the prediction of lying in the barn.

Keywords: behavior recognition; classification; precision livestock farming; accelerometer; gyroscope;
grazing
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1. Introduction

Precision Livestock Farming (PLF) has gained importance in the dairy sector all over
Europe over the last decade. The application of smart farming solutions offers great
potential for improving productivity and management on dairy farms. Different studies
investigated the automizing activity recognition of humans [1–3] or animals [4,5] in real
environments. These studies are based on technologies such as smart environment, Internet
of Things (IoT), machine learning and big data. The standard strategy applied in these
studies is to use sensors and to classify the sensor data into desired activities or behavioral
patterns by applying suitable machine learning models on the sensor data. This process
is also used in monitoring systems for dairy cows in order to predict the behavior of
animals continuously and individually. Triaxial accelerometers, e.g., combined with a
magnetometer or a gyroscope, are the sensors widely used for this purpose. As the lifespan
of the sensor’s battery is crucial for the successful application of monitoring systems,
adjusting the sampling rate can be beneficial [6,7]. As presented by Kamminga et al. [8] and
Krause et al. [9], a combination of accelerometer, magnetometer and gyroscope data can
provide an orientation-independent dataset that ensures sufficient accuracy of the model,
even when a low sampling rate is applied.

Monitoring the health and welfare of dairy cows is time consuming. Increasing
herd sizes reduces the amount of time available for the individual animal [10,11]. On a
pasture, the control of animals is impeded by distances and environmental conditions.
Monitoring systems assist the farmer in supervising the health and welfare of the animals
and, thus, reduce the physical workload and increase schedule flexibility [12–14]. Based
on behavior data, changes can be registered, and the corresponding alerts for the farmer
can be generated through management software. Changes in behavior occur, e.g., during
estrous and under extreme environmental conditions and with emerging health issues.
Behavioral changes caused by diseases often arise before clinical symptoms appear, which
allows earlier detection by using monitoring systems compared to visual examination of
the animal [15–17]. The early identification of commencing health disorders enables timely
treatment, resulting in minimized veterinary costs [18], reduced use of antibiotics [19,20]
and rapid restoration of the welfare of the animals by limiting the pain and discomfort
linked to diseases [21–23]. Identifying behavioral changes linked to extreme weather
conditions enables the farmer to take preventive measurements in order to reduce the
impact on the health and welfare of the animals. A reliable detection of estrous with
monitoring systems results in an increased number of successful inseminations, reducing
the expenses associated with missed heat events [24,25].

In addition to other behavioral patterns, lying behavior is one of the most significant
indicators for estrous and health challenges including emerging health disorders and
extreme environmental conditions. Total lying time, duration of lying bouts and the
frequency of lying events can be either reduced or increased. On the day of estrous,
e.g., dairy cows exhibit an increased level of activity at the expense of lying time [26].
Mayo et al. [27] also found a decrease in the number of lying bouts on the day of estrous.
As heat dissipation is increased while standing compared to lying, animals reduce their
lying time in favor of standing when temperatures are high [28,29]. Allen et al. [28] also
found a decreased duration of lying bouts. Moreover, cows exposed to wet and cold
weather conditions or suffering from mastitis lie down less [30,31]. On the other hand,
Beer et al. [32] and Weigele et al. [33] found that lame cows show increased lying time
and lying bout duration compared to sound cows. In the study of King et al. [16], dairy
cows with displaced abomasum, metritis or pneumonia lie down more on the day before
diagnosis, accompanied by an increased duration of lying bouts.

Apart from lying behavior, other behavioral patterns are affected by estrous, health
disorders and extreme environmental conditions. The changes of those behaviors can serve
as indicators used by monitoring systems as well. Reith and Hoy [34] found a relationship
between decreased rumination time and estrous. Moreover, high temperatures affect rumi-
nation time, making it a useful indicator for heat load in dairy cows [35]. Barker et al. [36]
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used feeding time as an indicator for lameness. Reliable detections of estrous and early de-
tection of health disorders and challenges are possible by assessing behavioral patterns and
their changes individually, but combining multiple behaviors improves the information
value and the detection rate. In the studies by Stangaferro et al. [21,22,23], various health
disorders were detected before clinical diagnosis based on changes both in rumination time
and activity.

In order to detect the behavioral patterns, e.g., lying behavior, monitoring systems
can be applied to various parts of the cows’ body. In the study of Borchers et al. [37],
different pedometers predicted lying behavior with reasonable accuracy. Bikker et al. [38]
showed that accelerometers integrated into an ear tag predicted lying in dairy cows reliably.
Benaissa et al. [39] compared the performance of a leg-based and a neck-based system. Both
systems performed well in predicting lying behavior, but considering other behavioral
patterns, the accuracy of the neck-mounted system was higher.

Offering pastures to dairy cows is linked to various benefits. In addition to improving
health [40], the animals’ actions conform more to their natural behavior, expressed by an
increased synchrony in feeding and lying behavior in grazing situations compared to the
barn [41]. From the consumer perspective, farms with access to pastures reach higher
levels of animal welfare [42]. Despite the benefits, in Europe as well as the US, the share
of cows with access to pasture declined over the last years [43,44]. In addition to other
region and farm specific factors, insufficient grassland constrains offering pasture to dairy
cows [44]. Lack of a sufficient amount of grassland combined with rainy winters prevents
year-round grazing in Central Europe [43,44]. Therefore, when offering pastures to dairy
cows, a combined husbandry system of barn and pastures is practiced.

Most of the systems for monitoring dairy cows that are available on the global market
have not been (properly) validated, and when the same sensor is validated in different
husbandry systems, performance varies [45]. The models included in the systems for the
automated prediction of different behavioral patterns, and their changes perform weakly
when applied in the location they were not trained in [46,47]. The fact that offering pastures
to dairy cows improves their welfare and that the demand for improved welfare increases
while concurrently grazing in some parts of the world is only possible by combining
the pasture and barn offers increasing market potential for hybrid monitoring solutions
applicable both on pastures and in the barn [44,48].

Therefore, the goal of the presented study was to train and to evaluate a model
for the automated prediction of lying behavior in dairy cows kept on pasture as well as
indoors. Behavioral data derived from video observations served as ground truth. To
build a reliable model, a promising combination of classifier, selected features and data
segmentation, i.e., window size and stride, had to be found. The sample frequency was
altered in order to reduce energy demand while maintaining high prediction accuracy.
The training and validation of a model for the prediction of lying behavior are the first
steps towards a system for dairy cows for automated monitoring of behavioral patterns,
their changes and, thereby, the early prediction of conditions (e.g., diseases, heat load and
estrous) causing those changes.

2. Materials and Methods
2.1. Data Collection and Labeling

Data were collected on three dairy farms in Upper Bavaria, Germany. All procedures
performed followed the EU directive 2010/63/EU and the German Animal Welfare Act.
The conducted procedures did not interfere with or deviate from regular farm practices.
On all farms, the cows had access to the pasture in the summer (April to October), calving
took place seasonally (November to March) and the pastures were managed continuously
with the same area being available to the cows at all times.
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2.1.1. Farm Management and Animals

On farm 1, the dairy herd consisted of 40 dairy cows that were exclusively Simmental.
The mean milk yield in the preceding year was 7397 kg. Data collection was conducted in
two rounds of two consecutive days, each in September and October 2018. During the trial,
cows were kept on a pasture (17 ha; see Table 1) and milked twice daily at approximately
06.00 and 17.00 h in a herringbone milking parlor. For two hours around each milking
time, the cows were given access to a freestall barn with deep straw-bedded cubicles
(n = 40). During morning milking, a negligible portion of grass or maize silage mixed
with concentrate was fed in the barn. Water was supplied ad libitum via seven troughs
on pasture and two in the barn. Several mineral lickstones were available on the pasture
and in the barn. Five (round 1) and eight (round 2) lactating cows were randomly chosen
from the herd. Only animals in the second to sixth lactation were selected. Cows were
clinically healthy and free from lameness, changes in milk composition or any other clinical
signs of health disorders. The average parity of the selected animals was 3.4 ± 0.5 (mean
± standard deviation; round 1) and 3.5 ± 1.2 (round 2). The cows were 227 ± 28 and
285 ± 40 days in milk (DIM) on the first day of each round, respectively. The average
Body Condition Score (BCS) was 3.2 ± 0.5 and 3.1 ± 0.4 on the first day of each round,
respectively. BCS was defined based on the figure by Edmonson et al. [49] modified after
Metzner et al. [50].

Table 1. Sward composition (grasses, herbs and legumes) of pastures on farm 1 and farm 2.

Farm 1 Farm 2

Grasses (%) 64 30
- Lolium perenne 47 24
- Poa pratensis 9 5

- Festuca pratensis 8 1
- Poa trivialis <1 <1
Legumes (%) 36 70

- Trifolium repens 36 70
Herbs (%) 3 2

- Plantago major 2 1
- Taraxacum sect. Ruderalis <1 <1

- Bellis perennis <1 <1

On farm 2, the dairy herd consisted of 34 dairy cows that were exclusively Simmental.
The mean milk yield in the preceding year was 7437 kg. Data were collected on three
consecutive days in July 2019. During the day, cows were kept on a pasture (12 ha; see
Table 1) with permanent access to a freestall barn with deep litter cubicles (n = 34). Between
afternoon and morning milking, which was performed at 16.00 and 07.30 h, the cows were
kept on a smaller pasture (3 ha; see Table 1) without access to the barn. Before each milking,
a negligible portion of maize silage mixed with concentrate and minerals was fed. Water
was supplied ad libitum via five troughs on the day pasture, one on the night pasture and
two in the barn. Eleven lactating cows were randomly selected from the herd based on the
same criteria applied on farm 1. The average parity of the selected cows was 4.0 ± 0.9, and
they were 273 ± 16 DIM on the first day of the trial. Average BCS was 3.0 ± 0.6 on the first
day of the trial.

On farm 3, the dairy herd consisted of 52 dairy cows that were mainly Simmental
(46 Simmental, 3 Red HolsteinXSimmental, 1 Red Holstein, 1 German Black Pied and 1
German Red Pied). The mean milk yield in the preceding year was 8232 kg. Data were
collected on four consecutive days in March 2019. Due to winter weather, the cows were
kept in a freestall barn with high cubicles (n = 48) equipped with rubber mattresses. The
cows were milked twice a day in a tandem milking parlor at approximately 06.00 and
18.00 h. The cows were fed a mixed ration (containing maize and grass silage, concentrate
and minerals) twice a day at approximately 10.00 h and during afternoon milking. Feed
remains were removed before the next feeding. Additional concentrate was offered in a
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computerized feeder to cows with a milk yield of≥35 kg/d within the last five days. Water
was supplied ad libitum via two troughs. Several mineral lickstones were available. Eleven
lactating cows were randomly chosen from the herd based on the same criteria applied
on the other farms. The average parity of the selected cows was 3.8 ± 1.4, and they were
103 ± 40 DIM on the first day of the trial. The average BCS was 3.8 ± 0.4 on the first day of
the trial.

2.1.2. Collection of Sensor and Ground Truth Data

On all farms, the selected animals were equipped with the prototype of the monitoring
system (see Figure 1; 133 × 63 × 35 mm; 220 g; Blaupunkt Telematics GmbH, Hildesheim,
Germany) attached to a collar. The case was located at the lower neck of the animals (see
Figure 2). The system contained a sensor from Bosch (BNO055; Bosch Sensortec GmbH,
Reutlingen, Germany) including a three-dimensional (3D) accelerometer, a 3D magne-
tometer and a 3D gyroscope. The settings were selected to measure the linear acceleration
(m/s2) with the accelerometer and the Euler angle (°) by fusing the values from all nine
axes (=NDOF operating mode). Data collection frequency was set to 10 Hz. Raw data were
stored on an integrated SD memory card (32 GB; SanDisk; Western Digital Deutschland
GmbH, Aschheim, Germany) and downloaded after each round. Two rechargeable lithium
batteries (Samsung ICR18650 26H; Samsung Group, Seoul, South Korea) served as a power
supply. A General Positioning System (GPS) sensor (NEO-6; u-blox Holding AG, Thalwil,
Schweiz) (farm 1) and a real-time clock (RTC; DS3231; Maxim Integrated Products, Inc.,
San Jose, CA, USA) (farm 2 and 3) were used for time synchronization of the sensor system.

Figure 1. Composition of the prototype of the monitoring system from Blaupunkt Telematics GmbH
(Hildesheim, Germany) and the included sensor board: 1—lithium batteries (Samsung ICR18650
26H; Samsung Group, Seoul, South Korea); 2—data logger (SparFun OpenLog ATmega328; SparFun
Electronics, Niwot, CO, USA) containing a Secure Digital Memory Card (32 GB; SanDisk; Western
Digital Deutschland GmbH, Aschheim, Germany); 3—voltage regulator (S18V20ALV; Pololu Robotics
& Electronics, Las Vegas, NV, USA); 4—lithium button cell (CR2032; Varta Consumer Batteries GmbH
& Co. KGaA, Ellwangen, Germany); 5—real time clock (DS3231; Maxim Integrated Products, Inc.,
San Jose, CA, USA); 6—controller (Arduino Nano V3 with CH340; AZ-Delivery Vertriebs GmbH,
Deggendorf, Germany); 7—breakout board (9-DOF Absolute Orientation IMU Fusion Breakout;
Adafruit, New York, NY, USA) containing the system in the package (BNO055; Bosch Sensortec
GmbH, Reutlingen, Germany) combining a 3D accelerometer, a 3D magnetometer and a 3D gyro-
scope; 8—case of the prototype (Hammond 1591; 133 × 63 × 35 mm; Hammond ManufacturingTM,
Frankfurt am Main, Germany) with handmade foam; 9—LED to show functionality of the system.
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In order to collect ground truth data, the behavior of the animals was recorded with
cameras (GoPro HERO5; GoPro, Inc., San Mateo, CA, USA). Superview, 1920 × 1080 pixel
and 60 frames per second were set for the recordings. In order to allow continuous recording
of the selected animals on pasture, four to five cameras were attached to tripods and
repositioned frequently by two to four observers. In order to avoid behavioral disturbance,
observers remained at adequate distances from the herd. In the barn, seven cameras were
installed at fixed positions. The time of the videos was synchronized with radio-controlled
clocks (Hama GmbH & Co KG, Monheim, Germany) that were visible in the camera image.
Since the animals on all three farms became used to wearing the collar with the prototype
very quickly, the observation begun around one hour after attachment.

Figure 2. Prototype of the monitoring system (Blaupunkt Telematics GmbH; Hildesheim, Germany)
mounted on the collar of a Simmental cow grazing pasture.

Following the observations, the videos were labeled, i.e., the behavior of the observed
cows was defined at all times based on an ethogram (see Table 2) by one trained observer.
The ethogram consisted of exclusive behavioral patterns such as lying down, standing
up, standing, walking, grazing and activities that overlapped with behaviors such as
feeding, chewing, ruminating, drinking and others. Behavior definitions were derived
from Martiskainen et al. [51], Reiter et al. [52] and Werner et al. [53]. In order to identify the
animals in the video, numbers were sprayed on the flank, and the individual coat patterns
were used. Data from all animals on all days from farm 1, all animals on one day from
farm 3 and three animals on one day from farm 2 were labeled in detail. For the remaining
data, differentiation was only made for lying and non-lying, with non-lying including all
behaviors except for lying. Labeled video data were regarded as ground truth. Labeling
was performed by one observer exclusively. In order to assess observer reliability, 20%
(=26 h) of video data from farm 1 were labeled twice by the same observer. Time frames of
ten minutes were randomly distributed among rounds, days, animals and time of day. The
outputs of both labeling processes were compared second by second.
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Table 2. Ethogram of dairy cow behavior used for labeling the video data in order to gener-
ate ground truth data. Definitions were derived from Martiskainen et al. [51], Reiter et al. [52]
and Werner et al. [53].

Behavior Definition

Lying
The body of the animal is not supported by any limb. The
sternum and/or the belly are/is in contact with the ground.
The limbs are bent or stretched out.

Lying down The transition from standing/walking to lying. From
bending one forelimb to completely lying.

Standing up The transition from lying to standing/walking. From
stretching the shoulders to standing on four limbs/walking.

Lying bout Time between a lying down and a standing up event.

Standing
- In the cubicle;
- In the alley;
- At the feeding table;
- In the feeder.

The body of the animal is supported by at least three limbs:
- At least two feet are located in the cubicle;
- At least three feet are located in the alley;
- The head is above the feeding table;
- All four feet are located within the area of the feeder.

Walking The animal moves forward or backwards at walking pace and
makes two or more consecutive steps in one direction.

Grazing
The animal bites off grass, chews and swallows it and moves
forward with a lowered head. From the first grip of grass to the
lifting of the head higher than the carpal joint.

Feeding The muzzle of the animal is located beneath the lower margin of
the feeding fence and in the feed.

Chewing The animal moves its lower jaw in a grinding movement
without having regurgitated before.

Ruminating The animal regurgitates food bolus, chews and swallows it.
From regurgitating the first bolus to swallowing the last bolus.

Drinking The muzzle of the animal is located below the outer margin of
the trough consuming water.

Other Social, comfort, exploration and fly repellent behavior.

Idle time The animal is not visible in the video image or covered by
another animal.

2.2. General Process of Data Acquisition and Model Development

The main goal of the developed prediction framework is to build behavior recognition
models in order to analyze the dairy cows’ behavior. This framework includes two phases:
training and validation. In this paper, we focus on lying behavior, but the framework
can generally recognize a bigger variety of the dairy cows’ behavior. The goal of the
training phase (Figure 3) is to create supervised prediction models that can be applied to
new sensor data, which are unknown to the model. In this phase, the sensor data from a
field experiment are labeled by a domain expert who observed the videos that were made
during the experiment.

Figure 3. Procedure of the training phase that consists of two steps: preprocessing and model training.
The goal of this step is to create prediction models that can be applied to new sensor data.
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The training phase consists of two main steps: preprocessing and model training.
Since the data coming from sensors contain noisy data or inconsistent timestamps, they
require the application of preprocessing techniques. These techniques, e.g., noise reduction
and time synchronization, etc., are needed to create necessary datasets for training and to
enhance the accuracy of the learned models. During the training of the model, the data are
classified by a learning algorithm where the classes are the different behavioral patterns
of dairy cows (=labels). The output of the training phase consists of learned models,
which were created after the model training. These models comprise training dataset
specifications, e.g., training time and number of cows, which include the following: which
preprocessing techniques were applied, what should be predicted (e.g., lying vs. non-lying),
which learning algorithm is executed (e.g., random forest with defined parameters), which
dataset is used for testing, which evaluation metrics are used (e.g., accuracy and recall, etc.)
and the result achieved (e.g., 90% accuracy). The accuracy was measured as a ratio between
all correct outcomes and all possible outcomes using the Python 3 package scikit-learn
0.22.2 (https://scikit-learn.org/0.22/, accessed on 2 September 2021).

During the prediction phase (Figure 4), new sensor data are applied to the learned
models in order to obtain useful reports for the end user. The goal of this phase is to check
the validity of the trained models which were created in the previous phase. Therefore,
new unlabeled data will be applied to the learned models in order to create insights. These
insights will be cross-checked by a domain expert in order to determine the validity of the
trained model’s outcome. Valid reports will be classified as useful and sent to the end user.
In case no useful reports can be developed, the model will be redirected to the first phase,
where either new or improved models will be created. In this study, we evaluated whether
the behavior recognition is suitable for higher level behavior analytics. Thus, in Figure 4,
the steps “behavior analytics” and “specification of useful reports”, which are marked
white, were performed only partially (only the learned model was evaluated but not the
reports) or were disregarded (no reports were created because there was no end user).

Figure 4. Procedure of the prediction phase, which includes applying new data to the trained models
for validation of their prediction performance.

2.3. Feature Selection and Model Development

The selection of a model or the combination of a feature set with a corresponding
classifier is perhaps the most important phase in building a behavior recognition system,
as it was also shown by Bersch et al. [54].

2.3.1. Feature Selection

For behavior recognition problems, which rely on time-series sensor data, data seg-
mentation is the most common approach for partitioning a data stream into time-based
windows. Those data segments are used for feature extraction and selection. In our study,
instead of classifying every data point from the sensor data stream, a segmentation tech-
nique was used to divide the data into windows of data points from which the features
were computed. The selection of the right segmentation technique, in terms of window
size and stride, is crucial to the systems’ performance. At the level of a time-based window,
the length of window indicates the volume, while the frequency of a window update
(stride length) reflects the velocity in collecting the sensor data. In order to find the best
segmentation strategy, we assessed window sizes from 1 to 20 s, with strides from 25 to

https://scikit-learn.org/0.22/
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100%. A feature was derived by applying a mathematical function on a series of values of a
sensor axis (or derived axis) over a window of data (Equation (1)).

{x1, x2, . . ., xn}︸ ︷︷ ︸
Window

f→ Feature (1)

Generally, features in the field of behavior recognition can be grouped into three
major types (time-domain, frequency-domain and discrete-domain), which were presented
in Figo et al. [55]. Out of the three types, time-domain and frequency-domain are most
commonly used in research concerning behavior recognition [2,3,7].

The problem of sensor orientation has been recognized in many studies which showed
that the variability in sensor orientation attached to dairy cows brings about significant
errors in classifier performance. A notable research study, which also tackled this problem,
is the one from Kamminga et al. [8], where a feature set that is robust relative to the sensor
orientation was explored and evaluated using various classifiers.

The effect of sensor data with different orientation on the various classifiers’ per-
formance was verified by implementing two feature sets. The first set was known to be
sensitive to sensor orientation and comprised 24 features, which were formed by applying
four functions, i.e., max, mean, median and standard deviation over the six axes of the two
sensors. The second set was insensitive to sensor orientation and was constructed by apply-
ing 18 functions, namely min, max, mean, median, standard deviation, interquartile range,
root mean square, mean crossing rate, kurtosis, skewness, spectral energy, peak frequency,
frequency domain entropy and the first five feature frequency profile components on two
derived axes: the magnitudes of the 3D accelerometer and the NDOF vector, respectively.
Features were selected based on their importance by using the Python 3 scikit-learn 0.22.2
package (https://scikit-learn.org/0.22/, accessed on 2 September 2021).

2.3.2. Model Selection and Development

During the model selection process, random forest, decision tree, support vector
machine and naive Bayes were selected (Table 3) for the experiment based on their previous
success in the prediction of cow behavior, including lying [39,51,56,57]. The features used
were consistent between the models.

Table 3. Classifiers with corresponding selected hyperparameters. The hyperparameters were tuned
by an exhaustive grid search method in order to find the optimized parameters for each model.

Classifier Hyperparameters

Random Forest

Number of trees: 95
Criterion: Gini (calculates the probability of a specific feature classified
incorrectly when selected randomly)
Splitter: choose the best split at each node
Maximum depth of tree: 25
Minimum number of samples required to split an internal node: 2
Minimum number of samples required to be a leaf node: 1
Maximum number of features used at each split: 6

Decision Tree

Criterion: Gini
Maximum depth of the tree: 5
Minimum number of samples required to split an internal node: 2
Minimum number of samples required to be a leaf node: 1

Support Vector
Machine

Kernel: Radial Basis Function—RBF
Regularisation parameter: 10
Kernel Coefficient (gamma): Scale

Naive Bayes Type: Gaussian

https://scikit-learn.org/0.22/
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Table 3 shows the classifiers together with the corresponding selected hyperparam-
eters. The hyperparameters were tuned by exhaustive grid search method in order to
find the optimized parameters for each model. A 10-fold cross-validation was used to
estimate the performance of the model in the train-validation phase. The framework imple-
mentation and model parameter comparison were implemented using Python 3 and its
scikit-learn 0.22.2 package (https://scikit-learn.org/0.22/, accessed on 2 September 2021).

2.4. Postprocessing

Filtering is a crucial part of data postprocessing. It displays a clear sequence of
procedures or steps that must be followed in order to obtain reasonable and understandable
results. The data that are the result of a knowledge acquisition (prediction) algorithm are
usually noisy and sometimes inconsistent. In the case of the mentioned framework, filtering
was applied to avoid unnecessary small breaks between similar or same activities. From
an ethological point of view, filtering is supported by the fact that behavior that occurs in
bouts, such as lying behavior, requires an interbout criterion [58]. An interbout criterion
seperates short interruptions of a behavioral pattern between events from interruptions
between bouts. After extensive parameter comparison, the decision was made towards
60 s time period. For example, if lying lasted for a considerable amount of time after the
prediction part the behavior then stopped for less than 60 s and then started again, it was
likely that it was either a prediction mistake or an unnecessary small side behavior (noise)
that could have been emitted. By applying the filter, sequences of lying or non-lying, with
duration less than 60 s, were filtered and added to the behavior predicted for the time
period preceding the sequence. The filter not only helps specifying individual lying bouts
but also improves overall prediction accuracy.

2.5. Evaluation of the Model and Statistical Analysis

Data which were not used for the training of the model served as a basis for the
evaluation. In order to assess performance, the outputs of the model and the ground truth
were compared per second. Pure data (i.e., without overlapping) and data points with
overlapping behaviors were used for the evaluation of the model. Data points (=seconds)
correctly identified as lying behavior were defined as true positive (TP), and data points cor-
rectly identified as non-lying behavior as true negative (TN). Data points of lying behavior
that were classified as non-lying behavior by the model were considered as false positive
(FP), and data points of non-lying behavior that were classified as lying by the model were
considered as false negative (FN). Sensitivity, specificity and accuracy, as well as positive
and negative predictive values, were calculated according to the following equations.

Sensitivity =
TP

(TP + FN)
(2)

Specificity =
TN

(TN + FP)
(3)

Accuracy =
(TP+TN)

(TP + TN + FN + FP)
(4)

Positive predictive value =
TP

(TP + FP)
(5)

Negative predictive value =
TN

(TN + FN)
(6)

Performance parameters were calculated in total as well as for every animal on
every day separately. Lying bouts were considered as identified when an overlap between
ground truth and the model output occurred. Regarding duration, only lying bouts without
interruption caused by missing visibility in the video image or a gap in the sensor data

https://scikit-learn.org/0.22/
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were considered. Only bouts completely recorded both in ground truth and model output
were compared.

The influence of animal, day, farm and location (pasture vs. barn) on the sensitivity,
specificity and accuracy of the model was analyzed with generalized additive models by
using the mgcv package in RStudio 1.3 (RStudio, Inc., Boston, MA, USA; [59]):

Yijkl = fi + dj + lk + al + eijkl (7)

where

Yijkl = value of performance (sensitivity, specificity and accuracy);
f i = fixed effect for farm;
dj = fixed effect for day;
lk = fixed effect for location (pasture/barn);
al = repeated effect for animal;
eijkl = random residual.

Farm, day and location were set as fixed effects. The animal was set as a random
effect. In order to further analyze the influence of the day within one farm, the same
model was used, leaving out farm and location as fixed effects. The difference between
the duration of lying bouts in ground truth and model output and the difference between
performance during the day compared to the night was evaluated using Wilcoxon test.
Kendall’s correlation coefficient was calculated to assess the relation between standing
time and accuracy, sensitivity and specificity. The correlation coefficient was categorized as
follows: 1 = perfect; 0.9 to 0.7 = strong; 0.6 to 0.4 = moderate; and <0.4 = weak correlation.

In order to evaluate the duration of lying behavior over 24 h and the differences
between husbandry system, the model was applied to one day (the day with the most
data available) on each farm. Only animals with <10% of missing sensor data according
to Elischer et al. [47] were included in the evaluation. For the comparison of lying time
between husbandry systems, a one-sided ANOVA [60] and a post hoc test with Bonferroni
correction was performed [61]. In order to verify homogeneity of variances, a Levene’s
test [62] was performed and residuals’ distribution was tested for normality by Shapiro–
Wilk test [63]. With a Wilcoxon test, we compared the lying duration during the day (06.00
to 18.00 h) and the night (18.00 to 06.00 h) for each farm separately. Analysis of differences
in lying time between husbandry systems was performed in R.Studio 1.3 (RStudio, Inc.,
Boston, MA, USA). Where applicable, p-values < 0.05 were considered as significant.

3. Results
3.1. Collected Data

In total, 1864.0 h of sensor data and 542.2 h of ground truth data were collected,
resulting in 538.7 h of complete datasets with concurrent sensor and ground truth data.
The data from one animal, each on farm 1 and farm 3, were disregarded because the cows
showed symptoms of estrous within the observation round. The data from three animals
from farm 1 were used for the training of the model (see Table 4). Regarding training
data, only pure data, i.e., without other activities (e.g., ruminating and social behavior)
overlapping, were used. Disregarding the data from the animals in heat and the three
animals from farm 1, which were used for training of the model, 476.2 h of datasets were
left for the evaluation of the model. The performance of the model on pasture and in the
barn was assessed separately. On pasture, 238.7 h of datasets were collected (farm 1 and
farm 3), and 237.5 h of datasets were collected in the barn (farm 2 and farm 3). The amount
of collected data differed between farms, rounds and days (see Table 5) due to different
availability and runtime of sensor systems. On farm 1 and 2, all data were collected during
the day, i.e., in the time period from 06.00 to 18.00 h. On farm 3, 24.6 h of data were collected
in the time period between 18.00 and 06.00 h, and the remaining data were collected during
the day.
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Table 4. Behavior instances distribution used for training the model. The training dataset contains
the data of three animals from farm 1.

Amount of Instances Instances (%)

Grazing 778,867 51.0
Lying 491,522 32.2

Walking 116,175 7.6
Standing 139,707 9.2

Total 1,526,271 100.0

Table 5. Amount of datasets collected for the evaluation of the model. Differences in amount of
collected datasets are based on different availability and runtime of sensors between farms, rounds
and days.

Farm 1 2 3
Location Pasture Pasture Barn Barn

Total (h) 106.0 132.7 51.4 186.2

Round 1

Day 1 (h)
(no. of cows)

14.4 (3) 32.2 (11) 23.3 (10) 20.2 (4)

Day 2 (h)
(no. of cows)

27.5 (5) 44.8 (11) 25.9 (10) 41.2 (7)

Day 3 (h)
(no. of cows)

- 55.7 (10) 2.2 (3) 65.7 (8)

Day 4 (h)
(no. of cows)

- - - 59.1 (7)

Round 2

Day 1 (h)
(no. of cows)

36.1 (6) - - -

Day 2 (h)
(no. of cows)

28.0 (6) - - -

3.2. Observer Reliability

Of all data, 20% (equalling 26 h) of data from farm 1 were coded twice. The agreement
between the first labeling and the second labeling was 94.8% for detailed labeling and 100%
for lying and non-lying.

3.3. Model

In order to evaluate the four classifiers (random forest, decision tree, naive Bayes and
support vector machine) selected from Section 2.3.2, the sensor data from six dairy cows
from two different farms (three from farm 1 and three from farm 2) were used to train and
evaluate the models. Data distribution can be observed in Table 4. Since the orientation
of the sensors used on the first farm was different from the second farm, the datasets
were mixed so that it was possible to create training and testing datasets, which contained
different orientation sensor data.

The comparison that can be observed in Figures 5 and 6 showed that random forest was
the classifier that yielded the highest accuracy in comparison to the other three classifiers.
Since the sampling rate has effects on the energy consumption of the sensor system, we
studied the effects of reducing the sampling frequency in the data from its original rate
of 10 Hz down to 1 Hz. However, from Figure 5 we can observe that 10 Hz proved to be
the most effective sampling rate, which brought the highest accuracy for random forest.
Hence, we used the original rate in further works.

The comparison of the different window sizes can be found in Figure 6. The win-
dow size parameter was chosen to be 5 s as a trade-off between the accuracy and the
prediction latency.
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Figure 5. Accuracy comparison of the different classifiers (random forest, decision tree, naive Bayes
and support vector machine) based on different sampling rates (1–10 Hz). The postprocessing filter
was not applied for this comparison.

Figure 6. Accuracy comparison of the different classifiers (random forest, decision tree, naive Bayes
and support vector machine) based on different window sizes (1–20 s). The postprocessing filter was
not applied for this comparison.

In addition to window size, the stride of windows had to be defined. We compared a
stride of 25, 50 and 100% (results not shown), and 100% was found to be the most accurate
for random forest and a window size of 5 s.

The two sets of features combined with four classifiers presented previously brought
eight different models for the experiment. Since it was found to achieve the highest
accuracy, the following section will present the result that was obtained using the random
forest classifier. The two sets of features selected in Section 2.3.1 combined with random
forest created the following two models (see Table 6).
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Table 6. The two selected models based on the random forest classifier with two different sets of
features (orientation-dependent/orientation-independent).

Model 1 Model 2

Classifier Random Forest Random Forest
Window size 5 s 5 s
Feature set 24 features 36 features

This model is predicted to be
sensor orientation sensitive

This model is known to be
insensitive to sensor orientation

Firstly, we used the data of six dairy cows in order to implement the subject cross-
validation to observe how different orientation sensor data affect the model’s performance.
The training and testing data were set up for evaluation in the following manner: only the
cows that did not participate in training were allowed to participate in the testing process.

The following result was obtained when the two models were both trained and tested
on data from farm 1 (=sensor data with the same orientation). From Table 7, it can be
concluded that model 1 experienced overfitting and instability, unlike model 2. However,
both models produced fairly high accuracy.

Table 7. Accuracy of the two models with different feature sets (orientation-dependent/orientation-
independent) when both trained and tested on farm 1 (=same sensor orientation).

Model 1 (%) Model 2 (%)

Train-valid accuracy Mean 95.8 92.2
SD 0.5 0.8

Test accuracy Mean 88.7 92.0
SD 5.6 2.8

Table 8 shows the performance of the two models when they were trained on data
from farm 1 but tested on data from farm 2 (different sensor orientation). It is clear that
the test accuracy produced by model 1 was experiencing both considerable decrease and
instability while, model 2 remained stable in performance. This result once again confirmed
the robustness of the model having an orientation-independent 36 feature set, which was
derived by applying 18 functions over the magnitudes of the accelerometer and the NDOF
vector as described in Section 2.3.1. This 36 feature set was, therefore, selected as the feature
set for the following evaluation.

Table 8. Accuracy of the two models with different feature sets (orientation-dependent/orientation-
indipendent) when trained on farm 1 and tested on farm 2 (=different sensor orientation).

Model 1 (%) Model 2 (%)

Train-cross accuracy Mean 95.7 92.1
SD 0.5 0.7

Test accuracy Mean 73.9 91.1
SD 20.8 4.3

The conducted experiment resulted in two datasets with data from different sensor
orientation. This experiment showed slight improvement in the overall accuracy for the
selected model. Moreover, it was found that the training data from only three dairy cows
were enough for the model to gain sufficient generalization. In further experiments, we
found that selecting more than three cows did not improve the accuracy of the model
(data not shown). As a result, the most feasible model was obtained by training the 36
feature random forest model with the sensor data from three dairy cows from the same
farm (farm 1).
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3.4. Performance of the Model

Overall sensitivity, specificity and accuracy of the model with applied filter were 95.6%,
80.1% and 87.3%, respectively. Lying behavior was predicted with a positive predictive
value of 80.5% and a negative predictive value of 95.5%. Overall accuracy on pasture
(93.1%) was higher than the accuracy in the barn (81.4%). Within farm 2, the model
predicted lying behavior with an accuracy of 91.0% on pasture and 86.3% in the barn.

Total median accuracy per animal and day was 91.7%. Median accuracy per animal
and day on pasture and in the barn was 95.3% and 84.4%, respectively. Median accuracy
per animal and day on pasture was significantly higher than in the barn (p < 0.01). In total,
the farm had a significant effect on the median accuracy per animal per day (p < 0.01).
Highest accuracy was achieved on farm 1, followed by farm 2. On farm 3, the lowest
accuracy was attained. Although there were differences in accuracy between animals, there
was no significant effect of the animal on the accuracy per animal and day (p = 0.31).

In general, the day had a significant effect on the accuracy per animal and day
(p < 0.05). The comparison between the performance of the model within one farm
showed significant differences between days on farm 1 and 3. On farm 1, the accuracy per
animal on day 2 was significantly lower than on day 1 and day 4 (p < 0.05). There were no
significant differences between the other days. On farm 3, accuracy per animal on day 1
was significantly lower than on day 2 (p < 0.05). There were no significant differences
between the other days.

On farm 3, a part of the data was collected in the time period between 18.00 and
06.00 h. No difference was found between the accuracy per animal and day during the
night and during the day (p = 0.46). In general, the model overestimated lying time at the
expense of non-lying time. In total, 54.7% of the observed time was classified as lying by
the model, while lying time shared 46.1% in ground truth.

Lying behavior falsely classified as non-lying (FN) amounted to 5.5 h on pasture and
4.2 h in the barn, equaling 2.3 and 1.8% of the observed time. Of non-lying behavior, 11.0
(4.5%) and 40.0 h (16.8%) were misclassified as lying (FP) outdoors and indoors, respectively.
Of the FP time recorded on pasture and in the barn, 4.0 and 11.1 h of the FP were labeled
and evaluated in detail. On pasture, 1.8 h of the FP time was located before, after or in
between lying periods. The remaining 2.2 h could not be linked to a lying event. With
58.8%, ruminating while standing was the behavioral pattern confused the most with lying,
followed by standing and walking with 20.0 and 8.9%. In the barn, 6.9 h of the FP time
was located before, after or in between lying periods. The remaining 4.2 h could not be
linked to a lying event. With 53.8%, ruminating while standing was the behavioral pattern
confused the most with lying as well. Standing in the cubicle (without ruminating) was the
second most common pattern falsely classified as lying with 25.6%.

Since standing (in the cubicle) was the behavior confused the most with lying, speci-
ficity as well as accuracy per animal and day was negatively correlated (τ = −0.53 and
τ = −0.60; p < 0.01) with the share of standing behavior of the observed time. While
standing shared 9.9% of the total observed time on pasture, 47.6% standing time occurred
in the barn.

The detection of individual lying bouts and non-lying bouts by the model is presented
in Figure 7. Of the lying bouts, 93.3% and 96.4% and 88.7% and 75.7% of the non-lying
bouts were identified by the model on the pasture and in the barn, respectively. Three of
the lying bouts on pasture, one of the lying bouts in the barn and one non-lying bout on
pasture lasted < 60 s, i.e., the duration was lower than the filter of 60 s that was applied
to the sensor data. The median duration of the lying bouts and the non-lying bouts that
were not detected by the model was 3.0 min and 4.0 min, respectively. Median duration of
lying bouts and non-lying bouts that were detected too much by the model was 6.5 min
and 5.0 min, respectively.
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Figure 7. Detection of individual lying bouts and non-lying bouts including detected, merged,
divided, missed and added bouts.

On pasture, 44 lying bouts were classified correctly by the model and identified
without interruption, both in ground truth and model output. Thus, those lying bouts
could be compared regarding their duration. Median duration of the lying bouts did
not differ between ground truth and model output (57.7 vs. 56.6 min) on pasture. In the
barn, 37 lying bouts could be compared regarding their duration. Duration of lying bouts
differed significantly (p < 0.01) between ground truth and model output (42.3 vs. 58.2 min).

In total, the beginning of 159 and the ending of 161 lying bouts was assessed in detail.
Only eight beginnings and six endings were correctly identified by the model within ±4 s
compared to ground truth, but 88.6% of the beginnings and 84.4% of the endings were
detected within ±10 min (see Figure 8). Most beginnings (n = 116) and endings (n = 129)
were detected too late by the model with a median deviation in time of 2.3 and 4.1 min.

Figure 8. Deviation in detected beginnings (left) and endings (right) of lying bouts by the model
compared to Ground Truth.
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3.5. Lying Behavior in Different Husbandry Systems

For comparison of lying behavior over 24 h between husbandry systems (=farms), one
day of each farm was chosen based on the availability of sensor data. The lying time of
four (farm 1), nine (farm 2) and eight (farm 3) animals was included in the comparison.
The mean (±standard deviation) for each farm can be observed in Table 9. The lying time
on farm 3 was significantly higher than on farm 1 and farm 2 (p < 0.05). On farm 1 and
farm 2, lying time did not differ significantly (p = 1.0). Although numerically higher during
the night, lying time did not differ significantly (p = 0.20) between daytime and nighttime
(4.8 vs. 7.1 h). On farm 2, lying time during the day and during the night was similar
(6.2 vs. 6.8 h; p = 0.48). Lying time during the day was numerically but not statistically
higher than during the night on farm 3 (8.2 vs. 7.8 h; p = 0.18).

Table 9. Comparison of lying times (mean ± standard deviation) over 24 h and during daytime
(06.00 to 18.00 h) and nighttime (18.00 to 06.00 h) between the different farms (=husbandry systems).

Farm 1 Farm 2 Farm 3

lying time/d (h) 12.3 (±0.8) 12.2 (±0.6) 15.6 (±1.3)
lying time daytime (h) 4.8 (±0.6) 6.2 (±0.5) 8.2 (±0.6)

lying time nighttime (h) 7.1 (±1.9) 6.8 (±1.3) 7.8 (±1.0)

4. Discussion

Behavior prediction from sensor data in order to improve welfare has been the
center of previous studies. A 3D accelerometer is widely used to classify moving and
non-moving behaviors such as lying and non-lying for cows [64]. Using only one sen-
sor resulted in relatively low sensitivity and precision of collar-based systems in the
studies of Martiskainen et al. [51] and Vázquez Diosdado et al. [56], but using additional
sensors resolves the ambiguity between classified activities and improves prediction.
Spink et al. [65] and Hanson and Mo [13] complemented accelerometer data with data
from GPS sensors in order to calculate the distance travelled by cows. Based on the
study from González et al. [66], GPS data can improve the accuracy of prediction; however,
the frequency of data sampling plays an important role as high frequencies result in high
battery consumption. In order to extract enough knowledge, in some behavior recognition
systems, the magnetometer and gyroscope data are used as a complement to accelerometer
data as well. Based on the related work performed by Mansbridge et al. [7] on sheep and
Kamminga et al. [8] on goats where reliable prediction of animal behavior was achieved,
the combination of accelerometer, magnetometer and gyroscope was chosen in our study.

In addition to the choice of sensors, defining the best sampling rate is another im-
portant step towards acquiring sensor data. High sampling rates can result in higher
accuracies but reduce the battery lifespan [6]. As presented in human activity recognition
studies [54,67–69], the goal is to reduce the sampling rate to save battery while ensuring
a high classification accuracy. In order to explore sampling rate reduction in the process
of model development, the sampling rate was set to 10 Hz according to previous stud-
ies [51,70]. As the further reduction in sampling rate resulted in a considerable drop in
accuracy for random forest, we retained 10 Hz for the final model.

For data acquisition, we used the prototype of a monitoring system with provisional
casing (see Figure 1). The casing was sufficiently robust for the temporal use within our
study. For an extended application, the robustness needs to be improved. Weight and
measurements—especially in relation to the animal—are notable factors in the development
and validation of monitoring systems [71]. As cows with different body weights and
heights were used in our study, varying systems relative to animal relations were included
in the training and validation of our model. As weight and measurements will only
marginally change with replacing the case, we expect no limitation to the applicability of
our model afterwards.
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For the training and the following evaluation of the model, ground truth data were
needed. Reiter et al. [52] found a high correlation between visual and video observation for
rumination behavior, proving that video observation is a reliable method for behavior data
acquisition. In contrast to visual observation, more than one animal can be observed at
the same time, resulting in a greater amount of data in relation to workload. In our study,
the cameras on the pasture had to be moved around to capture the behavior of the moving
cows without interruption, resulting in data acquisition being more laborious and requiring
more operators than in the barn where the cameras were installed in fixed positions. Even
though operators were present during the observation on pasture, disturbance was reduced
to a minimum. Using high resolution cameras allowed the operators to keep sufficient
distance from the animals. Data collection on pasture was limited to daytime as cameras
without a night vision feature were used. In the barn, artificial lighting enabled acquisition
of behavior data also at night. However, as there was no difference detected in performance
of the model between day and night in the barn, it can be assumed that lying behavior
presents equally in the sensor data independent from the time of day.

In order to generate behavior data, videos were labeled based on an ethogram, which
was developed following previously published studies to ensure comparability of the
results [37,51,72]. The process of labeling is time consuming, impeded by animals ob-
scuring each other and impeded by the movement of the cameras on pasture. Detailed
labeling of a subset of data allowed deeper assessment of the falsely classified time and
provided data for the model development for other behavioral patterns. Using only one
observer for video labeling eliminates deviations that occur between different observers.
Observer reliability was satisfactory and comparable to the one obtained in the study
of Ambriz-Vilchis et al. [46]. The chosen methods provided reliable and profound datasets
for the development and evaluation of the model.

In the process of model development, a suitable segmentation strategy for the sensor
data, i.e., an appropriate window size, must be chosen. Breaking the data into smaller
window sizes can improve the classification accuracy but causes redundancy and waste of
resources [6]. Walton et al. [69] investigated different window sizes in behavior prediction
in sheep and found only a slight improvement of accuracy between a window size of
3 s compared to 5 s. In our study, there were only marginal differences in performance
of the model between different window sizes. Due to that, 5 s were chosen as a trade-
off between the accuracy and the prediction latency. A stride of 100% proved to be the
most accurate for random forest. That is in line with the findings of Dehghani et al. [73],
where a quantitative comparison between overlapping and non-overlapping windows
showed that overlapping windows require more resources while hardly impacting the
subject-independent cross-validation.

From the chosen windows, the features for the model were computed. As in our study
the sensor orientation changed between farms, features independent from orientation
proved to be suitable. Kamminga et al. [8] stated that sensors on animals are exposed to
shifting in general and showed that models based on features independent from orientation
provide high accuracy values in behavior recognition in animals.

As the last step of model development, the choice of classifier is one of the cru-
cial parameters for animal behavior recognition. In our study, random forest scored the
highest accuracy compared with decision tree, support vector machine and naive Bayes.
Vázquez Diosdado et al. [56] showed that the accuracy of the decision tree is comparable
with other classifiers (not including random forest), while the computational complexity is
lower. Although a decision tree can perform accurately and fast on large datasets, it is prone
to overfitting. Mansbridge et al. [7] compared random forest, support vector machine,
k-nearest neighbor and adaptive boosting in classifying sheep behavior and showed that
random forest has the highest overall accuracy. Other studies such as Rahman et al. [57]
have also used the random forest classifier for behavior recognition in dairy cows. Our
finding that random forest performs best is in line with the mentioned studies.
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Since data resulting from the prediction model were noisy, a filter of 60 s was applied.
All sequences of lying and non-lying behavior in the sensor data with shorter duration were
disregarded and added to the behavior predicted before. According to González et al. [66],
as lying and non-lying behavior occurs in bouts, the accuracy should be improved by
considering the behavior classified before and after a sequence. In our study, only five lying
bouts lasted ≤ 60 s and were thereby disregarded because of the filter. With representing
only 1.7% of the total lying bouts, the amounts of lying bouts and the lying time were hardly
affected, but the accuracy in predicting individual lying bouts improved substantially.
Kok et al. [74] showed that applying a threshold of 33 s achieved the highest performance
values for the detection of lying bouts while hardly affecting the measured lying time.

In general, our final model predicted lying behavior in dairy cows with a reasonable
overall accuracy of 87.3%. The model was trained with data from pasture, where a higher
accuracy was achieved compared to the barn (93.1 vs. 81.4%). The lower accuracy indoors
is mainly based on a lower specificity. Standing (in the cubicle) was the behavior confused
the most with lying by the model. Moreover, in the studies of Vázquez Diosdado et al. [56]
and Martiskainen et al. [51], standing was the behavior most misclassified as lying and
the other way around. The similar posture of the head and the lack of movement both
while standing and lying resulted in a similar presentation of both behaviors in the sensor
data and explained the difficulty of the model to distinguish precisely between the two
behavioral patterns [51,75]. In addition to providing additional information on the dairy
cow behavior in general [56], the training of a model for the prediction of standing up and
lying down, i.e., the transition between standing and lying, could improve the distinction
between lying and standing. The reduced performance in the barn can be explained by a
higher standing time compared to pasture. This is supported by the negative correlation
between standing time and specificity as well as accuracy per animal per day (for the days
where labeling was performed in detail). Moreover, the differences in performance between
the different days and the different animals can be explained with variation in standing
time. In addition to heat or health disorders, dairy cows show an increased standing
time when ambient temperatures are high [28]. The increase in standing time caused by
heat load varies between animals. Another reason for the disparity of performance in the
different cows could be a variation in movement patterns of the head and neck in between
animals. The interpretation of performance values for different days and animals is limited
by the fact that not all animals within one farm were observed on all observation days. On
the one hand, performance per day is influenced by the performance of the model on the
animals observed on that day. On the other hand, if animals were observed on days with
more standing time in general, the overall performance on those animals is worse.

There are various monitoring systems available that predict different behavioral pat-
terns in cows, including lying, with reasonable accuracy either in the barn or on pasture
exclusively. Table 10 shows that our model performed well in predicting lying behavior
compared to other models. However, when comparing the results, methodological differ-
ences have to be considered. In contrast to our study and the other papers, steers instead
of dairy cows were used in the study of González et al. [66]. Only the system evaluated
by Molfino et al. [76] achieved a higher specificity and precision than our model. Lying
was merged with standing in this study, which was the behavioral pattern confused the
most with lying by our model. By merging the two behaviors, the misclassification rate is
reduced and the performance increases. Unlike our system, the sensors in other studies
were located at the top of the neck where a counterweight is needed for the sensor to
stay in its position. Additionally, the sensor is more exposed to external forces, e.g., by
the feeding fence when mounted to the top of the cows’ neck. In contrast to our model,
the training and the evaluation of the systems’ models were conducted on data from the
same farm. Only Molfino et al. [76] evaluated a system that was developed before and
thereby trained on a different farm than where the evaluation was performed. However,
the training of the model is not part of the study. Evaluating the performance of a model
on data from a different farm than where the data for the development were collected on
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proves that, in order to apply the monitoring system on a new farm, no additional training
is needed. Differences in performance between animals were assessed in the study of
González et al. [66]. Variation in sensitivity was wider, but smaller variation was found in
precision compared to our study. Vázquez Diosdado et al. [56] did not assess deviation
in performance between animals but discovered large variations in movement patterns,
i.e., in the sensor data between the animals.

In all studies presented in Table 10, the models were trained in the barn and evaluated
in the barn or trained on pasture and evaluated on pasture. To our knowledge, this is
the first study developing and evaluating a model for a (collar-based) monitoring system
for dairy cows that predicts the behavior of dairy cows reliably on pasture as well as in
the barn.

Table 10. Performance of the model compared to the results of other model evaluations. a Martiskainen et al. [51].
b Vázquez Diosdado et al. [56]. c Molfino et al. [76]. d González et al. [66]. e Lying behavior includes ruminating while
lying, but excludes standing. f Lying behavior excludes ruminating and standing. g Lying behavior includes standing,
but excludes ruminating. h Training not included in the paper (=conducted on different farm). i Variation due to different
classifiers and different window sizes.

Our Model 1 a 2 b 3 c 4 d

Husbandry system Pasture Barn Barn Barn Pasture Pasture
Definition lying behavior 1 e 2 f 1 e 3 g 3 g

Sensor(s)
Accelerometer

+ Magnetometer
+ Gyroscope

Accelerometer Accelerometer Accelerometer Accelerometer
+ GPS

Sensor position Lower neck Top of the neck Top of the neck Top of the neck Top of the neck
Training data One farm One farm One farm - h One farm

Evaluation data Same farm + two others Same farm Same farm One farm Same farm
Sensitivity 95.6% 80% 55.4–92.9% i 77% 86.3%
Specificity 80.1% - - 99% 94.8%
Precision 80.5% 83% 85.4–96.6% i 93% -
Accuracy 93.1% 81.4% 84 % - - 92.5%

Ambriz-Vilchis et al. [46] evaluated the performance of a rumination collar on cows
kept in a freestall barn as well as on cows kept on pasture. Rumination times predicted
by the system agreed with rumination time measured by visual and video observation on
cows kept indoors. However, major differences in rumination time were found for pasture.
The results are confirmed by Elischer et al. [47], who assessed the performance of a neck
collar predicting feeding behavior as well as rumination behavior on cows on pasture with
access to a barn. In this study, the performance was tested on the same animals inside as
well as outdoors. Only moderate correlations were observed between the collar output and
visual observation.

A reasonable amount of lying bouts (95.12%) was detected correctly by our model. In
the study of Kok et al. [74], 99.2% of the lying bouts were detected correctly, i.e., by both the
pedometers attached to one cow. In contrast to our study, lying bouts in ground truth data
with a duration of less than 33 s were discarded. In the study of Ledgerwood et al. [77] a
pedometer detected 99.3% of the lying bouts that were observed in ground truth without
applying any filter and by using a window size of 6 s. In the presented study, a few lying
bouts were not identified correctly by the model, but as the median duration of those bouts
was short (3.02 min), the effect on total lying time is small. To our knowledge, there were no
studies conducted on the performance of a model in detecting the beginnings and endings
of individual lying bouts.

Lying time on pasture (farm 1: 12.3 h) was significantly lower than in the barn
(farm 3: 15.6 h). This finding is in line with the results from Black and Krawczel [78] and
Legrand et al. [79], who observed higher lying times in the barn than on pasture as well.
Lower lying times on pasture are likely based on the prolonged duration of feed intake
(=grazing) on pasture compared to the barn. While in the barn, dairy cows spend 3.9 to
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4.2 h feeding [80,81], and grazing time occupies 10.6 to 11.1 h a day [82]. Although higher
inaccuracy of our model in the barn resulted, the use of lying time predicted over 24 h in
the barn has to be treated with caution. Only numerical differences were detected between
lying time during the day and during the night, which is in contrast to the findings of
Herbut and Angrecka [83] who observed longer lying times during the night on pasture
compared to daytime. Their finding is supported by Winckler et al. [84], who had the same
conclusion for lying time distribution in the barn.

5. Conclusions and Future Work

In conclusion, we could show that by using machine learning methods on sensor
data from a motion unit, it is possible to predict lying behavior with reasonable accuracy
compared to other available models and monitoring systems, especially regarding the fact
that the model was applied both on data from pasture and the barn.

The models that have been trained and compared for this study were produced by
state-of-the-art machine learning algorithms. The choice of these algorithms was based
on related research from literature on activity recognition. We then compared the models
produced by the best-performing algorithm and came to similar results that random forest
models achieve the best accuracy for the given use case.

Prediction must be enhanced, particularly in the barn, in order to enable the identi-
fication of behavioral changes caused, e.g., by heat, health disorders or extreme weather
conditions. To improve the performance of the model in predicting lying behavior, stand-
ing up and lying down events could be studied. By adding models for the prediction of
other behavioral patterns, especially standing, the prediction of lying behavior could be
improved by reducing the falsely classified data points. Additionally, more information is
generated in order to relate the behavioral changes to different health challenges or estrous.
The collected data can be used for the development of further models. In addition to data
from the accelerometer, magnetometer and gyroscope, data from other sensors could be
used. Partial GPS data have been collected from dairy cows on farm 1 where the GPS
sensor functioned as the timer for the sensor data.

Future Work

In the future, context-aware location data and GPS data could be used to improve the
accuracy of our model.

The data that needs to be managed in an IoT ecosystem steadily grew in all of its
three big data dimensions: volume, velocity and variety. The volume increases due
to the elevating amount of data generating devices [85,86] and velocity by advances in
communication technologies such as 5G [87]. Kaur et al. [88] even calls it the Internet-of-
Big-data.

The processing of this huge amount of data utilizes many resources. Current IoT
platforms are mainly centralized and lack the feature of resource-aware processing in the
sense of edge and fog processing [89]. Centralized processing is generally suboptimal since
it uses the Wide Area Network (WAN) bandwidth highly inefficiently due to sending all
data to the cloud in order to process it there. Furthermore, cloud computing induces high
latency, high energy consumption and privacy concerns arise. Properly positioning the
processing along the process from the data sources to the sinks is the intended strategy.
Enabling edge and fog processing is crucial for being resource efficient and for real-time
low latency applications. Data processing in IoT is geographically distributed by the nature
of the ecosystem [90,91].
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