Seasonal Variations in Voluntary Intake and ApparentDigestibility of Forages by Goats in the Chinese Altai Mountains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Grazing Itineraries
2.3. Determination of Biomass Offer and Quality
2.4. Determination of Feed Intake and Digestibility
2.5. Chemical Analysis of Biomass and Feces Samples
2.6. Statistical Analysis
3. Results
3.1. Length of Grazing Itineraries and Size of Pasture Areas
3.2. Quantity and Quality of Pasture Vegetation
3.3. Feed Intake and Fecal Excretion
4. Discussion
4.1. Characteristics of Animals’ Grazing Itineraries
4.2. Quantity and Quality of Pasture Vegetation on Offer
4.3. Feed Intake
4.4. Excretion of Organic Matter and Nutrients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, D. The importance of China’s nomads. Rangel. Arch. 2002, 24, 22–24. [Google Scholar]
- Hu, L.; Zhang, D. Engaging with land users: The first steps on a long road: Rangeland stewardship in Central Asia. In Rangeland Stewardship in Central Asia; Squires, V., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 333–356. [Google Scholar]
- Kreutzmann, H. Transformation of high altitude livestock-keeping in China’s mountainous western periphery. Etudes Mong. Sib. Cent. Tibet. 2013, 43–44. [Google Scholar] [CrossRef]
- Anonymous. Grassland Resource in China; Ministry of Agriculture, Animal Husbandry and Veterinary Division, China Science and Technology: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Bu, E.; Zhao, S.; He, F.; Zhu, X.; Xu, D.; Li, X.; Xin, X. Sustainable development strategy study on Xinjiang’s grassland animal husbandry. Chin. J. Agric. Res. Reg. Plan. 2014, 35, 120–127. [Google Scholar]
- Lv, C.; Schlecht, E.; Goenster-Jordan, S.; Buerkert, A.; Zhang, X.; Wesche, K. Vegetation responses to fixed stocking densities in highly variable montane pastures in the Chinese Altay. Rangel. Ecol. Manag. 2019, 72, 812–882. [Google Scholar] [CrossRef]
- Yami, A. Nutrition and feeding of sheep and goats. In Sheep and Goat Production Handbook for Ethiopia; Yami, A., Merkel, R.C., Eds.; Ethiopia Sheep and Goat Productivity Improvement Program (ESGPIP): Addis Ababa, Ethiopia, 2008; pp. 103–159. [Google Scholar]
- Li, Y.; Wang, Y.; Schwarze, R. Pathways to Sustainable Grassland Development in China: Findings of Three Case Studies; Discussion Paper 2/2014; Helmholtz-Zentrum für Umweltforschung: Leipzig, Germany, 2014. [Google Scholar]
- Jin, G.; Zhu, J. Case study 8: Northern Xinjiang. In Rangeland Degradation and Recovery in China’s Pastoral Lands; Squires, V., Lu, X., Lu, Q., Wang, T., Yang, Y., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 197–215. [Google Scholar]
- Rehemujiang, H.; Li Jie, G.; Tuoxunjiang, H.; Lin, Z.; Yimamu, A. Winter grazing on cotton stubble affects grazing behavior, feed intake, production, and health of small ruminants. Small Rumin. Res. 2022, 209, 106635. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Lan, B. Climate variability in the northern and southern Altai Mountains during the past 50 years. Sci. Rep. 2018, 8, 3238. [Google Scholar] [CrossRef] [PubMed]
- Oyunmunkh, B.; Weijers, S.; Loeffler, J.; Byambagerel, S.; Soninkhishig, N.; Buerkert, A.; Goenster-Jordan, S.; Simmer, C. Climate variations over the southern Altai Mountains and Dzungarian Basin region, central Asia, since 1580 CE. Int. J. Climatol. 2019, 39, 4543–4558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yang, Z.; Hao, X.; Yue, P. Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China. Clim. Dyn. 2019, 52, 3891–3903. [Google Scholar] [CrossRef]
- Pardini, A. Rangeland management. In Biodiversity Conservation and Habitat Management, Volume, I.; Gheradi, F., Corti, C., Gualtieri, M., Eds.; EOLSS Publishers: Oxford, UK, 2009; pp. 236–261. [Google Scholar]
- Dove, H. Balancing nutrient supply and nutrient requirements in grazing sheep. Small Rumin. Res. 2010, 92, 36–40. [Google Scholar] [CrossRef]
- Allison, C.D. Factors affecting forage intake by range ruminants: A review. J. Range Manag. 1985, 38, 305–311. [Google Scholar] [CrossRef]
- Kelman, W.M.; Bugalho, M.N.; Dove, H. Cuticular wax alkanes and alcohols used as markers to estimate diet composition of sheep (Ovis aries). Biochem. Syst. Ecol. 2003, 31, 919–927. [Google Scholar] [CrossRef]
- Von Wehrden, H.; Wesche, K.; Chuluunkhuyag, O.; Fust, P. Correlation of trends in cashmere production and declines of large wild mammals: Response to Berger et al. 2013. Conserv. Biol. 2015, 29, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Jordan, G.; Goenster, S.; Munkhnasan, T.; Shabier, A.; Buerkert, A.; Schlecht, E. Spatio-temporal patterns of herbage availability and livestock movements: A cross-border analysis in the Chinese-Mongolian Altay. Pastoralism 2016, 6, 12. [Google Scholar] [CrossRef]
- Turner, M.D.; Hiernaux, P.; Schlecht, E. The distribution of grazing pressure in relation to vegetation resources in semi-arid West Africa: The role of herding. Ecosystems 2005, 8, 668–681. [Google Scholar] [CrossRef]
- Tsvegemed, M.; Shabier, A.; Schlecht, E.; Jordan, G.; Wiehle, M. Evolution of rural livelihood strategies in a remote Sino-Mongolian border area: A cross-country analysis. Sustainabiliy 2018, 10, 1011. [Google Scholar] [CrossRef] [Green Version]
- Schlecht, E.; Dickhoefer, U.; Gumpertsberger, E.; Buerkert, A. Grazing itineraries and forage selection of goats in the Al Jabal al Akhdar Mountain range of northern Oman. J. Arid Environ. 2009, 73, 355–363. [Google Scholar] [CrossRef]
- Dickhoefer, U.; Mahgoub, O.; Schlecht, E. Adjusting homestead feeding to requirements and nutrient intake of grazing goats on semi-arid, subtropical highland pastures. Animal 2011, 5, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten. Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Band. III; Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Schiborra, A.; Gierus, M.; Wan, H.W.; Glindemann, T.; Wang, C.J.; Susenbeth, A.; Taube, F. Dietary selection of sheep grazing the semi-arid grasslands of Inner Mongolia, China, at different grazing intensities. J. Anim. Physiol. Anim. Nutr. 2010, 94, 446–454. [Google Scholar] [CrossRef]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Wang, C.J.; Tas, B.M.; Glindemann, T.; Rave, G.; Schmidt, L.; Weißbach, F.; Susenbeth, A. Fecal crude protein content as an estimate for the digestibility of forage in grazing sheep. Anim. Feed Sci. Technol. 2009, 149, 199–208. [Google Scholar] [CrossRef]
- Australian Agricultural Council. Feeding Standards for Australian Livestock: Ruminants; CSIRO Publishing: Victoria, Australia, 1990. [Google Scholar]
- International Business Machines Corporation. IBM SPSS Statistics for Windows, Version 22.0; International Business Machines Corporation: New York, NY, USA, 2013. [Google Scholar]
- Tsevegemed, M.; Norovsambuu, T.; Jordan, G.; Schlecht, E. Feed intake of small ruminants on spring and summer pastures in the Mongolian Altai Mountains. Sustainability 2019, 10, 5759. [Google Scholar] [CrossRef] [Green Version]
- Raynor, E.J.; Beyer, H.L.; Briggs, J.M.; Joern, A. Complex variation in habitat selection strategies among individuals driven by extrinsic factors. Ecol. Evol. 2017, 7, 1802–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, K.; Louhaichi, M. Land tenure, climate change and livestock mobility in Central and Southern Asian grasslands. In Grassland: A Global Resource Perspective; Gosh, P.K., Mahanta, S.K., Singh, J.B., Pathak, P.S., Eds.; International Grassland Congress: New Delhi, India, 2015; pp. 347–362. [Google Scholar]
- McAllister, R.R.J. Livestock mobility in arid and semiarid Australia: Escaping variability in space. Rangel. J. 2012, 34, 139–147. [Google Scholar] [CrossRef]
- Van Beest, F.M.; Mysterud, A.; Loe, L.E.; Milner, J.M. Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore. J. Anim. Ecol. 2010, 79, 910–922. [Google Scholar] [CrossRef]
- Valentine, M.E.; McRoberts, K.C.; Cherney, D.J. Effect of goat management practices on animal nutrition and the environment in Western Odisha, India. Cogent Food Agric. 2020, 6, 1. [Google Scholar] [CrossRef]
- Nording, C. Assessment and Modeling of Grazed Biomass in Jebel Saghro (Anti-Atlas), Morocco. Master’s Thesis, University of Münster, Münster, Germany, 2008. [Google Scholar]
- Jin, X.; Guo, S.; Yang, Z.; Yan, Y. Effect of drinking radius and grazing distance on the performance of goats in desert grassland. J. Inner Mong. Inst. Agric. Anim. Husband. 1998, 19, 13–19. [Google Scholar]
- International Center for Tropical Agriculture. Enhancing Forage Integration and Access for Smallholder Livestock Production; CIAT: Cali, Colombia, 2015; Available online: https://cgspace.cgiar.org/rest/bitstreams/51695/retrieve (accessed on 8 April 2022).
- Celaya, R.; Oliván, M.; Ferreira, L.; Martínez, A.; García, U.; Osoro, K. Comparison of grazing behaviour, dietary overlap and performance in non-lactating domestic ruminants grazing on marginal heathland areas. Livest. Sci. 2007, 106, 271–281. [Google Scholar] [CrossRef]
- Li, K.H.; Hu, Y.K.; Wang, X.; Fan, Y.G.; Wu-Maier, W.S. Relationships between aboveground biomass and environmental factors along an altitude gradient of alpine grassland. J. Appl. Ecol. 2007, 18, 2019–2024. [Google Scholar]
- Hu, Z.; Zhang, D. China’s pasture resources. In Transhumant Grazing Systems in Temperate Asia; Suttie, J.M., Reynolds, S.G., Eds.; FAO: Rome, Italy, 2003; pp. 81–133. [Google Scholar]
- Lugassi, R.; Chudnovsky, A.; Zaady, E.; Dvash, L.; Goldshleger, N. Estimating pasture quality of fresh vegetation based on spectral slope of mixed data of dry and fresh vegetation—Method development. Remote Sens. 2015, 7, 8045–8066. [Google Scholar] [CrossRef] [Green Version]
- Cline, H.J.; Neville, B.W.; Lardy, G.P.; Caton, J.S. Influence of advancing season on dietary composition, intake, site of digestion, and microbial efficiency in beef steers grazing a native range in western North Dakota. J. Anim. Sci. 2009, 87, 375–383. [Google Scholar] [CrossRef]
- Lin, L.; Dickhoefer, U.; Müller, K.; Susenbeth, A. Grazing behavior of sheep at different stocking rates in the Inner Mongolian steppe, China. Appl. Anim. Behav. Sci. 2011, 129, 36–42. [Google Scholar] [CrossRef]
- Van Soest, J.P. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Kumar, K.; Soni, A. Elemental ratio and their importance in feed and fodder. Int. J. Pure Appl. Biosci. 2014, 2, 154–160. [Google Scholar]
- Al-Asfoor, H.; Schlecht, E.; Sundrum, A.; Schiborra, A. Varying the dietary supply of C and N to manipulate the manure composition of water buffalo heifers in Oman. J. Agric. Rural Dev. Trop. Subtrop. 2013, 113, 125–136. [Google Scholar]
- Decruyenaere, V.; Buldgen, A.; Stilmant, D. Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnol. Agron. Soc. Environ. 2009, 13, 559–573. [Google Scholar]
- Barre, P.; Emile, J.C.; Betin, M.; Surault, F.; Ghesquière, M.; Hazard, L. Morphological characteristics of perennial ryegrass leaves that influence short-term intake in dairy cows. Agron. J. 2006, 98, 978–985. [Google Scholar] [CrossRef]
- Provenza, F.D. Foraging Behavior: Managing to Survive in a World of Change; Utah State University: Logan, UT, USA, 2005. [Google Scholar]
- Freschi, P.; Fascetti, S.; Riga, F.; Cosentino, C.; Rizzardini, G.; Musto, M. Diet composition of the Italian roe deer (Capreolus capreolus italicus) (Mammalia: Cervidae) from two protected areas. Europ. Zool. J. 2017, 84, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Dias-Silva, T.P.; Filho, A.L.A. Sheep and goat feeding behavior profile in grazing systems. Acta Scien. Anim. Sci. 2020, 43, 51265. [Google Scholar] [CrossRef]
- Schlecht, E.; Dickhoefer, U.; Predotova, M.; Buerkert, A. The importance of semi-arid natural mountain pastures for feed intake and recycling of nutrients by traditionally managed goats on the Arabian Peninsula. J. Arid Environ. 2011, 75, 1136–1146. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academic Press, National Research Council: Washington, DC, USA, 2007. [Google Scholar]
- Animut, G.; Goetsch, A.L.; Aiken, G.E.; Puchala, R.; Detweiler, G.; Krehbiel, C.R.; Merkel, R.C.; Sahlu, T.; Dawson, L.J.; Johnson, Z.B. Grazing behavior and energy expenditure by sheep and goats co-grazing grass/forb pastures at three stocking rates. Small Rumin. Res. 2005, 59, 191–201. [Google Scholar] [CrossRef]
- Zemmelink, G.; t’Mannetje, L. Value for animal production (VAP): A new criterion for tropical forage evaluation. Anim. Feed Sci. Technol. 2002, 96, 31–42. [Google Scholar] [CrossRef]
- Kozloski, G.V.; Oliveira, L.; Poli, C.H.E.C.; Azevedo, E.B.; David, D.B.; Ribeiro Filho, H.M.N.; Collet, S.G. Faecal nitrogen excretion as an approach to estimate forage intake of wethers. J. Anim. Physiol. Anim. Nutr. 2014, 98, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, E.; Susenbeth, A. Estimating the digestibility of Sahelian roughages from faecal crude protein concentration of cattle and small ruminants. J. Anim. Physiol. Anim. Nutr. 2006, 90, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Y. The influence of different stocking rates and grazing periods on the amount of feces and its relationship to DM intake and digestibility of grazing sheep. Acta Zoonutr. Sin. 1997, 9, 47–54. [Google Scholar]
- Peripolli, V.; Prates, E.R.; Barcellos, J.O.J.; Neto, J.B. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Anim. Feed Sci. Technol. 2011, 163, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Erasmus, T.; Penzhorn, B.L.; Fairall, N. Chemical composition of faeces as an index of veld quality. South Afric. J. Wildl. Res. 1978, 8, 19–24. [Google Scholar]
- Ingold, M.; Schmidt, S.; Dietz, H.; Joergensen, R.G.; Schlecht, E.; Buerkert, A. Tannins in goat diets modify manure turnover in a subtropical soil. Exp. Agric. 2017, 54, 655–669. [Google Scholar] [CrossRef]
- Schlecht, E.; Turner, M.D.; Hülsebusch, C.G.; Buerkert, A. Managing rangelands without herding? Insights from Africa and beyond. Front. Sustain. Food Syst. 2020, 4, 549954. [Google Scholar] [CrossRef]
Year | Season | n | Altitude | DM | Vegetation | Vegetation | Stone Cover * |
---|---|---|---|---|---|---|---|
(m a.s.l.) | (kg ha−1) | Height (cm) | Cover (%) | (%) | |||
2013 | Spring | 10 | 1506 b ± 1.4 | 2420 A ± 429.9 | 15 ± 10.5 | 56 A ± 14.8 | 6 B ± 15.6 |
Early summer | 6 | 2408 a ± 103.4 | 2219 A ± 358.0 | 14 ± 6.2 | 67 ± 20.4 | 0 | |
Late summer | 3 | 2275 B,a,b ± 4.2 | 2189 A ± 271.0 | 9 B ± 1.7 | 83 ± 14.4 | 7 ± 11.0 | |
2014 | Spring | 13 | 1502 b ± 19.4 | 1029 B ± 364.3 | 10 b ± 4.4 | 25 B,b ± 9.7 | 17 A,a ± 19.8 |
Early summer | 8 | 2419 a ± 81.8 | 1360 B ± 429.2 | 20 a ± 8.8 | 73 a ± 19.3 | 3 b ± 6.8 | |
Late summer | 8 | 2418 A,a ± 73.3 | 977 B ± 230.6 | 13 A,a,b ± 2.6 | 63 a ± 22.0 | 1 b ± 0.7 |
Year | Season | n | DM | OM | CP | NDF | ADF |
---|---|---|---|---|---|---|---|
(g kg−1 FM) | (g kg−1 DM) | ||||||
2013 | Spring | 10 | 522 a | 853 | 136 a | 495 B | 373 a |
Early summer | 6 | 401 b | 881 | 117 b | 479 | 327 A,b | |
Late summer | 3 | 413 a,b | 891 | 126 A,a,b | 488 | 309 b | |
SEM | 21.6 | 8.1 | 3.5 | 8.3 | 10.4 | ||
Effect of season | * | n.s. | * | n.s. | * | ||
2014 | Spring | 13 | 518 a | 858 b | 126 | 571 A,a | 388 a |
Early summer | 8 | 382 b | 905 a | 110 | 470 b | 285 B,b | |
Late summer | 8 | 465 a | 900 a | 114 B | 461 b | 292 b | |
SEM | 15.5 | 6.6 | 3.1 | 14.3 | 11.3 | ||
Effect of season | *** | ** | n.s. | *** | *** | ||
Effect of year | Spring | n.s. | n.s. | n.s. | ** | n.s. | |
Early summer | n.s. | n.s. | n.s. | n.s. | * | ||
Late summer | n.s. | n.s. | ** | n.s. | n.s. |
Year | Season | LW | OMD | DMI | OMI | CPI | NDFI | ADFI |
---|---|---|---|---|---|---|---|---|
(kg) | (g kg−1 DOM) | (g kg−0.75 LW) | ||||||
2013 | Spring | 59 | 698 b | 63 | 60 | 8.5 | 31 B | 23 |
Early summer | 62 | 722 B,a,b | 76 | 71 | 9.0 | 37 | 25 | |
Late summer | 66 | 723 a | 63 | 60 | 7.9 | 31 | 19 | |
SEM | 3.0 | 4.8 | 5.3 | 5.0 | 0.63 | 2.5 | 1.8 | |
Effect of season | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. | |
2014 | Spring | 60 | 704 b | 76 | 71 | 9.5 | 43 A | 29 a |
Early summer | 64 | 756 A,a | 73 | 68 | 8.0 | 34 | 21 b | |
Late summer | 52 | 718 b | 80 | 75 | 9.1 | 37 | 23 a,b | |
SEM | 3.1 | 6.5 | 3.3 | 3.1 | 0.40 | 1.9 | 1.4 | |
Effect of season | n.s. | *** | n.s. | n.s. | n.s. | n.s. | * | |
Effect of year | Spring | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. |
Early summer | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. | |
Late summer | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Year | Season | DM Excretion | OM | N | NDF | |
---|---|---|---|---|---|---|
(g d−1) | (g kg−0.75 LW) | (g kg−1 DM) | ||||
2013 | Spring | 451 | 21 | 834 | 27 b | 619 A,a |
Early summer | 493 | 23 | 849 | 30 B,a | 546 A,a,b | |
Late summer | 429 | 20 | 837 | 30a | 537b | |
SEM | 26.7 | 1.6 | 5.1 | 0.6 | 10.5 | |
Effect of season | n.s. | n.s. | n.s. | * | ** | |
2014 | Spring | 527 a | 25 | 852 | 28 b | 548 B,a |
Early summer | 427 b | 19 | 858 | 36 A,a | 520 B,a,b | |
Late summer | 467 a,b | 25 | 853 | 30b | 506 b | |
SEM | 16.2 | 1.3 | 3.9 | 0.9 | 6.3 | |
Effect of season | * | n.s. | n.s. | *** | ** | |
Effect of year | Spring | n.s. | n.s. | n.s. | n.s. | *** |
Early summer | n.s. | n.s. | n.s. | *** | ** | |
Late summer | n.s. | n.s. | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabier, A.; Jordan, G.; Buerkert, A.; Zhang, X.; Schlecht, E. Seasonal Variations in Voluntary Intake and ApparentDigestibility of Forages by Goats in the Chinese Altai Mountains. Animals 2022, 12, 1652. https://doi.org/10.3390/ani12131652
Shabier A, Jordan G, Buerkert A, Zhang X, Schlecht E. Seasonal Variations in Voluntary Intake and ApparentDigestibility of Forages by Goats in the Chinese Altai Mountains. Animals. 2022; 12(13):1652. https://doi.org/10.3390/ani12131652
Chicago/Turabian StyleShabier, Alimu, Greta Jordan, Andreas Buerkert, Ximing Zhang, and Eva Schlecht. 2022. "Seasonal Variations in Voluntary Intake and ApparentDigestibility of Forages by Goats in the Chinese Altai Mountains" Animals 12, no. 13: 1652. https://doi.org/10.3390/ani12131652
APA StyleShabier, A., Jordan, G., Buerkert, A., Zhang, X., & Schlecht, E. (2022). Seasonal Variations in Voluntary Intake and ApparentDigestibility of Forages by Goats in the Chinese Altai Mountains. Animals, 12(13), 1652. https://doi.org/10.3390/ani12131652