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Simple Summary: In the last few decades, sea turtles have been threatened by a disease called
Fibropapillomatosis. Infection causes the growth of several tumors which can prevent affected turtles
from seeing, swimming, and feeding properly, often with lethal outcomes. Fibropapillomatosis was
described for the first time in Florida in 1938 and has since then increased and spread worldwide.
To this day, there is no strong nor clear evidence on what causes the exacerbation of this disease
which is associated with a herpesvirus. There is a consensus, however, that human-driven changes in
the sea turtle habitats (i.e., climate change, pollution, urbanization) might play a role in increasing
the number and severity of clinical cases. This study intends to explore the role of various possible
environmental drivers behind the increased occurrence of this disease. We found that sea temperature,
salinity, human population density, and river discharge from the coastline could be important drivers
of tumor prevalence. Results from this preliminary work have the potential to offer an important
baseline for future research on environmental drivers of Fibropapillomatosis.

Abstract: Fibropapillomatosis is a neoplastic disease of marine turtles, with green turtles (Chelonia
mydas) being the most affected species. Fibropapillomatosis causes debilitating tumor growths on soft
tissues and internal organs, often with lethal consequences. Disease incidence has been increasing
in the last few decades and the reason is still uncertain. The potential viral infectious agent of
Fibropapillomatosis, chelonid herpesvirus 5, has been co-evolving with its sea turtle host for millions
of years and no major mutation linked with increased disease occurrence has been detected. Hence,
frequent outbreaks in recent decades are likely attributable to external drivers such as large-scale
anthropogenic changes in the green turtle coastal marine ecosystem. This study found that variations
in sea surface temperature, salinity, and nutrient effluent discharge from nearby rivers were correlated
with an increased incidence of the disease, substantiating that these may be among the significant
environmental drivers impacting Fibropapillomatosis prevalence. This study offers data and insight
on the need to establish a baseline of environmental factors which may drive Fibropapillomatosis
and its clinical exacerbation. We highlight the multifactorial nature of this disease and support the
inclusion of interdisciplinary work in future Fibropapillomatosis research efforts.

Keywords: coastal waters; wildlife diseases; ecosystem change; environmental impact; marine ecology;
turtles; viruses

1. Introduction

Fibropapillomatosis (FP) is a neoplastic disease affecting all sea turtle species, with
the green turtle (Chelonia mydas) being the most heavily affected [1]. FP was reported
for the first time in Florida in 1938 and has since spread around the state and beyond,
reaching worldwide occurrence [2,3]. Juvenile green turtles recruiting to coastal ecosystems,
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in particular, have been experiencing FP prevalence of over 50% in recent years [4–6].
Symptoms consist of debilitating tumoral growths on the turtle body (i.e., mouth, eyes,
flippers areas, underside of shell), impeding basic survival activities such as feeding and
swimming [1]. Sometimes lesions develop internally including on the lungs, kidneys, and
the heart, with lethal consequences for the turtles [7]. The likely viral infectious agent of FP
has been identified in chelonid herpesvirus 5 (ChHV5) [8]. ChHV5 has been evolving with
its sea turtle host for millions of years, and no recent viral changes have been associated
with FP incidence surge in the last few decades [9,10]. Thus, ChHV5 is not believed to
be the only responsible agent inducing the disease, as the temporal change in prevalence
points towards a multifactorial mode of inception. Post-pelagic green turtles are nearshore
foragers and dwell in coastal waters [11]. In the last few decades, they have experienced
gradual changes and alterations in their habitat [12,13]. This environmental disruption has
coincided with consistent and increasing outbreaks of FP in the wild, disproportionately
affecting the juvenile band of the population [1,14–16]. Green turtles are an endangered
species and, together with poaching, human encroachment, and habitat loss, FP can be a
major threat to their conservation [17,18].

Several seawater parameters have been studied in the FP literature. Thermal stress
resulting from changing temperatures can alter immune response, making sea temperature
variations a potential factor in FP infection dynamics [19–23]. Viral infections in ectother-
mic vertebrates are significantly affected by temperature changes [24]. In the last 50 years,
the global increase of FP prevalence has been overlapping with an average temperature
increase of a third of a degree in the ocean [25]. Salinity levels can also be a stressor for
marine reptiles and dictate habitat suitability for sea organisms, such as benthic dinoflag-
ellates present in macroalgae blooms [26]. Harmful macroalgae blooms such as red tides
(Karenia brevis) could also play a role in FP outbreaks, occurring in nearshore habitats and
identified for their negative impact on aquatic species [27]. Furthermore, FP has been
often associated with anthropogenic disturbance. Sea turtles dwelling in urbanized coastal
environments have repeatedly shown elevated FP prevalence [4,15,22,28–31]. Proximity to
densely human-populated areas, alongside habitat loss, pollution, and nutrient discharge
can cause stress on marine animals, commonly linked to immune system suppression and
infectious disease outbreaks [32]. River discharge from densely populated areas accounts
for high amounts of contamination and affects nearshore seawater composition [33]. FP
researchers have already investigated seawater contaminants in FP-infected turtles across
Hawaii [29,34], Australia [30], and Brazil [35], and green turtle tissues have generally
been found to accumulate pollutants also across the Indo-Pacific [36], Caribbean [37], and
Mediterranean region [38]. Some findings showed blood contamination correlations with
FP viral infection, oxidative stress, and overall poorer health [30,35]. Water currents are
also an important factor to consider, as they modulate water temperature and salinity
fluctuations, as well as nutrient migration and algal blooms propagation [39–41]. Moreover,
ChHV5 is likely to persist in seawater for hours or even days, and molecular evidence of
horizontal transmission has been reported [42,43]. This indicates that FP may disseminate
between individuals via viral shedding in seawater [1,8,42,44–47]. Water currents have
previously been indicated to play a role in viral transmission, following the concept of viral
dilution [48]. In infected areas, more frequent and stronger currents could regularly dilute
water, decreasing viral presence. Conversely, stagnant water potentially allows a higher
accumulation of viral particles, increasing infection risk [49]. Hence, we deemed water
residence time to be another valuable avenue to examine when investigating FP dynamics.

In the current study, we research the role of multiple environmental factors by compar-
ing FP prevalence in green turtles across Florida and Texas with environmental variables
extracted from public datasets. Environmental features selected for our analysis include
sea surface temperature, salinity, water currents residence time, human population density,
riverine nutrient discharge, and red tide events. Our approach was to explore the role of
potential environmental drivers in the occurrence of FP on the Southeastern United States
coast over different spatiotemporal frames in the last few decades. Notwithstanding the
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limitations of an observational study on existing data, we seek new insights with the aim
of providing a baseline for future research on FP environmental etiology.

2. Materials and Methods
2.1. Data Collection
2.1.1. FP Prevalence Data

We conducted a literature search on the Google Scholar search engine (https://scholar.
google.com/). Keywords used for the search were: [“Fibropapillomatosis” + “Green Turtle”
+ “Chelonia mydas” + “Prevalence OR Occurrence OR Incidence”]. We operated a selection
of publications from the scientific literature according to their reporting criteria. Inclusion
criteria selected papers that reported the following variables: (i) total number of FP-positive
(FP+ve) individuals, (ii) total number of FP-negative (FP−ve) individuals, (iii) total number
of individuals sampled, (iv) sampling location, and (v) year of sampling. The latter factor
could not be a time range (i.e., 1986–1999), because annual FP prevalence was necessary
to carry comparison with environmental and demographic data. To adjust for this factor,
authors were contacted for permission to access their dataset. This narrowed the selection
to four main publications that fit the scope of this research, three scientific articles and one
published master thesis, reporting FP prevalence across various spatiotemporal frames
(Figure 1). Foley et al. (2005) provided a detailed dataset of turtle stranding data across the
Atlantic and Gulf coast of Florida from 1980 to 1998 [20] (Figure 2A). Hirama et al. (2014)
and Borrowman (2008) provided a detailed dataset of in-water turtle captures from the
Indian River Lagoon from 1998 to 1999 and across three different locations in East-Central
Florida from 1983 to 2006, respectively [50,51]. Authors of these three sources directly
shared the data collection broken down by year to allow for comparison in our research.
Shaver et al. (2019) results also fit the scope of this research, reporting published data on FP
prevalence from stranded or incidentally captured turtles along the Texas coast (Figure 2B),
and were included in this study. The published paper already provided percentage data
on FP prevalence broken down by location and year (from 2010 to 2018) [14]. Therefore,
after the literature search and selection, our FP prevalence information comprised data
from two United State states (Florida and Texas) and was divided into four categories:
(i) Atlantic coast stranded Florida data, (ii) Gulf coast stranded Florida data [20], (iii) in-
water Florida data [50,51], and (iv) Texas (stranded and incidentally captured) data [14].
Stranded data were divided between the two coasts as these can have different environmen-
tal characteristics, as also indicated by Foley et al. (2005) [20]. The in-water Florida data
were only available for the Atlantic coast. In-water data indicates free-roaming individuals
captured in the water with mesh tangle netting methods in the case of Hirama et al. (2014)
and Borrowman (2008) [50,51]; or accidental captures (entrapped or by-catch) in the case of
Shaver et al. (2019) [14]. While stranding data indicates individuals found stranded, dead,
or alive but debilitated both in the case of Foley et al. (2005) and Shaver et al. (2019) [14,20].
Both publications also include dead or debilitated individuals found floating [14]. In our
study, in-water and stranded individuals were not combined but analyzed separately, to
avoid bias. The FP annual prevalence ratio formula was therefore applied to the separate
FP datasets (stranded Florida Atlantic coast, stranded Florida Gulf coast, in-water Florida,
and Texas) by calculating the resulting value from FP+ve individuals sampled over total
individuals sampled (i.e., FP+ve + FP−ve) reported in each dataset for each year and location
(i.e., 2 FP+ve/5 total sampled = 2/5 = 0.4 FP prevalence).

https://scholar.google.com/
https://scholar.google.com/
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(1980–1998 for Florida stranded FP dataset [20]; 1983–2006 for Florida in-water FP dataset [50,51]; 
2010–2018 for Texas FP dataset [14]). Matching timeframe of availability of predictor variables is 
reported for each group. Absence of predictor variables block in a given location (i.e., red tide data 
in Florida in-water locations) corresponds to NAs. Not all FP data could be utilized for the purposes 
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Figure 1. Timeframe of retrospective study. The orange blocks represent the timeframes of FP
prevalence data shared by 3rd party authors or available in published papers for the different locations
(1980–1998 for Florida stranded FP dataset [20]; 1983–2006 for Florida in-water FP dataset [50,51];
2010–2018 for Texas FP dataset [14]). Matching timeframe of availability of predictor variables is
reported for each group. Absence of predictor variables block in a given location (i.e., red tide data in
Florida in-water locations) corresponds to NAs. Not all FP data could be utilized for the purposes of
our study. Statistical analyses were run solely on the space and time matching timeframes from the
earliest available timeframe after demographic data availability (i.e., patterns of Florida in-water FP
prevalence versus environmental and demographic predictors from 1995 to 2006, see Section 2.2.1).
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Figure 2. (A) Distribution of the surveyed turtles between 1980 and 1998 [20]; (B) distribution
and prevalence of surveyed turtles affected by FP in Texas from 2010 to 2018 (adapted from
Shaver et al., 2019) [14].
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2.1.2. Coastal Water Quality Data

Water temperature, salinity, and residence time data were extracted from the Global
Hybrid Coordinate Ocean Model (HYCOM) and the Navy Coupled Ocean Data Assimila-
tion (NCODA) system. The HYCOM model evolved from the Miami Isopycnic Coordinate
Model (MICOM). Its general architecture and validation are fully documented in Bleck
(2002) and Halliwell (2004) [52,53]. HYCOM provides 4-day forecasts at 3-h time steps.
To improve the initial condition of the forecast, the model assimilates available altimeter
observations from satellites, in-situ, and satellite sea surface temperature, as well as in-situ
vertical salinity and temperature profiles from XBT (expendable bathythermograph) instru-
ments, Argo floats, and mooring buoys. The HYCOM model has a resolution of 1/12◦ (i.e.,
~9.25 km) for both latitude and longitude. In the vertical direction, the properties of the
water column (i.e., water depth, temperature, salinity, and flow velocity) are described by
using 41 layers. The model uses isopycnal coordinates and conserves water and solute mass.
It also provides high vertical resolution in weakly stratified regions, such as the surface
mixed layer. The surface layer was chosen as, after their pelagic phase, green turtles recruit
to neritic shallow-water habitats, and studies tracking diving patterns have observed green
turtles spend most of their time (89–100%) within 5 m of water depth [11,54]. Data from
1995 to 2012 were extracted from the model reanalysis dataset (accessed 19 September
2020, from https://www.hycom.org/data/glbu0pt08/expt-19pt1). Data from 2013 to 2018,
for which the re-analysis is not available, were extracted from the model forecast dataset
(accessed 19 September 2020, from https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/navoceano-hycom-glb). Sea surface temperature, salinity, and water res-
idence time (eastward and northward directed) were extracted from 32 sites along the
Florida coastline (blue polygons in Figure 3A) and 13 sites along the Texas coastline (blue
polygons in Figure 3B). The values were calculated by averaging the model data in the
sites. The areas were chosen to cover the zones where FP-affected turtle data were col-
lected [14,20,50,51] and correspond to the ~50 km seaward prolongation of the considered
watersheds. We chose 50 km to enclose the possible foraging area of the turtles in the
seaward direction. Although aware of the generally restricted home ranges of green turtles,
we operated the decision of including a wider extension inclusive of some of the largest
ranges recorded for the species. Foraging home ranges as large as 39 km2 (3908 ha) have
been recorded for green turtles as well as utilization of shallow coastal areas within 50 km
offshore [55,56]. More research indicated centroid locations of core green turtle use area
sometimes between 20–30 km from the shore in Florida waters [57]. Hence, we accounted
for the chance that, even though mostly captured nearshore, turtles might have still been
subjected to environmental conditions further offshore. Moreover, some of the original
datasets also include some data points found further offshore [20]. Our estimate of 50 km
was dictated by attempting to ensure to include all possible findings but also movements
of green turtles within timeframes as long as the ones used for the analysis. Sea surface
temperature and salinity were extracted only from the upper four vertical layers of the
HYCOM model, which describe the upper 6 m of the water column, where green turtles
have been observed to preferentially stay, avoiding the deeper waters [11]. Water flow
velocity values were extracted from all the available layers. For shallow regions, less than
four layers are available. Water velocity values were used to calculate the average residence
time of the water column by dividing the volume of each cell by the integrated outflow of
water. The latter was computed from 5-day mean water velocities at the boundaries [58].
As shown in Gray et al. 2019, the residence time depends on the extension of the area
where it is calculated [59]. Note that, to be able to compare residence time between different
areas, residence time was computed using the grid cells of the same size, i.e., the cells
of the HYCOM model, and then averaged over the ~50 km seaward prolongation of the
considered watersheds (blue polygons in Figure 3A,B). Finally, the annually averaged water
temperature, salinity, and residence time values were calculated to be compared with the
available annual FP prevalence in green turtles in the study periods and areas, as reported

https://www.hycom.org/data/glbu0pt08/expt-19pt1
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/navoceano-hycom-glb
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/navoceano-hycom-glb
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in Section 2.2. Water temperature, salinity, and residence time are reported as predictor
variables in Table 1.
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Table 1. Water quality and hydrodynamics predictor variables contained in the table were used in the
linear regression analysis to find a relationship with the FP prevalence values. The columns contain,
in order, the name, the source, and the unit of measurement (U.M.) of the predictors.

Predictor Variables Source U.M.

Sea surface water temperature HYCOM [◦C]
Sea surface water salinity HYCOM [ppt]

Water current based residence time HYCOM [days]
Karenia brevis concentration FWC-FWRI [cells I−1]

Red Tide occurrence FWC-FWRI [days]
Watershed population density US Census Bureau [individuals km−2]

River discharge USGS [m3·s−1]
Water pH USGS [–]

Ammonia (NH3 + NH4
+) USGS [mg L−1]

Chlorophyll USGS [mg L−1]
Nitrite (NO2) USGS [mg L−1]
Nitrate (NO3) USGS [mg L−1]

Organic nitrogen USGS [mg L−1]
Total nitrogen (nitrate + nitrite +

ammonia + organic nitrogen) USGS [mg L−1]

Phosphorus USGS [mg L−1]
Orthophosphate (PO4) USGS [mg L−1]

Organic Carbon USGS [mg L−1]
Suspended Solids USGS [mg L−1]

2.1.3. Demographic Data

The population density (individuals per square kilometer) was calculated for the
major watersheds we identified in Florida and Texas (orange polygons in Figure 3A,B)
by dividing the total population of these watersheds by their surface area. Population
density is reported as a predictor variable in Table 1. The major watersheds were identified
by aggregating the watersheds in the study areas, extracted from the USA Watershed
Boundary Dataset (accessed 22 February 2022, from https://landscape1.arcgis.com/arcgis/
rest/services/USA_WatershedBoundaryDataset/MapServer), in 32 and 13 groups that
contain the afferent area of the most important rivers that reach the Florida and Texas
coastlines, respectively. Human population data were extracted from the Office of Economic
and Demographic Research dataset (accessed 28 February 2022, from http://edr.state.fl.us/
Content/population-demographics/data/index-floridaproducts.cfm) for Florida and from
the US Census Bureau dataset (https://www.census.gov/) for Texas. Both the data sources
provide the annual population estimates per county. The extracted temporal range was
chosen to overlap the temporal range of the FP prevalence datasets on our study locations.
Thus, ranges are from 1980 to 1998 for Florida stranded data (Figure 1, first row), from
1983 to 2006 for Florida in-water data (Figure 1, second row), and from 2010 to 2018 for
Texas (Figure 1, third row). For each year, the total population (Pi) residing in the major
watersheds, and its density (Di), were calculated from the population estimates per county,
as follows:

Pi =
jN

∑
j=1

Aj,i

Aj
Pj, (1)

Di =
Pi
Ai

, (2)

where jN is the number of counties (indicated as j), in which the area is partially or totally
contained in the considered watershed (indicated as i), Aj,i is the area of the jth county, contained
in the ith watershed, and Pj and Aj are the total population and area of the jth county.

https://landscape1.arcgis.com/arcgis/rest/services/USA_WatershedBoundaryDataset/MapServer
https://landscape1.arcgis.com/arcgis/rest/services/USA_WatershedBoundaryDataset/MapServer
http://edr.state.fl.us/Content/population-demographics/data/index-floridaproducts.cfm
http://edr.state.fl.us/Content/population-demographics/data/index-floridaproducts.cfm
https://www.census.gov/
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2.1.4. Riverine Water Quality Data

River discharge and water quality data were extracted from the United States Geologi-
cal Survey (USGS) stations contained in the study areas in Florida and Texas (green dots in
Figure 3C,D, accessed 26 February 2022, from https://maps.waterdata.usgs.gov/mapper/).
Water quality data collected were river water discharge in m3·s−1, pH, and nutrient con-
centration (i.e., ammonia, chlorophyll, nitrite, nitrate, organic carbon, organic nitrogen,
phosphate, orthophosphate, and phosphorus) in mg L−1. These predictor variables are
reported in Table 1. Data were extracted for the years wherein FP prevalence datasets were
available in the study locations in Florida and Texas. The USGS dataset presents temporal
gaps, which vary depending on the location and the purpose of the stations. In particular,
the data collected in Florida cover ~20% of the analyzed periods. This means that data are
available for 20% of the corresponding years of FP data in Florida. The coverage value
grows to ~30% for Texas. In addition, none of the USGS stations are located in watersheds
1, 2, 5, and 14, in Florida, and in watershed 2, in Texas. Once extracted, data were filtered
to remove outliers, i.e., data whose distance from the mean is larger than ±5 times the
standard deviation. Data were then divided between the watersheds indicated in Figure 3
(orange polygons). Once filtered and assigned to the watersheds, the mean annual values
of the water quality parameters were compared with the yearly FP prevalence in the study
periods and areas, as reported in Section 2.2.

2.1.5. Red Tide Data

We accessed K. brevis abundance from the Florida Fish and Wildlife Conservation
Commission–Fish and Wildlife Research Institute (FWC-FWRI) HAB Monitoring database
(accessed 10 May 2020, from http://habsos.noaa.gov/), which contains the K. brevis 1954
to 2020 abundance data in Florida. To our knowledge, a dataset for Texas is not available.
For Florida, data were collected by various private and public organizations using diverse
sampling approaches, and therefore the temporal and spatial distribution of the data
is neither systematic nor uniform. Indeed, the dataset has multiple gaps between 1954
and 2020 and does not homogeneously cover the Florida coastline (Figure 4). Moreover,
many areas were only sporadically sampled, preferentially during large red tide blooms
and depending on the availability of funding and projects, which is a limitation of this
study. However, the highest density of available data was found along the western coast
of Florida, between Tampa Bay and Gullivan Bay (Figure 4). This area also coincides
with the maximum abundance of sea turtle data [20]. The annually averaged K. brevis
concentration (cells L−1) and red tide occurrence (days) was calculated in the 32 locations
along the Florida coastline (blue polygons in Figure 3A) and compared with the local data
on FP-affected turtles. These predictor variables are reported in Table 1.

2.2. Statistical Analyses
2.2.1. Spatial and Timeframes Selected for Analyses

As shown in Figure 1, this retrospective study often found data categories not matching
in their spatiotemporal frames, due to the separate and different origins of each dataset. For
the spatial frames used for the statistical models and analyses, the Florida Atlantic coast
stranded dataset comprised 12 areas (polygons 1–12 in Figure 3A), and the Florida Gulf
coast stranded dataset comprised 20 areas (polygons 13–32 in Figure 3A). This division was
made consistently to the FP prevalence data classification by counties from the original
dataset [20]. The Florida in-water dataset comprised 3 locations across 2 areas (polygons
5 and 7 in Figure 3A) [50,51]. The Texas dataset comprised 9 areas (polygons 1–9 in
Figure 3B), while the original dataset reported FP prevalence divided across 3 main areas
(North, Central, and South coast) [14]. For the purpose of our analysis, we mapped
the spatial overlap between the original publication areas and the polygons, grouping
them in the following way: polygons 1–3 for “North”, polygons 4–6 for “Central”, and
polygons 7–9 for “South” (Figure 3B). For the timeframes used for the statistical models
and analyses, demographic data were available throughout the whole timeframe of FP

https://maps.waterdata.usgs.gov/mapper/
http://habsos.noaa.gov/
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prevalence data availability in each dataset (Florida stranded—both Atlantic and Gulf
coast, Florida in-water, and Texas). However, the analysis was run starting from the earliest
matching timeframe after the demographic dataset, as running models from the start of the
demographic timeframe would have included too many NAs (not available), confounding
the factors and compromising statistical solidity. Thus, analysis for the Florida stranded
dataset (both Atlantic and Gulf coast) was run from 1990–1998, analysis for the Florida
in-water dataset was run from 1995–2006, and analysis for the Texas dataset was run from
2010–2018 (Figure 1).
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Figure 4. Heat maps representing the number of observations (A), and the average concentration in
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Fish and Wildlife Research Institute) in the time frame where the environmental data were available
(from 1987 through 1998, see Figure 1). The heat maps are represented using a regular grid. The
dimension of the cells constituting the grid is 10 km × 10 km.

2.2.2. Analysis of Coastal and Demographic Datasets

Multiple linear regressions were run separately for the Florida Atlantic coast stranded
dataset, Florida Gulf coast stranded dataset, Florida in-water dataset, and Texas dataset
with FP prevalence as the response variable and four environmental and demographic
factors (i.e., seawater temperature, salinity, residence time, and human population density)
set as predictor variables.

2.2.3. Analysis of Riverine Water Quality Dataset

Separate linear regression analyses were run to identify relationships between FP preva-
lence and the riverine water quality parameters reported in Table 1, collected in Florida
and Texas. For the purpose of this particular regression model, stranded (Atlantic and Gulf
coast) data were combined because of the paucity of the predictor variables sample size if
separated (i.e., <5 data points), and the consequent low statistical robustness. Simple linear
regressions were run using FP prevalence from the Florida stranded dataset and the Texas
dataset, respectively, as response variables and with water pH, river discharge, suspended
solids, and nine nutrients (i.e., ammonia, chlorophyll, nitrite, nitrate, organic carbon, organic
nitrogen, phosphate, orthophosphate, and phosphorus) as predictor variables. No riverine
water quality data were available for comparison with the Florida in-water dataset.
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2.2.4. Analysis of Red Tide Dataset

The red tide data are reported as the concentration (cells L−1) and occurrence (days)
of Karenia brevis along the Florida coastline. Red tide data were not available for Texas,
nor the Florida in-water dataset, and too small a sample size (i.e., <10 data points) for
the Florida Atlantic coast stranded dataset. A multiple linear regression was run for the
Florida Gulf coast stranded dataset using FP prevalence as the response variable and red
tide concentration and occurrence as predictor variables.

For regression models analyzed between variables, Beta-estimates (β) and p-values (p)
are reported. Following all regression models, Pearson’s correlation coefficients (r) were
calculated between the response variable and each predictor variable separately for each of
the four datasets, to assess the strength of each relationship. All linear regression models
and Pearson correlation analyses were run via the statistical software RStudio (RStudio
Team 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. Retrieved
from http://www.rstudio.com/).

3. Results
3.1. Multiple Linear Regression of FP Prevalence and Environmental and Demographic Factors

Florida Atlantic coast stranded data, Florida Gulf coast stranded data, Florida in-
water data, and Texas data of FP prevalence were analyzed separately. Stranded and
in-water data were not mixed when possible, as not considered comparable, given that
these groups are likely biased in representing different levels of FP incidence [20]. For
the Florida Atlantic coast stranded dataset, Florida Gulf coast stranded dataset, Florida
in-water dataset, and Texas dataset, separate multiple linear regressions were run to test
whether seawater temperature, salinity, residence time, and human population density
significantly predicted FP prevalence. For the Florida Atlantic coast stranded dataset, it was
found that salinity (r = 0.39, β < 0.01, p = 0.01) and human population density (r = −0.16,
β < −0.01, p < 0.01) significantly predicted FP prevalence (Figure 5B,D), while seawater
temperature (r = 0.04, β < 0.01, p = 0.08) and residence time (r = −0.12, β < 0.01, p = 0.3) did
not significantly predict FP prevalence (Figure 5A,C). For the Florida Gulf coast dataset,
it was found that seawater temperature (r = −0.24, β = −0.03, p = 0.4), salinity (r = −0.25,
β = −0.08, p = 0.2), residence time (r = 0.03, β = −0.01, p = 0.1), and human population
density (r = 0.31, β < −0.01, p = 0.1) did not significantly predict FP prevalence (Figure 6).
For the Florida in-water dataset, it was found that seawater temperature significantly
predicted FP prevalence (r = 0.56, β = 0.19, p = 0.02) (Figure 7A), while salinity (r = −0.08,
β = 0.19, p = 0.6), residence time (r = −0.3, β = 0.02, p = 0.5), and human population density
(r = −0.46, β < −0.01, p = 0.1) did not significantly predict FP prevalence (Figure 7B–D).
For the Texas dataset, it was found that salinity significantly predicted FP prevalence
(r = −0.5, β = −0.11, p < 0.01) (Figure 8B), while seawater temperature (r = 0.07, β = 0.03,
p = 0.4), residence time (r = 0.32, β = −0.01, p = 0.07), and human population density
(r = −0.25, β < 0.01, p = 0.4) did not significantly predict FP prevalence (Figure 8A,C,D).

3.2. Multiple Linear Regression Analysis of FP Prevalence and Riverine Water Quality

Separate simple linear regressions were run to test if the analyzed seawater and
riverine predictors (Table 1) significantly predicted FP prevalence in the Florida stranded
dataset. For this analysis, FP stranded data from the Atlantic and Gulf coast were combined,
as the availability of the predictor variables would be too small for statistical robustness in
separate models (i.e., <5 data points). It was found that none of the riverine and seawater
predictors significantly predicted FP prevalence in the Florida stranded dataset. Separate
simple linear regressions were run to test if the analyzed seawater and riverine predictors
(Table 1) significantly predicted FP prevalence in the Texas dataset. It was found that pH,
ammonia, chlorophyll, nitrite, nitrate, organic nitrogen, phosphate, orthophosphate, and
suspended solids did not significantly predict FP prevalence, while river water discharge
(r = 0.38, β < 0.01, p = 0.04), organic carbon (r = 0.81, β = 0.06, p < 0.01) and phosphorus

http://www.rstudio.com/
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(r = 0.46, β = 0.21, p = 0.02) significantly predicted FP prevalence in the Texas dataset
(Figure 9A–C).
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Figure 5. Florida Atlantic coast stranded dataset FP prevalence and environmental and demographic
variables. Scatterplots with fitted regression lines representing the logistic regression output from
the response variables versus predictor variables in the Florida Atlantic coast stranded dataset.
The subplots show FP prevalence ratio on the y-axis versus sea surface temperature (A), salinity
(B), residence time (C), and human population density (D) on the x-axis. Pearson correlation (r),
beta-coefficient (β), and p-value (p) are reported for each predictor variable on the top right of the
respective plot. Significant relationships are highlighted in red.
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Figure 6. Florida Gulf coast stranded dataset FP prevalence and environmental and demographic
variables. Scatterplots with fitted regression lines representing the logistic regression output from the
response variables versus predictor variables in the Florida Gulf coast stranded dataset. The subplots
show FP prevalence ratio on the y-axis versus sea surface temperature (A), salinity (B), residence time
(C), and human population density (D) on the x-axis. Pearson correlation (r), beta-coefficient (β), and
p-value (p) are reported for each predictor variable on the top right of the respective plot.
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Figure 7. Florida in-water dataset FP prevalence and environmental and demographic variables.
Scatterplots with fitted regression lines representing the logistic regression output from the response
variables versus predictor variables in the Florida in-water dataset. The subplots show FP prevalence
ratio on the y-axis versus sea surface temperature (A), salinity (B), residence time (C), and human
population density (D) on the x-axis. Pearson correlation (r), beta-coefficient (β), and p-value (p) are
reported for each predictor variable on the top right of the respective plot. Significant relationships
are highlighted in red.
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Figure 8. Texas FP prevalence and environmental and demographic variables. Scatterplots with
fitted regression lines representing the logistic regression output from the response variables versus
predictor variables in the Texas dataset. Subplots show FP prevalence ratio on the y-axis versus sea
surface temperature (A), salinity (B), residence time (C), and population density (D) on the x-axis.
Pearson correlation (r), beta-coefficient (β), and p-value (p) are reported for each predictor variable on
the top right of the respective plot. Significant relationships are highlighted in red.
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p = 0.9) and occurrence (r = 0.09, β < 0.01, p = 0.8) did not significantly predict FP prevalence 
in the Florida Gulf coast stranded dataset (Figure 10). 

Figure 9. Texas dataset FP prevalence and discharge and nutrients variables. Scatterplots with
fitted regression lines representing the logistic regression output from the response variables versus
predictor variables in the Texas dataset: FP prevalence ratio on the y-axis versus discharge (A),
organic carbon (B), and phosphorus (C). Pearson correlation (r), beta-coefficient (β), and p-value (p)
are reported for each predictor variable on the top right of the respective plot. Significant relationships
are highlighted in red.

3.3. Multiple Linear Regression of FP Prevalence and Karenia brevis Algal Blooms in Florida

Due to limited sample sizes, K. brevis data were only available for comparison with the
Florida Gulf coast stranded dataset. Multiple linear regression was used to test if K. brevis
concentration and occurrence significantly predicted FP prevalence. Although a positive
trend can be observed, it was found that K. brevis concentration (r = 0.08, β < 0.01, p = 0.9)
and occurrence (r = 0.09, β < 0.01, p = 0.8) did not significantly predict FP prevalence in the
Florida Gulf coast stranded dataset (Figure 10).
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Figure 10. Florida Gulf coast stranded dataset FP prevalence and red tide variables. Scatterplots
with fitted regression lines representing the logistic regression output from the response variables
versus predictor variables in the Florida Gulf coast stranded dataset: FP prevalence ratio on the y-axis
versus red tide concentration (A) and red tide occurrence (B) on the x-axis. Pearson correlation (r),
beta-coefficient (β), and p-value (p) are reported for each predictor variable on the top right of the
respective plot.

4. Discussion

This is an extensive integrative study aiming to understand the relationship between
FP prevalence and a variety of environmental variables. Exploratory research on large pre-
existing datasets often encounters limitations on data availability and quality and sample
size, and this has been our experience as well. Despite the consensus and assumptions in
the literature, not much is known about the specific role of selected environmental drivers
of FP. Hence, we deem our results to be instrumental to develop a baseline of knowledge
to direct future research avenues. Notwithstanding the aforementioned limitations, we
demonstrate that sea surface temperature was a significant predictor of FP prevalence from
in-water FP data from East-Central Florida (r = 0.56, p = 0.02) (Figure 7A). Variation in sea
temperature has widely been indicated to affect FP prevalence in previous studies [20,23,60].
Thermal stress from temperature extremes can influence immune competence, triggering
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FP infection, proliferation, and viral shedding [19,21,61]. Our findings within our East-
Central Florida in-water FP dataset support the hypothesis that seawater temperature
may play a significant role in influencing FP prevalence in green turtle populations. We
observed no clear pattern of FP prevalence increase over time in our Florida in-water
dataset, nor a noticeable temporal increase for temperature values. This suggests that the
observed relationship likely originates from a consistent pattern of period/areas of high FP
prevalence in our dataset coinciding with high temperatures and vice versa, rather than a
coincidental increment of variables over time. Temperatures in our Florida in-water dataset
ranged from 24.7 ◦C to 27.3 ◦C, with an FP prevalence of 50–60% observed mostly around
26 ◦C. Studies witnessing higher water temperature effects on tumor growth of hospitalized
sea turtles had a similar temperature range in rehabilitation tanks (23 ◦C to 27 ◦C) [60].
Further studies in rehab facilities observed the same pattern of a higher likelihood of
green turtles’ FP development during the warmer months [22]. This pattern could be
attributable to pathogenic behavior, often showing a trend of higher growth rate and
reproductive output at higher temperatures [25]. In 1995, Herbst et al. observed that higher
water temperatures experimentally promoted FP tumor growth, while lower temperatures
delayed their onset [8,19]. This suggests that temperature-dependent exacerbation could
be the case for ChHV5 behavior, with tumor proliferation occurring at higher temperatures.
Another explanation behind the FP-temperature correlation could be attributed to green
turtle metabolism across different seasons. A temperature-induced metabolic decrease has
been documented in green turtles, with effects on growth rates and a pattern of higher
tissue metabolic rates at higher temperatures [62,63]. A slower metabolism in the winter
months might therefore contribute to less metabolic energy devoted to tumor growth
rate, hence lower presence of tumors overall. Our results indicate that monitoring sea
temperature and its correlation with FP may be of high importance, especially considering
the rapidly progressing ocean temperature increase [63].

In addition, our study indicates a weak but significant (r = −0.16, p < 0.01) negative re-
lationship between FP prevalence in the Florida Atlantic coast stranded dataset and human
population density. This was unexpected, as anthropogenic disturbance was previously
indicated as a potential co-driver of FP occurrence [4]. This result can be explained by the
structure of our dataset. The adjacent Indian River and St Lucie counties are considered
extreme data points, reporting our dataset’s highest FP prevalence (>50%), and lowest
human population density (<90 individuals/km2). The area encompassed by these two
counties has been reporting consistently high FP rates [64,65] and, although not highly
populated, its coastal waters are subjected to elevated quantities of pollutants and resi-
dential runoff [4,16,66]. The dataset is then driven towards the opposite direction when
representing the Miami-Dade area, which registers a population density approximately
twice the rest of Florida. This pattern can clearly be observed in Figure 5D. A similar mod-
erate correlation (although non-significant) is shown for population density in the Florida
in-water data (r = −0.46), where the spatially restricted dataset might have contributed to
this type of outcome (Figure 7D). Thus, watershed population density might be too indirect
an indicator of actual anthropogenic disturbance. More direct indicators, such as pollution
discharge from highly urbanized coastlines might yield more interesting and significant
results, as supported by our study (Figure 9). We also found salinity levels to be a significant
predictor of FP prevalence both in the Florida Atlantic coast stranded (r = 0.39, p = 0.01)
and Texas (r = −0.5, p < 0.01) dataset, following opposite patterns (Figures 5B and 8B). For
our Florida Atlantic coast stranded dataset, the salinity range available for the analysis
was extremely narrow (35.9–36.1 ppt) and the correlation coefficient weaker compared to
the Texas model, hence the significance from the former regression might be less robust.
Moreover, according to the riverine data, the Atlantic coast receives generally less quantity
of freshwater inputs compared to the Texas coast, which is subjected to the discharge of
multiple large riverine systems. We will, however, report that extreme salinity fluctuations
have been observed to cause stress and immune system suppression in sea turtles [4,19,60].
Salinity levels have previously been observed to influence herpesvirus infection in other
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marine organisms, such as oysters [67,68]. A possible link between salinity and FP however
has not been reported to the best of our knowledge and should be investigated further
as a co-driver of clinical disease. Although the potentially disruptive effects of salinity
fluctuations are known, there is no previous evidence of FP having a significant correla-
tion with salinity levels. This is both interesting and counterintuitive as turtle physiology
indicates that sea turtles are excellent osmoregulators, and slight fluctuations in salinity
levels are unlikely to have serious disruptive consequences [69,70] and there are even
records of green turtles found in freshwater environments [71–73]. However, salinity and
river discharge are highly correlated, especially in the proximity of the river mouth, and
lower salinity is inherently connected to increased freshwater runoff discharged in coastal
marine waters [74,75]. Freshwater discharge in highly urbanized areas such as the Texas
coast is likely to transport high concentrations of nutrients and pollutants. The negative
relationship between FP prevalence in Texas and salinity might rather be a side effect, as it
is consistent with the significant positive correlation we found between FP prevalence and
river water discharge in our Texas dataset (Figure 9A).

For sea turtles, the negative effects of environmental contaminants from wastewater
were already discussed in 1995, as research indicated environmental pollutants greatly
impact turtle health [19,76]. Sea turtle populations living in heavily polluted coastal en-
vironments were repeatedly found to present elevated FP prevalence [15,22,28–31,50].
Research observed a substantially lower FP prevalence in open ocean sites compared to a
coastal lagoon (Indian River Lagoon) which is heavily degraded by urban development
and polluted from local drainage system inputs [4]. The Texas coastline, particularly the
southern area, is the intersection point of wind-driven currents moving southward and
northward, bringing pollutants and nutrients to this coastal area [77–79]. While the dis-
charge range in Florida spans between 0 and 10 m3·s−1, the range for Texas was much
higher with an average discharge of about 12 and a maximum of 38 m3·s−1. We used the
novel approach of directly collecting hydrological data on river discharge and correlating
it with FP prevalence along the Texas coastline (Figure 9A), thereby supporting the main-
stream hypothesis in the FP literature on environmental triggers for the clinical disease.
River discharge from urbanized areas has the potential to greatly disrupt the immune
function of sea turtles, which are considered sentinels of marine ecosystem health [64].
The high nutrient and pollutant concentration that juvenile green turtles are subjected
to upon recruitment to neritic areas is likely to elevate stress levels, suppress immune
function, and possibly trigger the proliferation of ChHV5 and subsequent tumoral lesions.
High discharge events (>10 m3·s−1) in our dataset temporally and spatially correspond
to an FP prevalence of >30% (maximum recorded being 37%), while discharge events of
<5 m3·s−1 to an FP prevalence of <10%. Along the Texas coast, the prevalence of FP has
been significantly increasing in the last decade [14] and our research suggests that high
river discharge from nearby watersheds could have played an important role. Organic
carbon concentrations in Texas are also significantly correlated with the prevalence of FP
disease (Figure 9B). Elevated concentrations of organic carbon sediments have previously
been found to spatially overlap with areas of high FP prevalence (70%), while areas of low
prevalence (20%) registered lower concentrations [80]. Our dataset has found a similar
pattern with two main clusters, <5 mg I−1 and >7 mg I−1 corresponding respectively to
patterns of low (>10%) and high (20 to 35%) FP prevalence (Figure 9B). Organic carbon
stocks in the coastal environment are largely absorbed and trapped in seagrass meadows
(Thalassia testudinum), the main diet of green turtles [81,82]. This makes them generally
vulnerable to potential uptake of the sediment [80,83]. Organic carbon is generally good
for ecosystems and a primary food source in marine food webs. However, its elevated
sequestration could be indicative of ocean acidification (high CO2), which is characteristic
of coastal areas [84], such as the Texas coast here analyzed [80]. Although our exploratory
study represents a small fraction of the global FP burden, this finding is novel and of
potentially high interest. If confirmed by further research, the role of carbon sediments in
FP warrants further examination since ocean acidification is expected to increase in the
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future [84]. The significant link between FP prevalence and phosphorus concentration
(Figure 9C) can also yield interesting questions. In 2008, the Texas coast experienced a
dramatic event of harmful algal blooms, mainly composed of Procrocentrum spp. toxic
dinoflagellate [85,86]. Procrocentrum spp. has been correlated to FP as it plays a role in the
green turtle diet and naturally releases a known tumor promoter called okadaic acid, which
depends strongly on environmental concentrations of phosphorus for production [26,87].
High phosphorus concentrations in Texas waters could stimulate okadaic acid produc-
tion from dinoflagellates, which might in turn promote FP in local green turtle populations.
Moreover, previous studies have found this nutrient to vary in blood chemistry values of
green turtles at different stages of FP [88]. Although speculative and not currently under
investigation, this hypothesis could indicate one possible role of environmental phosphorus
on FP local dynamics. FP prevalence has significantly increased in Texas over the analyzed
timeframe (2010–2018), as also reported in the original dataset publication [14]. Over that
same period, the predictor factors resulting significantly impactful (namely salinity, discharge,
organic carbon, and phosphorus) have not shown such a clear pattern of temporal increase,
suggesting again that such variables were likely environmental co-drivers to FP prevalence in
the sites and years here under analysis. For the remaining data, we believe that our results
lacked statistical significance mainly due to limitations in our dataset and sample size (see
Section 2.1.4). Our results indicate that future research could benefit from analyzing the impact
of water quality on FP prevalence variation in green turtle populations.

Residence time is an incredibly valuable environmental avenue to look at when as-
sessing FP infection risk in coastal green turtle populations. A higher residence time is an
indicator of seawater stagnation, that favors the persistence of infectivity in water [48]. If
currents within a water body are weak for several days, viral particles might accumulate
and increase the infection risk for marine organisms dwelling in that area [49]. In addi-
tion to higher viral presence, prolonged stagnation in nearshore habitats promotes the
accumulation of pollutants and nutrients from nearby urban areas, which lowers water
quality [4,89]. Observation of higher FP prevalence in lower wave energy compared to
more open areas has previously been reported [4,20]. Our retrospective approach found
no significant relationships between water residence time and FP prevalence (Figure 5C,
Figure 6C, Figure 7C, and Figure 8C) but, as the literature suggests, this factor could out-
put interesting findings from more sophisticated research in the future, such as in-situ
measurements of current velocity in FP-affected areas. We have observed no significant
relationship between FP prevalence and red tide characteristics evaluated in our dataset.
This may also be related to the fact that there is a large gap in the red tide dataset, inclusive
of a large portion of NAs. Across our Florida Gulf coast stranded dataset, both red tide
concentration and occurrence show a non-significant positive trend with FP prevalence
(Figure 10). The lack of statistical significance was surprising, as the presence of macroalgal
blooms has previously been reported to have sublethal and threatening effects on green
turtle health, and the release of toxic components can be a source of stress and act as an
immune system suppressant [27,90]. However, there are certain timeframe issues when
analyzing red tide effects. It is highly difficult to estimate the period it takes for red tide
blooms to affect disease development. Moreover, red tides have previously been associated
with both seawater temperature [91] and pollution [92], as well as nitrogen-enriched water
and river discharge [93]. Hence, we highlight the presence of a challenge in determin-
ing whether K. brevis is a direct health-disruptive effect, or a representation of low water
quality, which in turn may facilitate FP development. We believe that our results lacked
statistical significance mainly due to limitations in our dataset and sample size linked to
the exploratory nature of our research.

5. Conclusions

Here, we present an extensively integrative retrospective study on FP environmental
etiology. We have gathered FP data from the literature on green turtle populations across
different coastlines of the southern United States and accessed large public hydrological
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and demographic datasets. We have then developed an original model to investigate the
association between FP occurrence and selected seawater, riverine, and human disturbance
parameters. Our findings support the hypothesis of environmental triggers behind FP and
report significant effects of environmental and demographic factors in certain regions of
Florida and Texas across the analyzed timeframes. Often datasets lacked acceptable sample
sizes and had to be excluded from our analysis, hence our findings necessitate further field
data. While recognizing the limitations of an exploratory retrospective study, it would
be fruitful for future FP field-based studies to be comparably integrative. Throughout
the FP data literature search, we have noticed a tendency not to report environmental
variables. There is a recurrent focus on individual factors (i.e., age, size, gender, tumor
score) in FP monitoring studies. Collecting and including environmental variables (i.e.,
water temperature, depth, salinity) could be crucial to expand future FP research, as
this disease is clearly driven by multiple factors. Interdisciplinary research is pivotal
when looking at complex conservation issues such as anthropogenic-exacerbated wildlife
infectious diseases. In our study, combining wildlife conservation and data mining and
expert analysis, we generated evidence that supports the need to integrate data on water
characteristics and anthropogenic pollution in future studies on FP occurrence in sea turtles.
Expanding research domains to include environmental drivers is key to understanding
how the rapidly changing coastal habitats are influencing FP epidemiology worldwide.
Such an approach will help in seeking novel solutions to mitigate future outbreaks of this
debilitating tumor disease in marine turtles.
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