Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Housing and Feeding
2.2. Diets
2.3. Performance Parameters
2.4. Sample Collection and Chemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Soybean Cake
3.2. Animal Performance
3.3. Carcass Characteristics
3.4. Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- United States Department of Agriculture. Oilseeds: World Markets and Trade; 2021. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/2v23wp329/6t054b55w/oilseeds.pdf (accessed on 8 September 2021).
- European Parliament. European Strategy for the Promotion of Protein Crops—Encouraging the Production of Protein and Leguminous Plants in the European Agriculture Sector (2017/2116(INI)). Available online: https://www.europarl.europa.eu/doceo/document/A-8-2018-0121_EN.html (accessed on 5 August 2021).
- Austrian Federal Ministry of Agriculture, Regions and Tourism (BMLRT). Grüner Bericht 2020, 2020. Available online: https://gruenerbericht.at/cm4/jdownload/send/2-gr-bericht-terreich/2167-gb2020 (accessed on 8 September 2021).
- EC. EU agricultural outlook for markets, income and environment 2020–2030. Eur. Comm. DG Agric. Rural Dev. 2020. [Google Scholar] [CrossRef]
- Hoffmann, D.; Thurner, S.; Ankerst, D.; Damme, K.; Windisch, W.; Brugger, D. Chickens’ growth performance and pancreas development exposed to soy cake varying in trypsin inhibitor activity, heat-degraded lysine concentration, and protein solubility in potassium hydroxide. Poult. Sci. 2019, 98, 2489–2499. [Google Scholar] [CrossRef]
- Herkelman, K.L.; Cromwell, G.L.; Stahly, T.S. Effects of heating time and sodium metabisulfite on the nutritional value of full-fat soybeans for chicks. J. Anim. Sci. 1991, 69, 4477–4486. [Google Scholar] [CrossRef]
- Liener, I.E. Implications Of Antinutritional Components In Soybean Foods. Crit. Rev. Food Sci. Nutr. 1994, 34, 31–67. [Google Scholar] [CrossRef] [PubMed]
- Clarke, E.; Wiseman, J. Effects of variability in trypsin inhibitor content of soya bean meals on true and apparent ileal digestibility of amino acids and pancreas size in broiler chicks. Anim. Feed Sci. Technol. 2005, 121, 125–138. [Google Scholar] [CrossRef]
- Leeson, S.; Atteh, J.O. Response of broiler chicks to dietary full-fat soybeans extruded at different temperatures prior to or after grinding. Anim. Feed Sci. Technol. 1996, 57, 239–245. [Google Scholar] [CrossRef]
- Leeson, S.; Atteh, J.O.; Summers, J.D. Effects of Increasing Dietary Levels of Commercially Heated Soybeans on Performance, Nutrient Retention and Carcass Quality of Broiler Chickens. Can. J. Anim. Sci. 1987, 67, 821–828. [Google Scholar] [CrossRef]
- Perilla, N.S.; Cruz, M.P.; De Belalcázar, F.; Diaz, G.J. Effect of temperature of wet extrusion on the nutritional value of full-fat soyabeans for broiler chickens. Br. Poult. Sci. 1997, 38, 412–416. [Google Scholar] [CrossRef]
- Heger, J.; Wiltafsky, M.; Zelenka, J. Impact of different processing of full-fat soybeans on broiler performance. Czech J. Anim. Sci 2016, 61, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Sakkas, P.; Royer, E.; Smith, S.; Oikeh, I.; Kyriazakis, I. Combining alternative processing methods for European soybeans to be used in broiler diets. Anim. Feed Sci. Technol. 2019, 253, 45–55. [Google Scholar] [CrossRef]
- Clarke, E.; Wiseman, J. Effects of extrusion conditions on trypsin inhibitor activity of full fat soybeans and subsequent effects on their nutritional value for young broilers. Br. Poult. Sci. 2007, 48, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Faldet, M.A.; Satter, L.D.; Broderick, G.A. Determining optimal heat treatment of soybeans by measuring available lysine chemically and biologically with rats to maximize protein utilization by ruminants. J. Nutr. 1992, 122, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Wiriyaumpaiwong, S.; Soponronnarit, S.; Prachayawarakorn, S. Comparative study of heating processes for full-fat soybeans. J. Food Eng. 2004, 65, 371–382. [Google Scholar] [CrossRef]
- Hammond, E.G.; Johnson, L.A.; Su, C.; Wang, T.; White, P.J. Soybean Oil. In Bailey’s Industrial Oil and Fat Products; John Wiley & Sons: Hokoken, NJ, USA, 2005; ISBN 9780471678496. [Google Scholar]
- Newkirk, R.W.; Classen, H.L.; Edney, M.J. Effects of prepress-solvent extraction on the nutritional value of canola meal for broiler chickens. Anim. Feed Sci. Technol. 2003, 104, 111–119. [Google Scholar] [CrossRef]
- Karr-Lilienthal, L.K.; Bauer, L.L.; Utterback, P.L.; Zinn, K.E.; Frazier, R.L.; Parsons, C.M.; Fahey, G.C. Chemical composition and nutritional quality of soybean meals prepared by extruder/expeller processing for use in poultry diets. J. Agric. Food Chem. 2006, 54, 8108–8114. [Google Scholar] [CrossRef]
- Qin, G.X.; Verstegen, M.W.A.; Van Der Poel, A.F.B. Effect of Temperature and Time during Steam Treatment on the Protein Quality of Full-fat Soybeans of Different Origins. J. Sci. Food Agric. 1998, 77, 393–398. [Google Scholar] [CrossRef]
- McNaughton, J.L.; Reece, F.N. Effect of Moisture Content and Cooking Time on Soybean Meal Urease Index, Trypsin Inhibitor Content, and Broiler Growth. Poult. Sci. 1980, 59, 2300–2306. [Google Scholar] [CrossRef]
- Van den Hoet, R. Modelling of Heat Treatment of Soy; 1997; Available online: http://library.wur.nl/WebQuery/wurpubs/fulltext/199884 (accessed on 2 August 2021).
- Rafiee-Yarandi, H.; Alikhani, M.; Ghorbani, G.R.; Sadeghi-Sefidmazgi, A. Effects of temperature, heating time and particle size on values of rumen undegradable protein of roasted soybean. S. Afr. J. Anim. Sci. 2016, 46, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, M.C. Effect of processing on high-protein feedstuffs: A review. Biol. Wastes 1989, 29, 123–138. [Google Scholar] [CrossRef]
- Araba, M.; Dale, N.M. Evaluation of Protein Solubility as an Indicator of Overprocessing Soybean Meal. Poult. Sci. 1990, 69, 76–83. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Moughan, P.J. Available versus digestible dietary amino acids. Br. J. Nutr. 2012, 108, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Aviagen Ross 308 Broiler: Nutrition Specifications 2016. Aviagen 2016, 1–8. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_PS/Ross308-PS-NS-2016-EN.pdf (accessed on 11 February 2019).
- GFE Empfehlungen zur Energie- und Nährstoffversorgung der Legehennen und Masthühner (Broiler). Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie; DLG-Verlag: Frankfurt am Main, Germany, 1999. [Google Scholar]
- Naumann, C.; Bassler, R. Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012; ISBN 9783941273146. [Google Scholar]
- Altmann, F. Determination of amino sugars and amino acids in glycoconjugates using precolumn derivatization with o-phthalaldehyde. Anal. Biochem. 1992, 204, 215–219. [Google Scholar] [CrossRef]
- Jagger, S.; Wiseman, J.; Cole, D.J.A.; Craigon, J. Evaluation of inert markers for the determination of ileal and faecal apparent digestibility values in the pig. Br. J. Nutr. 1992, 68, 729–739. [Google Scholar] [CrossRef]
- ÖNORM. EN ISO 14902: 2002 04 01. Determination of Trypsin Inhibitor Activity of Soya Products; Österreichisches Normungsinstitut: Vienna, Austria, 2002. [Google Scholar]
- Araba, M.; Dale, N.M. Evaluation of Protein Solubility as an Indicator of Underprocessing of Soybean Meal. Poult. Sci. 1990, 69, 1749–1752. [Google Scholar] [CrossRef]
- Parsons, C.M.; Hashimoto, K.; Wedekind, K.J.; Baker, D.H. Soybean protein solubility in potassium hydroxide: An in vitro test of in vivo protein quality. J. Anim. Sci. 1991, 69, 2918–2924. [Google Scholar] [CrossRef]
- International Organization for Standardization 14244:2014(E). Oilseed Meals—Determination of Soluble Proteins in Potassium Hydroxide Solution; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- Karr-Lilienthal, L.K.; Grieshop, C.M.; Merchen, N.R.; Mahan, D.C.; Fahey, G.C. Chemical composition and protein quality comparisons of soybeans and soybean meals from five leading soybean-producing countries. J. Agric. Food Chem. 2004, 52, 6193–6199. [Google Scholar] [CrossRef]
- Rada, V.; Lichovnikova, M.; Safarik, I. The effect of soybean meal replacement with raw full-fat soybean in diets for broiler chickens. J. Appl. Anim. Res. 2017, 45, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Effect of anti-nutritional factors of oilseed co-products on feed intake of pigs and poultry. Anim. Feed Sci. Technol. 2017, 233, 76–86. [Google Scholar] [CrossRef]
- Fouad, A.M.; El-Senousey, H.K. Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian-Australas. J. Anim. Sci. 2014, 27, 1057–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schedle, K. Sustainable pig and poultry nutrition by improvement of nutrient utilization—A review. Die Bodenkultur. 2016, 67, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Parsons, C.M.; Hashimoto, K.; Wedekind, K.J.; Han, Y.; Baker, D.H. Effect of Overprocessing on Availability of Amino Acids and Energy in Soybean Meal. Poult. Sci. 1992, 71, 133–140. [Google Scholar] [CrossRef]
- Ravindran, V. Feed-induced specific ileal endogenous amino acid losses: Measurement and significance in the protein nutrition of monogastric animals. Anim. Feed Sci. Technol. 2016, 221, 304–313. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi Boroojeni, F.; Svihus, B.; Graf von Reichenbach, H.; Zentek, J. The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry—A review. Anim. Feed Sci. Technol. 2016, 220, 187–215. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Fogliano, V. Dietary Advanced Glycosylation End-Products (dAGEs) and Melanoidins Formed through the Maillard Reaction: Physiological Consequences of their Intake. Annu. Rev. Food Sci. Technol. 2018, 9, 271–291. [Google Scholar] [CrossRef]
- Humer, E.; Rohrer, E.; Windisch, W.; Wetscherek, W.; Schwarz, C.; Jungbauer, L.; Schedle, K. Gender-specific effects of a phytogenic feed additive on performance, intestinal physiology and morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2015, 99, 788–800. [Google Scholar] [CrossRef]
Phase | Starter | Grower | Finisher | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variety | Heat-Stable | Heat-Labile | Heat-Stable | Heat-Labile | Heat-Stable | Heat-Labile | ||||||
Heat Treatment | Low | High | Low | High | Low | High | Low | High | Low | High | Low | High |
Ingredients, g/kg. | ||||||||||||
Corn | 486.6 | 445.6 | 502.0 | 461.0 | 532.3 | 491.3 | ||||||
Soybean meal HP | 129.0 | 165.3 | 111.3 | 147.5 | 63.8 | 100.1 | ||||||
SV low T | 300.0 | 300.0 | 300.0 | |||||||||
SV high T | 300.0 | 300.0 | 300.0 | |||||||||
LV low T | 300.0 | 300.0 | 300.0 | |||||||||
LV high T | 300.0 | 300.0 | 300.0 | |||||||||
Sunflower oil | 17.0 | 23.2 | 27.1 | 33.3 | 39.8 | 46.0 | ||||||
Lignocellulose | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | ||||||
Calcium carbonate | 12.3 | 13.5 | 11.7 | 12.8 | 15.5 | 16.6 | ||||||
Dicalcium phosphate | 13.6 | 11.4 | 11.1 | 8.9 | 9.4 | 7.3 | ||||||
Sodium chloride | 3.5 | 3.4 | 3.5 | 3.5 | 3.5 | 3.5 | ||||||
L-Lysine HCl | 5.0 | 4.8 | 3.8 | 3.6 | 3.6 | 3.3 | ||||||
DL-Methionine | 4.6 | 4.7 | 3.9 | 4.0 | 3.6 | 3.6 | ||||||
L-Threonine | 2.6 | 2.5 | 1.9 | 1.8 | 1.7 | 1.6 | ||||||
L-Arginine | 1.5 | 1.5 | 0.5 | 0.5 | 0.4 | 0.3 | ||||||
L-Isoleucine | 1.2 | 1.1 | 0.6 | 0.6 | 0.6 | 0.6 | ||||||
L-Valin | 1.8 | 1.7 | 1.1 | 1.1 | 1.0 | 0.9 | ||||||
Mineral/vitamin premix a | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | ||||||
Choline-Cl | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | ||||||
Phytase b | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | ||||||
Coccidiostat c | 0.5 | 0.5 | 0.5 | 0.5 | - | - | ||||||
Titanium dioxide | - | - | - | - | 4.0 | 4.0 | ||||||
Calculated composition, g/kg | ||||||||||||
AMEn, MJ/kg | 12.6 | 12.6 | 13.0 | 13.0 | 13.4 | 13.4 | ||||||
Crude protein | 230.5 | 230.5 | 220.0 | 220.0 | 200.0 | 200.0 | ||||||
Dig. Lys | 12.8 | 12.8 | 11.5 | 11.5 | 10.3 | 10.3 | ||||||
Dig. Met | 7.0 | 7.0 | 6.2 | 6.3 | 5.7 | 5.8 | ||||||
Dig. Thr | 8.6 | 8.6 | 7.7 | 7.7 | 6.9 | 6.9 | ||||||
Dig. Trp | 2.0 | 2.0 | 1.9 | 1.9 | 1.7 | 1.7 | ||||||
Dig. Arg | 13.7 | 13.7 | 12.3 | 12.3 | 11.0 | 11.0 | ||||||
Analyzed composition, g/kg | ||||||||||||
Dry matter | 892 | 892 | 895 | 896 | 891 | 890 | 896 | 895 | 894 | 894 | 899 | 899 |
Crude protein | 239 | 233 | 238 | 237 | 217 | 225 | 221 | 228 | 205 | 206 | 203 | 208 |
Starch | 352 | 357 | 328 | 332 | 352 | 366 | 344 | 339 | 383 | 379 | 356 | 347 |
Ether extract | 75 | 76 | 78 | 80 | 84 | 82 | 90 | 88 | 99 | 98 | 102 | 103 |
Sugar | 41 | 40 | 51 | 46 | 43 | 40 | 47 | 46 | 36 | 36 | 45 | 46 |
Crude fiber | 28 | 31 | 35 | 44 | 27 | 28 | 34 | 41 | 29 | 39 | 35 | 33 |
Ash | 66 | 66 | 67 | 67 | 63 | 60 | 64 | 63 | 63 | 67 | 69 | 66 |
Calcium | 11 | 13 | 12 | 13 | 11 | 11 | 11 | 10 | 13 | 12 | 13 | 12 |
Phosphor | 6.4 | 6.7 | 6.7 | 6.8 | 6.0 | 6.3 | 5.4 | 5.9 | 5.7 | 5.9 | 5.8 | 5.8 |
Sodium | 1.5 | 1.4 | 1.4 | 1.7 | 1.5 | 1.4 | 1.4 | 1.2 | 1.5 | 1.4 | 1.6 | 1.4 |
Potassium | 9.7 | 9.9 | 10.0 | 10.5 | 8.7 | 8.9 | 9.3 | 9.6 | 8.3 | 8.3 | 9.1 | 9.4 |
AMEn, MJ/kg d | 12.7 | 12.7 | 12.5 | 12.5 | 12.7 | 13.0 | 12.9 | 12.8 | 13.4 | 13.3 | 13.2 | 13.1 |
TIA | 1.5 | 0.8 | 2.1 | 0.8 | 1.5 | 0.8 | 2.1 | 0.9 | 1.6 | 0.6 | 1.8 | 0.8 |
Lys | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 13.1 | 13.1 | 13.6 | 16.6 |
Met | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 6.2 | 6.1 | 6.4 | 6.4 |
Thr | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 8.7 | 8.8 | 9.0 | 9.3 |
Arg | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 13.5 | 13.5 | 13.3 | 13.6 |
Variety | Heat-Stable | Heat-Labile | ||
---|---|---|---|---|
Heat Treatment | Low | High | Low | High |
Analyzed values, g/kg | ||||
Dry matter | 886 | 885 | 894 | 905 |
Ash | 54.8 | 52 | 58.8 | 58 |
Crude protein | 402 | 400 | 358 | 363 |
Ether extract | 130 | 132 | 124 | 128 |
Crude fiber | 46 | 48 | 53 | 50 |
Sugar | 78 | 75 | 95 | 93 |
Starch | 65 | 66 | 67 | 66 |
Phosphor | 71 | 65 | 69 | 56 |
Calcium | 14 | 14 | 22 | 21 |
Sodium | n.d. | n.d. | n.d. | n.d. |
Potassium | 177 | 173 | 161 | 186 |
Protein solubility, % | 81 | 61 | 78 | 48 |
TIA g/kg | 3.3 | <0.5 | 5.1 | <0.5 |
Variety | Heat-Stable | Heat-Labile | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Heat Treatment | Low | High | Low | High | SEM | Heat | Variety | H × V |
Animals at start, n | 84 | 84 | 84 | 84 | ||||
Animals at day 15, n | 80 | 79 | 81 | 77 | ||||
Animals at day 36, n | 75 | 71 | 79 | 72 | ||||
Ratio male/female at day 36, % | 51/49 | 48/52 | 39/61 | 54/46 | ||||
Initial body weight, g | 39 | 40 | 40 | 40 | 0.17 | 0.884 | 0.810 | 0.787 |
Starter period, day 1–14 | ||||||||
BW on day 14, g | 403 b | 405 b | 381 a | 395 ab | 2.88 | 0.119 | 0.003 | 0.194 |
ADG, g/day | 28 b | 28 b | 26 a | 27 ab | 0.22 | 0.128 | 0.003 | 0.195 |
ADFI, g/day | 35 | 35 | 33 | 34 | 0.23 | 0.396 | 0.011 | 0.596 |
FCR, kg/kg | 1.26 | 1.27 | 1.28 | 1.28 | 0.01 | 0.791 | 0.390 | 0.890 |
Grower period, day 15–28 | ||||||||
BW on day 28, g | 1330 b | 1306 b | 1214 a | 1290 ab | 13.56 | 0.243 | 0.006 | 0.032 |
ADG, g/day | 66 b | 64 ab | 59 a | 64 ab | 0.83 | 0.355 | 0.018 | 0.038 |
ADFI, g/day | 88 b | 87 b | 80 a | 87 b | 0.90 | 0.058 | 0.017 | 0.010 |
FCR, kg/kg | 1.35 | 1.37 | 1.36 | 1.37 | 0.01 | 0.464 | 0.786 | 0.805 |
Finisher period, day 29–36 | ||||||||
BW on day 36, g | 2044 b | 2080 b | 1860 a | 2055 b | 24.45 | 0.004 | 0.007 | 0.035 |
ADG, g/day | 89 ab | 97 b | 81 a | 96 b | 2.17 | 0.007 | 0.205 | 0.333 |
ADFI, g/day | 147 b | 147 b | 134 a | 150 b | 1.96 | 0.016 | 0.128 | 0.024 |
FCR, kg/kg | 1.65 | 1.57 | 1.66 | 1.63 | 0.02 | 0.152 | 0.382 | 0.555 |
Total, day 1–36 | ||||||||
ADG, g/day | 57 b | 58 b | 52 a | 58 b | 0.70 | 0.004 | 0.007 | 0.034 |
ADFI, g/day | 81 b | 81 b | 75 a | 82 b | 0.79 | 0.014 | 0.018 | 0.008 |
FCR, kg/kg | 1.45 | 1.43 | 1.46 | 1.46 | 0.01 | 0.563 | 0.273 | 0.573 |
Mortalities, % | 3.6 | 9.4 | 4.6 | 9.5 | 1.3 | 0.049 | 0.816 | 0.864 |
Variety | Heat-Stable | Heat-Labile | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Heat Treatment | n | Low | High | Low | High | SEM | Heat | Variety | Sex | H × V |
Body weight (BW), g | 297 | 2055 b | 2096 b | 1884 a | 2053 b | 15.85 | 0.004 | <0.001 | <0.001 | 0.040 |
Eviscerated carcass (EC), g | 297 | 1601 b | 1639 b | 1449 a | 1595 b | 0.13 | 0.002 | <0.001 | <0.001 | 0.043 |
Abdominal fat, g/100 g EC | 297 | 0.74 b | 0.75 b | 0.52 a | 0.65 ab | 0.02 | 0.127 | <0.001 | <0.001 | 0.167 |
Heart, g/100 g EC | 297 | 0.71 ab | 0.65 a | 0.76 b | 0.72 b | 0.01 | 0.014 | <0.001 | <0.001 | 0.472 |
Liver, g/100 g EC | 297 | 2.58 a | 2.55 a | 2.83 b | 2.73 ab | 0.03 | 0.272 | <0.001 | 0.146 | 0.615 |
Gizzard, g/100 g EC | 297 | 1.55 | 1.34 | 1.36 | 1.32 | 0.05 | 0.203 | 0.287 | 0.807 | 0.408 |
Pancreas, g/kg EC | 142 | 2.68 bc | 2.34 a | 2.93 c | 2.58 ab | 0.04 | <0.001 | <0.001 | <0.001 | 0.775 |
Chilled Carcass (CC), g | 274 | 1601 b | 1622 b | 1472 a | 1585 b | 12.55 | 0.015 | <0.001 | <0.001 | 0.067 |
Dressing, g CC/100 g BW | 274 | 77 | 77 | 77 | 77 | 0.11 | 0.915 | 0.062 | 0.661 | 0.928 |
Carcass for grilling, g | 274 | 1438 b | 1472 b | 1334 a | 1437 b | 12.02 | 0.012 | <0.001 | <0.001 | 0.173 |
Breast, g/100 g CC | 48 | 29.3 b | 27.0 ab | 28.2 ab | 26.0 a | 0.36 | 0.001 | 0.151 | 0.267 | 0.751 |
Thigh and drumstick, g/100 g CC | 48 | 24.3 | 25.5 | 24.9 | 23.2 | 0.21 | 0.822 | 0.475 | 0.710 | 0.221 |
Wings, g/100 g CC | 48 | 9.6 | 10.1 | 9.6 | 10.7 | 0.20 | 0.043 | 0.422 | 0.444 | 0.405 |
Remainder of carcass, g/100 g CC | 48 | 27.4 | 28.1 | 27.9 | 28.2 | 0.19 | 0.207 | 0.464 | 0.250 | 0.439 |
Variety | Heat-Stable | Heat-Labile | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Heat Treatment | Low | High | Low | High | SEM | Heat | Variety | H × V |
Dry matter | 0.959 | 0.957 | 0.954 | 0.958 | 0.001 | 0.499 | 0.341 | 0.135 |
Ash | 0.896 | 0.897 | 0.893 | 0.897 | 0.002 | 0.460 | 0.634 | 0.613 |
N retention | 0.704 a | 0.646 b | 0.672 ab | 0.666 ab | 0.007 | 0.025 | 0.635 | 0.061 |
Ether extract | 0.856 | 0.856 | 0.850 | 0.861 | 0.003 | 0.294 | 0.890 | 0.267 |
Gross energy | 0.750 | 0.736 | 0.723 | 0.739 | 0.004 | 0.915 | 0.143 | 0.059 |
Starch | 0.948 a | 0.940 b | 0.941 b | 0.937 b | 0.001 | 0.004 | 0.008 | 0.271 |
Variety | Heat-Stable | Heat-Labile | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Heat Treatment | Low | High | Low | High | Heat | Variety | H × V | |
Dry matter | 0.712 | 0.691 | 0.693 | 0.681 | 0.011 | 0.162 | 0.202 | 0.694 |
Crude protein | 0.768 | 0.724 | 0.752 | 0.746 | 0.013 | 0.065 | 0.801 | 0.151 |
Met | 0.892 | 0.872 | 0.888 | 0.892 | 0.008 | 0.334 | 0.311 | 0.139 |
Cys | 0.705 | 0.646 | 0.681 | 0.658 | 0.016 | 0.018 | 0.733 | 0.281 |
Lys | 0.817 | 0.781 | 0.812 | 0.800 | 0.013 | 0.071 | 0.574 | 0.343 |
Thr | 0.741 | 0.710 | 0.723 | 0.729 | 0.014 | 0.252 | 0.778 | 0.273 |
Arg | 0.853 | 0.835 | 0.846 | 0.851 | 0.010 | 0.530 | 0.680 | 0.271 |
Ile | 0.783 | 0.766 | 0.774 | 0.783 | 0.012 | 0.734 | 0.732 | 0.301 |
Leu | 0.783 | 0.763 | 0.771 | 0.781 | 0.012 | 0.656 | 0.803 | 0.224 |
Val | 0.775 | 0.754 | 0.764 | 0.770 | 0.013 | 0.566 | 0.872 | 0.288 |
His | 0.810 | 0.776 | 0.802 | 0.792 | 0.011 | 0.066 | 0.745 | 0.276 |
Phe | 0.811 | 0.792 | 0.802 | 0.811 | 0.011 | 0.651 | 0.663 | 0.245 |
Gly | 0.729 | 0.688 | 0.713 | 0.703 | 0.015 | 0.100 | 0.994 | 0.302 |
Ser | 0.771 | 0.739 | 0.753 | 0.753 | 0.013 | 0.217 | 0.881 | 0.228 |
Pro | 0.805 | 0.775 | 0.796 | 0.784 | 0.010 | 0.052 | 0.985 | 0.372 |
Ala | 0.775 | 0.741 | 0.759 | 0.761 | 0.013 | 0.222 | 0.880 | 0.160 |
Asp | 0.784 a | 0.728 c | 0.775 ab | 0.732 bc | 0.012 | 0.000 | 0.805 | 0.566 |
Glu | 0.844 | 0.817 | 0.836 | 0.827 | 0.009 | 0.060 | 0.898 | 0.328 |
NH3 | 0.759 | 0.739 | 0.752 | 0.743 | 0.012 | 0.228 | 0.897 | 0.640 |
Sum x | 0.800 | 0.770 | 0.790 | 0.783 | 0.011 | 0.117 | 0.902 | 0.301 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemetsberger, F.; Hauser, T.; Domig, K.J.; Kneifel, W.; Schedle, K. Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens. Animals 2021, 11, 2668. https://doi.org/10.3390/ani11092668
Hemetsberger F, Hauser T, Domig KJ, Kneifel W, Schedle K. Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens. Animals. 2021; 11(9):2668. https://doi.org/10.3390/ani11092668
Chicago/Turabian StyleHemetsberger, Florian, Thomas Hauser, Konrad J. Domig, Wolfgang Kneifel, and Karl Schedle. 2021. "Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens" Animals 11, no. 9: 2668. https://doi.org/10.3390/ani11092668
APA StyleHemetsberger, F., Hauser, T., Domig, K. J., Kneifel, W., & Schedle, K. (2021). Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens. Animals, 11(9), 2668. https://doi.org/10.3390/ani11092668