Magnetic Resonance Imaging Used to Define the Optimum Needle Length in Pigs of Different Ages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Magnetic Resonance Imaging
2.3. Image Evaluation
2.4. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernau, M.; Kremer, P.V.; Kreuzer, L.S.; Emrich, D.; Pappenberger, E.; Cussler, K.; Hoffmann, A.; Leipig, M.; Hermanns, W.; Scholz, A.M. Assessment of Local Reaction to Vaccines in Live Piglets with Magnetic Resonance Imaging Compared to Histopathology. ALTEX-Altern. Anim. Exp. 2016, 33, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernau, M.; Große Liesner, B.; Schwanitz, S.; Kraus, A.-S.; Falkenau, A.; Leipig-Rudolph, M.; Hermanns, W.; Scholz, A.M. Vaccine safety testing using magnetic resonance imaging in suckling pigs. Vaccine 2018, 36, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Diness, V. Local Tissue Damage after Intramuscular Injections in Rabbits and Pigs: Quantitation by Determination of Creatine Kinase Activity at Injection Sites. Acta Pharmacol. Toxicol. 1985, 56, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, F.; Svendsen, O. Tissue damage and concentration at the injection site after intramuscular injection of chemotherapeutics and vehicles in pigs. Res. Vet. Sci. 1976, 20, 55–60. [Google Scholar] [CrossRef]
- Bernau, M.; Schwanitz, S.; Kreuzer, L.S.; Scholz, A.M. Detection of local tissue reactions after anti-GnRF injection in male pigs assessed using magnetic resonance imaging. Animals 2021, 11, 968. [Google Scholar] [CrossRef]
- Ohnesorge, B.; Pfalzgraf, S.; Rohn, K.; Neuhaus, J.; Deegen, E. Unverträglichkeitsreaktionen nach intramuskulärer Injektion beim Pferd–Auswertung einer Tierärztebefragung. Pferdeheilkunde 2006, 22, 337–346. [Google Scholar]
- Pyörälä, S.; Laurila, T.; Lehtonen, S.; Leppä, S.; Kaartinen, L. Local Tissue Damage in Cows after Intramuscular Administration of Preparations Containing Phenylbutazone, Flunixin, Ketoprofen and Metamizole. Acta Vet. Scand. 1999, 40, 145–150. [Google Scholar] [CrossRef]
- Diehl, K.-H.; Hull, R.; Morton, D.; Pfister, R.; Rabemampianina, Y.; Smith, D.; Vidal, J.-M.; van de Vorstenbosch, C. A Good Practice Guide to the Administration of Substances and Removal of Blood, Including Routes and Volumes. J. Appl. Toxicol. 2001, 21, 15–23. [Google Scholar] [CrossRef]
- Dülsner, A.; Hack, R.; Krüger, C.; Pils, M.; Scherer, K.; Schmelting, B.; Schmidt, M.; Weinert, H.; Jourdan, T. Empfehlung zur Substanzapplikation bei Versuchstieren. In Fachinformation aus dem Ausschuss für Tierschutzbeauftragte und dem Arbeitskreis 4 in der TVT; GV-SOLAS und Tierärztliche Vereinigung für Tierschutz e.V. 2017; German Veterinary Association for Animal Welfare: Munich, Germany, 2017; Available online: https://www.gv-solas.de/wp-content/uploads/2021/08/2017Fachinformation_Injektionsvolumina.pdf (accessed on 26 July 2022).
- Morton, D.B.; Jennings, M.; Buckwell, A.; Ewbank, R.; Godfrey, C.; Holgate, B.; Inglis, I.; James, R.; Page, C.; Sharman, I.; et al. Refining procedures for the administration of substances. Lab. Anim. 2001, 35, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Houpert, P.; Combrisson, H.; Nain, S.; Autefage, A.; Toutain, P.L. Intra- vs. intermuscular injections in swine. Vet. Res. 1992, 24, 278–285. [Google Scholar]
- Song, I.B.; Kim, T.W.; Lee, H.G.; Kim, M.S.; Hwang, Y.H.; Park, B.K.; Lim, J.H.; Yun, H.I. Influence of the Injection Site on the Pharmacokinetics of Cefquinome Following Intramuscular Injection in Piglets. J. Vet. Med. Sci. 2013, 75, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Heinritzi, K. Applikationstechniken. In Schweinekrankheiten; Heinritzi, K., Gindele, H.R., Reiner, G., Schnurrbusch, U., Eds.; Ulmer Verlag: Stuttgart, Germany, 2006; ISBN 978-3-8252-8325-4. [Google Scholar]
- Reiner, G. Krankes Schwein–Kranker Bestand; Ulmer Verlag: Stuttgart, Germany, 2015; ISBN 978-3-8252-8646-0. [Google Scholar]
- Baumgartner, W. Klinische Propädeutik der Inneren Krankheiten und Hautkrankheiten der Haus- und Heimtiere; Verlag Paul Parey: Berlin/Heidelberg, Germany, 2002; ISBN 3-8263-3472-2. [Google Scholar]
- Hill, R.L.; Wilmot, J.G.; Belluscio, B.A.; Cleary, K.; Lindisch, D.; Tucker, R.; Wilson, E.; Shukla, R.B. Comparison of drug delivery with autoinjector versus manual prefilled syringe and between three different autoinjector devices administered in pig thigh. Med. Devices Evid. Res. 2016, 9, 257–266. [Google Scholar]
- Juul, K.A.P.; Bengtsson, H.; Eyving, B.; Kildegaard, J.; Lav, S.; Poulsen, M.; Serup, J.; Stallknecht, B. Influence of hypodermic needle dimensions on subcutaneous injection delivery—A pig study of injection deposition evaluated by CT scanning, histology, and backflow. Ski. Res. Technol. 2012, 18, 447–455. [Google Scholar] [CrossRef]
- Arendt-Nielsen, L.; Egekvist, H.; Bjerring, P. Pain following controlled cutaneous insertion of needles with different diameters. Somatosens. Mot. Res. 2006, 23, 37–43. [Google Scholar] [CrossRef]
- McKay, M.; Compion, G.; Lytzen, L. A comparison of insulin injection needles on patients’ perceptions of pain, handling, and acceptability: A randomized, open-label, crossover study in subjects with diabetes. Diabetes Technol. Ther. 2009, 11, 195–201. [Google Scholar] [CrossRef]
- Thomsen, M.; Rasmussen, C.H.; Refsgaard, H.H.F.; Pedersen, K.-M.; Kirk, R.K.; Poulsen, M.; Feidenhans’l, R. Spatial distribution of soluble insulin in pig subcutaneous tissue: Effect of needle length, injection speed and injected volume. Eur. J. Pharm. Sci. 2015, 79, 96–101. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 26 July 2022).
- Tierschutzgesetz 2021. Tierschutzgesetz in der Fassung der Bekanntmachung vom 18. Mai 2006 (BGBl. I S. 1206, 1313), Das Zuletzt Durch Artikel 105 des Gesetzes vom 10. August 2021 (BGBl. I S. 3436) Geändert Worden ist (Animal Protection Law). Available online: https://www.gesetze-im-internet.de/tierschg/BJNR012770972.html (accessed on 26 July 2022).
- Tierschutz-Nutztierhaltungsverordnung 2021. Verordnung zum Schutz Landwirtschaftlicher Nutztiere und Anderer zur Erzeugung Tierischer Produkte Gehaltener Tier bei Ihrer Haltung. Tierschutz-Nutztierhaltungsverordnung in der Fassung der Bekanntmachung vom 22. August 2006 (BGBl. I S. 2043), die Zuletzt durch Artikel 1a der Verordnung vom 29. January 2021 (BGBl. I S. 146) Geändert Worden ist. (German Federal Ministry for Food, Agriculture and Consumer Protection). Available online: https://www.gesetze-im-internet.de/tierschnutztv/BJNR275800001.html (accessed on 26 July 2022).
- Arzneimittelgesetz 2022. Arzneimittelgesetz in der Fassung der Bekanntmachung vom 12. Dezember 2005 (BGBl. I S. 3394), das Zuletzt Durch Artikel 14 G vom 24.06.2022 (BGBl. I S. 959) Geändert Worden ist. (Medicinal Products Act). Available online: https://www.buzer.de/AMG.htm (accessed on 26 July 2022).
- Elicker, S. Untersuchungen zur Festlegung Tierschutzkonformer Injektionsvolumina bei Schweinen. Ph.D. Thesis, LMU München: Tierärztliche Fakultät, Munich, Germany, 2006. [Google Scholar] [CrossRef]
- Wu, J.; Cai, Y.; Cao, A.; Bi, Y.; Hu, X.; Yang, S. Recommendation of the best site based on the distribution pattern of extramuscular and intramuscular nerves for gluteal muscle injection. Int. J. Morphol. 2020, 38, 975–982. [Google Scholar] [CrossRef]
- Nakajima, Y.; Fujii, T.; Mukai, K.; Ishida, A.; Kato, M.; Takahashi, M.; Tsuda, M.; Hashiba, N.; Mori, N.; Yamanaka, A.; et al. Anatomically safe sites for intramuscular injections: A cross-sectional study on young adults and cadavers with a focus on the thigh. Hum. Vaccines Immunother. 2020, 16, 189–196. [Google Scholar] [CrossRef]
- Kirchmair, L.; Ströhle, M.; Löscher, W.N.; Kreutziger, J.; Voelckel, W.G.; Lirk, P. Neurophysiological effects of needle trauma and intraneural injection in a porcine model: A pilot study. Acta Anaesthesiol. Scand. 2016, 60, 393–399. [Google Scholar] [CrossRef]
- Scholz, A.M.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the detection of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- Baulain, U. Magnetic resonance imaging for the in vivo determination of body composition in animal science. Comput. Electron. Agric. 1997, 17, 189–203. [Google Scholar] [CrossRef]
- Baulain, U.; Henning, M. Untersuchungen zur Schlachtkörper- und Fleischqualität mit Hilfe von MR-Tomographie und MR-Spektroskopie. Arch. Anim. Breed. 2011, 44, 181–192. [Google Scholar] [CrossRef]
- Bernau, M.; Kremer, P.V.; Scholz, A.M. Vergleich der Körperzusammensetzung von Schweinen bei 80 kg und 100 kg Lebendmasse mittels Magnetresonanztomographie. Züchtungskunde 2013, 85, 430–439. [Google Scholar]
- Bernau, M.; Kremer, P.V.; Lauterbach, E.; Tholen, E.; Petersen, B.; Pappenberger, E.; Scholz, A.M. Evaluation of carcass composition of intact boars by using linear measurements from performance testing, dissection, dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI). Meat Sci. 2015, 104, 58–66. [Google Scholar] [CrossRef]
- Kušec, G.; Scholz, A.M.; Baulain, U.; Djurkin Kušec, I.; Bernau, M. Non-invasive techniques for exact phenotypic assessment of carcass composition and tissue growth in domestic animals. Acta Argric. Slov. Suppl. 2016, 5, 12–17. [Google Scholar]
- Scholz, A.M.; Mitchell, A.D.; Wang, P.C.; Song, H.; Yan, Z. Muscle metabolism and body composition of pigs with different ryanodine receptor genotypes studied by means of 31P nuclear magnetic resonance spectroscopy and 1H magnetic resonance imaging. Arch. Für Tierz. 1995, 38, 539–552. [Google Scholar]
- Schwanitz, S.; Bernau, M.; Kreuzer, L.S.; Kremer-Rücker, P.V.; Scholz, A.M. Körperzusammensetzung und Ebergeruch bei intakten Ebern, immunologisch und chirurgisch kastrierten Schweinen. Züchtungskunde 2017, 89, 413–433. [Google Scholar]
- Weigand, A.C.; Schweizer, H.; Knob, D.A.; Scholz, A.M. Phenotyping of the Visceral Adipose Tissue Using Dual Energy X-ray Absorptiometry (DXA) and Magnetic Resonance Imaging (MRI) in Pigs. Animals 2020, 10, 1165. [Google Scholar] [CrossRef]
- Reimers, C.D. Kapitel 8 Vergleich der bildgebenden Verfahren. In Atlas der Muskelkrankheiten; Pongratz, D.E., Reimers, C.D., Hahn, D., Nägele, M., Müller-Felber, W., Eds.; Urban & Schwarzenberger: Munich, Germany; Vienna, Austria; Baltimore, MD, USA, 1990; ISBN 3-541-13021-0. [Google Scholar]
Age Group [d] | Number of Observations | Mean Age [d] | Age Range from–to [d] | Mean Weight [kg] | Weight Range from–to [kg] |
---|---|---|---|---|---|
<29 | 62 | 21.6 ± 5.9 | 5–26 | 7.0 ± 2.0 | 3.5–11.5 |
29–70 | 307 | 50.3 ± 11.1 | 31–70 | 13.0 ± 4.1 | 6.0–31.5 |
71–117 | 219 | 94.2 ± 12.6 | 71–117 | 33.0 ± 7.9 | 12.5–54.5 |
>170 | 142 | 179.3 ± 7.1 | 171–195 | 87.9 ± 11.7 | 58–124 |
MRI Parameter | Age Group | ||
---|---|---|---|
Suckling Pigs <29 Days of Age | Weaned Pigs 29–70 Days of Age | Fattening Pigs >71 Days of Age | |
TR [msec] | 814 | 814 | 814 |
TE [msec] | 17 | 17 | 17 |
Pixel size | 1.30 × 0.70 | 1.67 × 0.90 | 2.54 × 1.37 |
FOV [mm] | 180 | 230 | 350 |
Matrix | 138 × 256 (54%) | 138 × 256 (54%) | 138 × 256 (54%) |
Number of slices | 22 | 22 | 22 |
Slice thickness [mm] | 4 | 4 | 5 |
Distance factor | 0.5 | 0.5 | 1.00 |
Examination time | 5 min 40 s | 5 min 40 s | 5 min 40 s |
Age Group [d] | n | MN_1 [mm] Mean ± SD | OI_1 [mm] Mean ± SD | MN_2 [mm] Mean ± SD | OI_2 [mm] Mean ± SD |
---|---|---|---|---|---|
<29 | 62 | 36.3 ± 4.5 | 12.5 ± 3.4 | 37.7 ± 4.5 | 13.7 ± 2.7 |
29–70 | 307 | 36.9 ± 4.7 | 14.7 ± 3.6 | 37.7 ± 4.4 | 14.2 ± 3.2 |
71–117 | 219 | 51.9 ± 6.5 | 22.2 ± 4.4 | 53.7 ± 6.7 | 20.9 ± 5.2 |
>170 | 142 | 74.3 ± 5.3 | 30.9 ± 5.4 | 77.6 ± 4.9 | 29.2 ± 7.3 |
Dependent Variable | Intercept | Slope | Independent Variable | R2 | RMSE [mm] |
---|---|---|---|---|---|
OI_1 | 10.0089 | +0.0932 +0.0569 | age [d] weight [kg] | 0.71 | 4.14 |
MN_1 | 29.3863 | +0.1014 +0.3173 | age [d] weight [kg] | 0.91 | 4.58 |
OI_2 | 10.3903 | +0.0774 +0.0611 | age [d] weight [kg] | 0.59 | 4.82 |
MN_2 | 30.0477 | +0.1007 +0.3483 | age [d] weight [kg] | 0.92 | 4.57 |
Dependent Variable | Age Group [d] | n | Intercept | Slope | Independent Variable | R2 | RMSE [mm] |
---|---|---|---|---|---|---|---|
OI_1 | <29 | 62 | 7.23607 | +0.75155 | weight [kg] | 0.20 | 3.05 |
OI_1 | 29–70 | 307 | 9.24606 | +0.41847 | weight [kg] | 0.23 | 3.21 |
OI_1 | 71–117 | 219 | 13.93949 | +0.25050 | weight [kg] | 0.20 | 3.96 |
OI_1 | >170 | 142 | - | ||||
OI_2 | <29 | 62 | - | ||||
OI_2 | 29–70 | 307 | 12.04712 | +0.16433 | weight [kg] | 0.05 | 3.13 |
OI_2 | 71–117 | 219 | 6.94691 | +0.14840 | age [d] | 0.13 | 4.82 |
OI_2 | >170 | 142 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernau, M.; Gerster, U.; Scholz, A.M. Magnetic Resonance Imaging Used to Define the Optimum Needle Length in Pigs of Different Ages. Animals 2022, 12, 1936. https://doi.org/10.3390/ani12151936
Bernau M, Gerster U, Scholz AM. Magnetic Resonance Imaging Used to Define the Optimum Needle Length in Pigs of Different Ages. Animals. 2022; 12(15):1936. https://doi.org/10.3390/ani12151936
Chicago/Turabian StyleBernau, Maren, Ulrike Gerster, and Armin Manfred Scholz. 2022. "Magnetic Resonance Imaging Used to Define the Optimum Needle Length in Pigs of Different Ages" Animals 12, no. 15: 1936. https://doi.org/10.3390/ani12151936
APA StyleBernau, M., Gerster, U., & Scholz, A. M. (2022). Magnetic Resonance Imaging Used to Define the Optimum Needle Length in Pigs of Different Ages. Animals, 12(15), 1936. https://doi.org/10.3390/ani12151936