The Level of Selected Bacterial Phyla on the Skin Surface of Small Ruminants According to the Breed and Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
- Świniarka sheep: primitive breed, small, fine, mixed wool; ewes’ weight: 25–35 kg, seasonal [8].
- Uhruska sheep: medium-sized, closed woolly cover; ewes’ weight: 55–80 kg [8].
- BCP line (Polish lowland sheep 37.5%, fertile breed (Romanov, Friesian, Finnish) 12.5%, Berrichon 25.00% and Charolaise 25.00%): large, well-defined muscles; ewes’ weight: 50–70 kg [8].
- Saanen goat: large framed, short, white and shiny hair, dairy breed; body weight of goats: 50–90 kg [8].
- Boer goat: short hair, white and shiny, compact and stocky body; body weight of goats: 50–90 kg [8].
2.2. Sample Collecting
2.3. Bacteria DNA Isolation
2.4. Real Time PCR
2.5. Statistical Analysis of the Results
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, A.R. The cutaneous ecosystem: The roles of the skin microbiome in health and its association with inflammatory skin conditions in humans and animals. Adv. Vet. Dermatol. 2017, 8, 71–83. [Google Scholar]
- Ross, A.A.; Hoffmann, A.R.; Neufeld, J.D. The skin microbiome of vertebrates. Microbiome 2019, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Cholewińska, P.; Michalak, M.; Wojnarowski, K.; Skowera, S.; Smoliński, J.; Czyż, K. Levels of Firmicutes, Actinobacteria Phyla and Lactobacillaceae Family on the Skin Surface of Broiler Chickens (Ross 308) Depending on the Nutritional Supplement and the Housing Conditions. Agriculture 2021, 11, 287. [Google Scholar] [CrossRef]
- Cholewinska, P.; Michalak, M.; Łuczycka, D.; Czyż, K. An effect of suint on sheep wool impedance and heat resistance values. J. Nat. Fibers 2018, 17, 382–388. [Google Scholar] [CrossRef]
- Hsu, D.K.; Maxwell, A.F.; Hung-Lin, C. Role of skin and gut microbiota in the pathogenesis of psoriasis, an inflammatory skin disease. Med. Microecol. 2020, 4, 100016. [Google Scholar] [CrossRef]
- Beri, K. Skin microbiome & host immunity: Applications in regenerative cosmetics & transdermal drug delivery. Future Sci. OA 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Polish Union of Sheep-Farmers. Available online: http://pzow.pl/ (accessed on 20 June 2021).
- Dowd, S.E.; Callaway, T.R.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Hagevoort, R.G.; Edrington, T.S. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- De Gregoris, T.B.; Aldred, N.; Clare, A.S.; Burgess, J.G. Improvement of phylum-And class-specific primers for real-time PCR quantification of bacterial taxa. J. Microbiol. Methods 2011, 86, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, C.B.; Oaks, A.; Buyer, J.S. Phylum-And class-specific PCR primers for general microbial community analysis. Appl. Environ. Microbiol. 2005, 71, 6193–6198. [Google Scholar] [CrossRef] [Green Version]
- Mitsumori, M.; Ajisaka, N.; Tajima, K.; Kajikawa, H.; Kurihara, M. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 2002, 35, 251–255. [Google Scholar] [CrossRef]
- Yan, D.; Issa, N.; Afifi, L.; Jeon, C.; Chang, H.W.; Liao, W. The Role of the Skin and Gut Microbiome in Psoriatic Disease. Curr. Dermatol. Rep. 2017, 6, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiang, Y.; Zhou, W.; Chen, J.; Li, K.; Yang, H. Microbial community mapping in intestinal tract of broiler chicken. Poult. Sci. 2017, 96, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Oakley, B.B.; Morales, C.A.; Line, J.; Berrang, M.E.; Meinersmann, R.J.; Tillman, G.E. The Poultry-Associated Microbiome: Network Analysis and Farm-to-Fork Characterizations. PLoS ONE 2013, 8, e57190. [Google Scholar] [CrossRef] [Green Version]
- Hegyi, A.; Dico, C.; Szilagyi, H. Sheep Wool Thermal Insulating Mattresses Behaviour in the Water Vapours Presence. Proc. Manufact. 2020, 46, 410–417. [Google Scholar] [CrossRef]
- Gilewicz, P.; Tal-Figiel, B.; Figiel, W.; Kwiecień, M. Nowoczesne rozwiązania w zakresie wytwarzania i kontroli jakości emulsji; Wyd. Politechniki Krakowskiej. Czasopismo Techniczne 2012, 17, Rok 109. [Google Scholar]
- Gruszecki, T.M.; Lipecka, C.; Szymanowska, A.; Jankuszew, A.; Patkowski, K.; Gregula-Kania, M.; Bojar, W.; Dudko, P. Owce syntetycznych linii BCP i SCP w praktycznej hodowli i doświadczalnictwie. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego 2016, 12, 19–31. [Google Scholar] [CrossRef]
- Hudson, R.F. Wool, Its Chemistry and Physics; Chapman and Hall: London, UK, 1963; p. 417. [Google Scholar]
- Kawecka, A.; Ksiek, A. Charakterystyka wybranych parametrów wełny współczesnej świniarki. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego 2014, 10, 39–48. [Google Scholar]
- Kawęcka, A.; Krupiński, J.; Sikora, J. Polska owca pogórza–program ochrony zasobów genetycznych zwierząt. Wiadomości Zootechniczne 2014, 52, 11–17. [Google Scholar]
- van Arendonk, J.A. Cele hodowli zwierząt: Zrównoważenie wydajności i wpływu na środowisko. Przegląd Hodowlany 2011, 79, 1–3. [Google Scholar]
- Kowalczyk, M.; Szabelak, A.; Dylewska, M.; Jakubczak, A. Markery molekularne wykorzystywane w selekcji zwierząt hodowlanych. Zeszyty Problemowe Postępów Nauk Rolniczych 2018, 592–594, 37–49. [Google Scholar] [CrossRef]
- Hernandez-Sanabria, E.; Goonewardene, L.A.; Li, M.; Mujibi, D.F.; Stothard, P.; Moore, S.S.; Leon-Quintero, M.C. Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. Appl. Environ. Microbiol. 2010, 76, 6338–6350. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Abecia, L.; Attwood, G.T. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef]
- OWCE Ochrona ras Rodzimych. Available online: http://owce.bioroznorodnosc.izoo.krakow.pl/ (accessed on 16 June 2021).
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Auffret, M.D.; Dewhurst, R.J.; Duthie, C.A.; Rooke, J.A.; Wallace, R.J.; Freeman, T.C.; Roehe, R. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome 2017, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Petri, R.M.; Schwaiger, T.; Penner, G.B.; Beauchemin, K.A.; Forster, R.J.; McKinnon, J.J.; McAllister, T.A. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS ONE 2013, 8, e83424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, K.P.; Cua, A.B.; Maibach, H.I. Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch. Dermatol. 1991, 127, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.S.; Falconer, A.; Ikram, M.; Bissett, C.E.; Cerio, R.; Quinn, A.G. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J. Investig. Dermatol. 2001, 117, 106–111. [Google Scholar]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; NISC Comparative Sequencing Program; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; et al. Topographical and temporal diversity of the human skin microbiome. Science 2009, 29, 324. [Google Scholar] [CrossRef] [Green Version]
- Capone, K.A.; Dowd, S.E.; Stamatas, G.N.; Nikolovski, J. Diversity of the human skin microbiome early in life. J. Investig. Dermatol. 2011, 131, 2026–2032. [Google Scholar] [CrossRef] [Green Version]
- Malmuthuge, N. Understanding host-microbial interactions in rumen: Searching the best opportunity for microbiota manipulation. J. Anim. Sci. Biotechnol. 2017, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatsuji, T.; Chiang, H.I.; Jiang, S.B.; Nagarajan, H.; Zengler, K.; Gallo, R.L. The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. 2013, 4, 1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Mende, D.R. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Egholm, M. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Component | Volume in 10 μL Reaction |
---|---|
SsoAdvanced™ Universal SYBR® Green Supermix | 5 μL |
Primer (F + R) | 1 μL (0.8 μM) |
DNA | 2 μL (0.04–0.015 × 10−4) |
Sterile water | 2 μL |
Name | Forward (5′-3′) | Reverse (5′-3′) | Source |
---|---|---|---|
Universal Eubacterial Genes | 530F (5′-GTC CCA GCM GCN GCG G) | 1100R (5′-GGG TTN CGN TCG TTG) | [9] |
Firmicutes | 928F-Firm (5′-TGA AAC TYA AAG GAA TTG ACG) | 1040FirmR (5′-ACC ATG CAC CTG TC) | [10] |
Actinobacteria | Act1159R (5′-TCCGAGTTRACCCCGGC) | Eub338F ACGGGCGGTGTGTACA | [11] |
Proteobacteria | 27F (5′ GAGTTTGATCMTGGCTCAG-3′) | 1529R (5′ CAKAAAGGAGGTGATCC-3′) | [12] |
Breed/Species | Świniarka Sheep | Uhruska Sheep | BCP Line | Saanen Goat | Boer Goat | Sheep | Goat | |
---|---|---|---|---|---|---|---|---|
Firmicutes | Average | 0.998 A,a | 0.7874 d | 0.0916 B,c | 1.2415 d | 0.3307 b | 0.625423 | 0.786096 |
SD | 0.514 | 0.1998 | 0.0114 | 0.8913 | 0.1317 | 0.515724 | 0.817944 | |
Bacteroidetes | Average | 0.0354 | 0.47258 | 0.112967 | 0.72712 | 0.33385 | 0.206970 | 0.530481 |
SD | 0.0789 | 0.5379 | 0.0968 | 0.7954 | 0,2354 | 0.382145 | 0.646131 | |
Actinobacteria | Average | 0.1827 | 0.4447 | 0.0253 a | 0.7044 b | 0.7034 b | 0.217563 ** | 0.703883 ** |
SD | 0.2471 | 0.4096 | 0.0259 | 0.5684 | 0.3361 | 0.335674 | 0.487704 | |
Proteobacteria | Average | 0.0002 a | 0.00017 a | 0.00006 a | 0.0320 a | 0.2558 b | 0.000153 * | 0.143916 * |
SD | 0.0003 | 8.1854 × 105 | 7.1181 × 105 | 0.0382 | 0.2845 | 0.000255 | 0.242140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholewińska, P.; Nazar, P.; Junkuszew, A.; Smoliński, J.; Czyż, K.; Wyrostek, A. The Level of Selected Bacterial Phyla on the Skin Surface of Small Ruminants According to the Breed and Species. Animals 2021, 11, 2734. https://doi.org/10.3390/ani11092734
Cholewińska P, Nazar P, Junkuszew A, Smoliński J, Czyż K, Wyrostek A. The Level of Selected Bacterial Phyla on the Skin Surface of Small Ruminants According to the Breed and Species. Animals. 2021; 11(9):2734. https://doi.org/10.3390/ani11092734
Chicago/Turabian StyleCholewińska, Paulina, Paulina Nazar, Andrzej Junkuszew, Jakub Smoliński, Katarzyna Czyż, and Anna Wyrostek. 2021. "The Level of Selected Bacterial Phyla on the Skin Surface of Small Ruminants According to the Breed and Species" Animals 11, no. 9: 2734. https://doi.org/10.3390/ani11092734
APA StyleCholewińska, P., Nazar, P., Junkuszew, A., Smoliński, J., Czyż, K., & Wyrostek, A. (2021). The Level of Selected Bacterial Phyla on the Skin Surface of Small Ruminants According to the Breed and Species. Animals, 11(9), 2734. https://doi.org/10.3390/ani11092734