Accuracy to Predict the Onset of Calving in Dairy Farms by Using Different Precision Livestock Farming Devices
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prediction of Calving by Evaluating the External Preparatory Signs for Calving in Dairy Cows
3. Prediction of Calving by Measuring Body Temperature in Dairy Cows
3.1. Vaginal Temperature (VT)
3.2. Ventral Tail Base Skin Temperature (TBST)
3.3. Ear Temperature
3.4. Reticulo-Rumen Temperature
4. Prediction of Calving by Evaluating the Behavioral Signs Using Different Sensors
4.1. Accuracy to Predict Calving by Evaluating the Behavioral Signs of Imminent Calving by Using a Single Sensor
4.2. Accuracy to Predict Calving by Evaluating the Behavioral Signs of Imminent Calving by Using a Combination of Sensors
5. Detection of the Expulsion of Sensors during Appearing Allantochorion at the Beginning of 2nd Stage of Labor in Dairy Cows
5.1. Vulval Magnetic Sensors
5.2. Intravaginal Sensors
6. Future Perspectives
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mee, J.F. Why do so many calves die on modern dairy farms and what can we do about calf welfare in the future? Animals 2013, 3, 1037–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.C.; Bellows, R.A. Some causes of neonatal and postnatal calf losses. J. Anim. Sci. 1967, 26, 941. [Google Scholar]
- Voelker, H.H. Calf mortality by breeds, sexes, breeding and years. J. Dairy Sci. 1967, 50, 993. [Google Scholar]
- Szenci, O.; Kiss, M.B. Perinatal calf losses in large cattle production units. Acta Vet. Hung. 1982, 30, 85–95. [Google Scholar]
- Mee, J.F. Perinatal calf mortality-recent findings. Irish Vet. J. 1991, 44, 80–85. [Google Scholar]
- Vestweber, J.G. Respiratory problems of newborn calves. Vet. Clin. N. Am. Food Anim. Pract. 1997, 13, 411–421. [Google Scholar] [CrossRef]
- Mee, J.F. Stillbirths—What can you do? Cattle Pract. 1999, 7, 277–281. [Google Scholar]
- Gustafsson, H.; Kindahl, H.; Berglund, B. Stillbirths in Holstein heifers-some results from Swedish research. Acta Vet. Scand. 2007, 49 (Suppl. S1), S17. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.L.; Berger, P.J.; Koehler, K.J. Interactions among factors affecting stillbirths in Holstein cattle in the United States. J. Dairy Sci. 2000, 83, 2657–2663. [Google Scholar] [CrossRef]
- Berglund, B.; Steinbock, L.; Elvander, M. Causes of stillbirth and time of death in Swedish Holstein calves examined post mortem. Acta Vet. Scand. 2003, 44, 111–120. [Google Scholar] [CrossRef]
- Steinbock, L.; Näsholm, A.; Berglund, B.; Johansson, K.; Philipsson, J. Genetic effects on stillbirth and calving difficulty in Swedish Holsteins at first and second calving. J. Dairy Sci. 2003, 86, 2228–2235. [Google Scholar] [CrossRef] [Green Version]
- Harbers, A.; Segeren, L.; De Jong, G. Genetic parameters for stillbirth in the Netherlands. Interbull Bull. 2000, 25, 117–122. [Google Scholar]
- Meyer, C.L.; Berger, P.J.; Koehler, K.; Thompson, J.R.; Sattler, C.G. Phenotypic trends in incidence of stillbirth for Holsteins in the United States. J. Dairy Sci. 2001, 84, 515–523. [Google Scholar] [CrossRef]
- Mee, J.F. Epidemiology of bovine perinatal mortality. In Bovine Prenatal, Perinatal and Neonatal Medicine; Szenci, O., Mee, J.F., Bleul, U., Taverne, M.A.M., Eds.; Hungarian Association for Buiatrics: Budapest, Hungary, 2021; pp. 224–232. [Google Scholar]
- Hahnsdorf, A. Die wichtigsten Todesursachen des Kalbes anhand der Sektionstatistik mit besonderer Berücksichtigung der pathologisch-anatomischen Veränderungen. Inaugural Dissertation, Giessen University, Giessen, Germany, 1967. [Google Scholar]
- Greene, H.J. Causes of dairy calf mortality. Ir. J. Agric. Res. 1978, 17, 295–301. [Google Scholar]
- Schuijt, G. Iatrogenic fractures of ribs and vertebrae during delivery in perinataly dying calves: 235 cases (1978–1988). J. Am. Vet. Med. Assoc. 1990, 197, 1196–1202. [Google Scholar] [PubMed]
- Mock, T.; Mee, J.F.; Dettwiler, M.; Rodriguez-Campos, S.; Hüsler, J.; Michel, B.; Häfliger, I.; Drögemüller, C.; Bodmer, M.; Hirsbrunner, G. Evaluation of an investigative model in dairy herds with high calf perinatal mortality rates in Switzerland. Theriogenology 2020, 148, 48–59. [Google Scholar] [CrossRef]
- Mee, J.F. Aetiology and timing of bovine perinatal mortality. In Bovine Prenatal, Perinatal and Neonatal Medicine; Szenci, O., Mee, J.F., Bleul, U., Taverne, M.A.M., Eds.; Hungarian Association for Buiatrics: Budapest, Hungary, 2021; pp. 233–245. [Google Scholar]
- Mee, J.F. Prediction of the day and time of calving, dystocia and stillbirth. In Bovine Prenatal, Perinatal and Neonatal Medicine; Szenci, O., Mee, J.F., Bleul, U., Taverne, M.A.M., Eds.; Hungarian Association for Buiatrics: Budapest, Hungary, 2021; pp. 118–122. [Google Scholar]
- Schuenemann, G.M.; Nieto, I.; Bas, S.; Galvao, K.N.; Workman, J. Assessment of calving progress and reference times for obstetric intervention during dystocia in Holstein dairy cows. J. Dairy Sci. 2011, 94, 5494–5501. [Google Scholar] [CrossRef] [Green Version]
- Kovács, L.; Kézér, F.L.; Szenci, O. Effect of calving process on the outcomes of delivery and postpartum health of dairy cows with unassisted and assisted calvings. J. Dairy Sci. 2016, 99, 7568–7573. [Google Scholar] [CrossRef]
- Mee, J.F. Managing the dairy cow at calving time. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 521–546. [Google Scholar] [CrossRef]
- Szenci, O.; Nagy, K.; Takács, L.; Mádl, I.; Bajcsy, Á.C. Farm personnel management as a risk factor for stillbirth in Hungarian Holstein-Friesian dairy farms (in Hungarian with English summary). Magy. Állatorvosok Lapja 2012, 134, 387–393. [Google Scholar]
- Mee, J.F. Newborn dairy calf management. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Niles, D. The modern dairy maternity ward. Magy. Állatorvosok Lapja 2016, 138 (Suppl. S1), 275–279. [Google Scholar]
- Villettaz Robichaud, M.; Pearl, D.L.; Godden, S.M.; LeBlanc, S.J.; Haley, D.B. Systematic early obstetrical assistance at calving: I. Effects on dairy calf stillbirth, vigor, and passive immunity transfer. J. Dairy Sci. 2017, 100, 691–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Dizier, M.; Chastant-Maillard, S. Methods and on-farm devices to predict calving time in cattle. Vet. J. 2015, 205, 349–356. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Potential of connected devices to optimize cattle reproduction. Theriogenology 2018, 112, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Nagel, C.; Aurich, J.; Aurich, C. Prediction of the onset of parturition in horses and cattle. Theriogenology 2020, 150, 308–312. [Google Scholar] [CrossRef]
- Matamala, F.; Strappini, A.; Sepúlveda-Varas, P. Dairy cow behaviour around calving: Its relationship with management practices and environmental conditions. Austral J. Vet. Sci. 2021, 53, 9–22. [Google Scholar] [CrossRef]
- Paudyal, S. Using rumination time to manage health and reproduction in dairy cattle: A review. Vet. Q. 2021, 41, 292–300. [Google Scholar] [CrossRef]
- Tekin, K.; Yurdakök-Dikmen, B.; Kanca, H.; Guatteo, R. Precision livestock farming technologies: Novel direction of information flow. Ankara Univ. Vet. Fak. Derg. 2021, 68, 193–212. [Google Scholar] [CrossRef]
- Crociati, M.; Sylla, L.; De Vincenzi, A.; Stradaioli, G.; Monaci, M. How to predict parturition in cattle? A literature review of automatic devices and technologies for remote monitoring and calving prediction. Animals 2022, 12, 405. [Google Scholar] [CrossRef]
- Chang, A.Z.; David, L.; Swain, D.L.; Trotter, M.G. Towards sensor-based calving detection in the rangelands: A systematic review of credible behavioral and physiological indicators. Transl. Anim. Sci. 2020, 4, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef] [PubMed]
- Riaboff, L.; Shalloo, L.; Smeaton, A.F.; Couvreur, S.; Madouasse, A.; Keane, M.T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric. 2022, 192, 106610. [Google Scholar] [CrossRef]
- Berglund, B.; Philipsson, J.; Danell, Ö. External signs of preparation for calving and course of parturition in Swedish dairy cattle breeds. Anim. Reprod. Sci. 1987, 15, 61–79. [Google Scholar] [CrossRef]
- Streyl, D.; Sauter-Louis, C.; Braunert, A.; Lange, D.; Weber, F.; Zerbe, H. Establishment of a standard operating procedure for predicting the time of calving in cattle. J. Vet. Sci. 2011, 12, 177–185. [Google Scholar] [CrossRef]
- Shah, K.D.; Nakao, T.; Kubota, H. Plasma estrone sulphate (E1S) and estradiol-17beta (E2beta) profiles during pregnancy and their relationship with the relaxation of sacrosciatic ligament, and prediction of calving time in Holstein-Friesian cattle. Anim. Reprod. Sci. 2006, 95, 38–53. [Google Scholar] [CrossRef]
- Weisz, L. The temperature phenomenon before parturition and its clinical importance. J. Am. Vet. Med. Assoc. 1943, 102, 123. [Google Scholar]
- Graf, G.C.; Petersen, W.E. Changes in respiration and heart rates, body temperatures plasma lactic acid levels and plasma creatinine levels caused by stress in daily cattle. J. Dairy Sci. 1953, 36, 1036–1048. [Google Scholar] [CrossRef]
- Porterfield, I.D.; Olson, N.O. Vaginal temperature of dairy cows before and after calving. J. Am. Vet. Med. Assoc. 1957, 131, 381–383. [Google Scholar]
- Wrenn, T.R.; Bitman, J.; Sykes, J.F. Body temperature variations in dairy cattle during the estrous cycle and pregnancy. J. Dairy Sci. 1958, 41, 1071–1076. [Google Scholar] [CrossRef]
- Ewbank, R. Predicting the time of parturition in the normal cow: A study of theprecalving drop in body temperature in relation to the external signs of imminent calving. Vet. Rec. 1963, 75, 367–371. [Google Scholar]
- Birgel, E.H.; Grunert, E.; Soares, J.A. The preliminary stage of labor in cattle in relation to the clinical signs of labor and the course of progesterone secretion for the prediction of the calving time. Dtsch. Tierarztl. Wochenschr. 1994, 101, 355–359. (In German) [Google Scholar]
- Burfeind, O.; Suthar, V.S.; Voigtsberger, R.; Bonk, S.; Heuwieser, W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. J. Dairy Sci. 2011, 94, 5053–5061. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Caola, G.; Refinetti, R. Daily and estrous rhythmicity of body temperature in domestic cattle. BMC Physiol. 2003, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Kendall, P.E.; Webster, J.R. Season and physiological status affects the circadian body temperature rhythm of dairy cows. Livest. Sci. 2009, 125, 155–160. [Google Scholar] [CrossRef]
- Webster, J.R.; Stewart, M.; Rogers, A.R.; Verkerk, G.A. Assessment of welfare from physiological and behavioural responses of New Zealand dairy cows exposed to cold and wet conditions. Anim. Welf. 2008, 17, 19–26. [Google Scholar]
- Kendall, P.E.; Nielsen, P.P.; Webster, J.R.; Verkerk, G.A.; Littlejohn, R.P.; Matthews, L.R. The effects of providing shade to lactating dairy cows in a temperate climate. Livest. Sci. 2006, 103, 148–157. [Google Scholar] [CrossRef]
- Kendall, P.E.; Verkerk, G.A.; Webster, J.R.; Tucker, C.B. Sprinklers and shade cool cows and reduce insect-avoidance behaviour in pasture-based dairy systems. J. Dairy Sci. 2007, 90, 3671–3680. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, V.; Vasseur, E.; Heuwieser, W.; Burfeind, O.; Maldague, X.; Charbonneau, É. Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. J. Dairy Sci. 2016, 99, 1539–1548. [Google Scholar] [CrossRef] [Green Version]
- Chanvallon, A.; Leblay, A.; Girardot, J.; Daviere, J.-B.; Ribaud, D.; Allain, C.; Lamy, J.-M. Surveillance automatisée des vêlages chez la vache laitière; Institut de l’Élevage: Paris, France, 2012. [Google Scholar]
- Choukeir, A.I.; Kovács, L.; Kézér, L.F.; Buják, D.; Szelényi, Z.; Gáspárdy, A.; Szenci, O. Evaluation of a commercial intravaginal thermometer to predict calving in a Hungarian Holstein-Friesian dairy farm. Reprod. Domest. Anim. 2020, 55, 1535–1540. [Google Scholar] [CrossRef]
- Sakatani, M.; Sawado, R.; Miwa, M.; Hojo, T.; Tanaka, M.; Takenouchi, N. Vaginal temperature before calving assessed with wireless vaginal temperature sensor in dairy and beef cattle. Theriogenology 2021, 172, 230–238. [Google Scholar] [CrossRef]
- Koyama, K.; Koyama, T.; Sugimoto, M.; Kusakari, N.; Miura, R.; Yoshioka, K.; Hirako, M. Prediction of calving time in Holstein dairy cows by monitoring the ventral tail base surface temperature. Vet. J. 2018, 240, 1–5. [Google Scholar] [CrossRef]
- Higaki, S.; Koyama, K.; Sasaki, Y.; Abe, K.; Honkawa, K.; Horii, Y.; Minamino, T.; Mikurino, Y.; Okada, H.; Miwakeichi, F.; et al. Calving prediction in dairy cattle based on continuous measurements of ventral tail base skin temperature using supervised machine learning. J. Dairy Sci. 2020, 103, 8535–8540. [Google Scholar] [CrossRef]
- Costa, J.B.G.; Ahola, J.K.; Weller, Z.D.; Peel, R.K.; Whittier, J.C.; Barcellos, J.O.J. Reticulorumen temperature as a predictor of calving time in primiparous and parous Holstein females. J. Dairy Sci. 2016, 99, 4839–4850. [Google Scholar] [CrossRef] [Green Version]
- Choukeir, A.I.; Kovács, L.; Szelényi, Z.; Kézér, L.F.; Albert, E.; Abdelmegeid, M.A.; Baukje, A.; Aubin-Wodala, M.; Buják, D.; Nagy, K.; et al. Effect of monitoring the onset of calving by a calving alarm thermometer on the prevalence of dystocia, stillbirth, retained fetal membranes and clinical metritis in a Hungarian dairy farm. Theriogenology 2020, 145, 144–148. [Google Scholar] [CrossRef]
- Horváth, A.; Lénárt, L.; Pálffy, M.; Szenci, O. A field study using different technologies to detect calving at a scale Hungarian dairy farm. Reprod. Domest. Anim. 2021, 56, 673–679. [Google Scholar] [CrossRef]
- Ricci, A.; Racioppi, V.; Iotti, B.; Bertero, A.; Reed, K.F.; Pascottini, O.B.; Vincenti, L. Assessment of the temperature cut-off point by a commercial intravaginal device to predict parturition in Piedmontese beef cows. Theriogenology 2018, 113, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Lammoglia, M.A.; Bellows, R.A.; Short, R.E.; Bellows, S.E.; Bighorn, E.G.; Stevenson, J.S.; Randel, R.D. Body temperature and endocrine interactions before and after calving in beef cows. J. Anim. Sci. 1997, 75, 2526–2534. [Google Scholar] [CrossRef] [Green Version]
- Miwa, M.; Matsuyama, S.; Nakamura, S.; Noda, K.; Sakatani, M. Prepartum change in ventral tail base surface temperature in beef cattle: Comparison with vaginal temperature and behavior indices, and effect of ambient temperature. J. Reprod. Dev. 2019, 65, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Sellier, N.; Guettier, E.; Staub, C. A review of methods to measure animal body temperature in precision farming. Am. J. Agri. Sci. Tech. 2014, 2, 74–99. [Google Scholar] [CrossRef]
- Miura, R.; Yoshioka, K.; Miyamoto, T.; Nogami, H.; Okada, H.; Itoh, T. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle. Anim. Reprod. Sci. 2017, 180, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.S. Late-gestation ear-surface temperatures and subsequent postpartum health, activity, milk yield, and reproductive performance of dairy cows. Riogenology 2022, 181, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, B.H.; Bailey, C.L.; Wright, E.C.; Wettemann, R.P. Effects of Temperature of Consumed Water on Rumen Temperature of Beef Cows. 2009. Available online: https://www.ansi.okstate.edu/research/2009/2009%20Boehmer%20Research%20Report.pdf (accessed on 10 July 2014).
- Bewley, J.M.; Grott, M.W.; Einstein, M.E.; Schutz, M.M. Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J. Dairy Sci. 2008, 91, 3880–3887. [Google Scholar] [CrossRef]
- Cooper-Prado, M.J.; Long, N.M.; Wright, E.C.; Goad, C.L.; Wettemann, R.P. Relationship of ruminal temperature with parturition and estrus of beef cows. J. Anim. Sci. 2011, 89, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Ha, J.; Kwon, W.-S.; Moon, J.; Gim, G.-M.; Yi, J. Change of ruminoreticular temperature and body activity before and after parturition in Hanwoo (Bos taurus coreanae) cows. Sensors 2021, 21, 7892. [Google Scholar] [CrossRef]
- Zehner, N.; Niederhauser, J.J.; Schick, M.; Umstatter, C. Development and validation of a predictive model for calving time based on sensor measurements of ingestive behavior in dairy cows. Comput. Electron. Agric. 2019, 161, 62–71. [Google Scholar] [CrossRef]
- Rutten, C.; Kamphuis, C.; Hogeveen, H.; Huijps, K.; Nielen, M.; Steeneveld, W. Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows. Comput. Electron. Agric. 2017, 132, 108–118. [Google Scholar] [CrossRef]
- Krieger, S.; Oczak, M.; Lidauer, L.; Berger, A.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Drillich, M.; Iwersen, M. An ear-attached accelerometer as an on-farm device to predict the onset of calving in dairy cows. Biosyst. Eng. 2019, 184, 190–199. [Google Scholar] [CrossRef]
- Proudfoot, K.L.; Huzzey, J.M.; von Keyserlingk, M.A.G. The effect of dystocia on the dry matter intake and behavior of Holstein cows. J. Dairy Sci. 2009, 92, 4937–4944. [Google Scholar] [CrossRef] [Green Version]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.E.; Lyons, N.A.; Millapan, L.; Talukder, S.; Cronin, G.M.; Kerrisk, K.L.; Garcia, S.C. Rumination and activity levels as predictors of calving for dairy cows. Animal 2015, 9, 691–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Trogh, J.; Martens, L.; Vandaele, L.; Josepha, W.; Sonck, B. Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors. Comput. Electron. Agric. 2020, 168, 105153. [Google Scholar] [CrossRef]
- Miller, G.A.; Mitchell, M.; Barker, Z.E.; Giebel, K.; Codling, E.A.; Amory, J.R.; Michie, C.; Davison, C.; Tachtatzis, C.; Andonovic, I.; et al. Using animal-mounted sensor technology and machine learning to predict time-to-calving in beef and dairy cows. Animal 2020, 14, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Voß, A.L.; Heuwieser, W.; Mee, J.F.; Fischer-Tenhagen, C. Calving manage-ment: A questionnaire survey of veterinary subject matter experts and non-experts. Animals 2021, 11, 3129. [Google Scholar] [CrossRef]
- Giaretta, E.; Marliani, G.; Postiglione, G.; Magazzù, G.; Pantò, F.; Mari, G.; Formigoni, A.; Accorsi, P.A.; Mordenti, A. Calving time identified by the automatic detection of tail movements and rumination time, and observation of cow behavioural changes. Animal 2021, 15, 100071. [Google Scholar] [CrossRef]
- Sumi, K.; Maw, S.Z.; Zin, T.T.; Tin, P.; Kobayashi, I.; Horii, Y. Activity-integrated hidden Markov model to predict calving time. Animals 2021, 11, 385. [Google Scholar] [CrossRef]
- Krieger, S.; Sattlecker, G.; Kickinger, F.; Auer, W.; Drillich, M.; Iwersen, M. Prediction of calving in dairy cows using a tail-mounted tri-axial accelerometer: A pilot study. Biosyst. Eng. 2018, 173, 79–84. [Google Scholar] [CrossRef]
- Mee, J.F.; English, L.; Murphy, J.P. Preliminary results from a novel tail-mounted calving sensor in dairy cows. In Proceedings of the 9th European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; pp. 735–737. [Google Scholar]
- Górriz-Martín, L.; Koenig, A.; Jung, K.; Bergforth, W.; von Soosten, D.; Hoedemaker, M.; Bajcsy, Á.C. Comparison between a calving predictive system and a routine prepartal examination in German holstein heifers and cows. Vet. Sci. 2022, 9, 192. [Google Scholar] [CrossRef]
- Fadul, M.; Bogdahn, C.; Alsaaod, M.; Hüsler, J.; Starke, A.; Steiner, A.; Hirsbrunner, G. Prediction of calving time in dairy cattle. Anim. Reprod. Sci. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Quddus, R.A.; Ahmad, N.; Khalique, A.; Bhatti, J.A. Evaluation of automated monitoring calving prediction in dairy buffaloes a new tool for calving management. Braz. J. Biol. 2022, 82, e257884. [Google Scholar] [CrossRef] [PubMed]
- Liseune, A.; van den Poel, D.; Hut, P.R.; van Eerdenburg, F.J.C.M.; Hostens, M. Leveraging sequential information from multivariate behavioral sensor data to predict the moment of calving in dairy cattle using deep learning. Comput. Electron. Agric. 2021, 191, 106566. [Google Scholar] [CrossRef]
- Keceli, A.S.; Catal, C.; Kayac, A.; Tekinerdogan, B. Development of a recurrent neural networks-based calving prediction model using activity and behavioral data. Comput. Electron. Agric. 2020, 170, 105285. [Google Scholar] [CrossRef]
- Paolucci, M.; Sylla, L.; Di Giambattista, A.; Palombi, C.; Elad, A.; Stradaioli, G.; Pascolo, P.; Monaci, M. Improving calving management to further enhance reproductive performance in dairy cattle. Vet. Res. Commun. 2010, 34, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, G.; Leonardi, S.; Tangorra, F.M.; Calcante, A.; Beretta, E.; Pofcher, E.; Lazzari, M. Evaluation of an electronic system for automatic calving detection on a dairy farm. Anim. Prod. Sci. 2013, 53, 1112–1114. [Google Scholar] [CrossRef]
- Calcante, A.; Tangorra, F.M.; Marchesi, G.; Lazzari, M. A GPS/GSM based birth alarm system for grazing cows. Comput. Electron. Agric. 2014, 100, 123–130. [Google Scholar] [CrossRef]
- Palombi, C.; Paolucci, M.; Stradaioli, G.; Corubolo, M.; Pascolo, P.B.; Monaci, M. Evaluation of remote monitoring of parturition in dairy cattle as a new tool for calving management. BMC Vet. Res. 2013, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Crociati, M.; Sylla, L.; van Straten, M.; Stradaioli, G.; Monaci, M. Estimating the net return of a remote calving alarm system in a dairy farm. J. Dairy Sci. 2020, 103, 9646–9655. [Google Scholar] [CrossRef]
- Crociati, M.; Sylla, L.; Stradaioli, G.; Monaci, M.; Zecconi, A. Assessment of sensitivity and profitability of an intravaginal sensor for remote calving prediction in dairy cattle. Sensors 2021, 21, 8348. [Google Scholar] [CrossRef]
- Dippon, M.; Petzl, W.; Lange, D.; Zerbe, H. Automated parturition control in primi- and multiparous cows of a Simmental and Holstein crossbred herd. Tierärztl. Prax. 2017, 45, 18–23. (In German) [Google Scholar] [CrossRef]
- Henningsen, G.; Marien, H.; Hasseler, W.; Feldmann, M.; Schoon, H.; Hoedemaker, M.; Herzog, K. Evaluation of the iVET birth monitoring system in primiparous dairy heifers. Theriogenology 2017, 102, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Norman, S.; Swain, D.; Collop, T.; Loy, J.; Larsen, J. Remote Calf Alert-Technology Development; Meat & Livestock Australia Limited: Sydney, Australia, 2011. [Google Scholar]
- Marien, H.; Gundling, N.; Hasseler, W.; Feldmann, M.; Henningsen, G.; Herzog, K.; Hoedemaker, M. Survey on the course of puerperium and on fertility after implementation of the IVET birth monitoring system in heifers. Biol. Travin. 2019, 21, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; Ferri, N.; Crociati, M.; Monaci, M.; Stradaioli, G.; Sylla, L. Remote monitoring system as a tool for calving management in Mediterranean Buffalo heifers (Bubalus bubalis). Reprod. Domest. Anim. 2020, 55, 1803–1807. [Google Scholar]
- Santegoeds, O. Predicting Dairy Cow Parturition Using Realtime Behaviour Data from Accelerometers. Master’s of Science Thesis, Delft University of Technology, Delft, The Netherlands, 2016. [Google Scholar]
- Chang, A.Z.; Fogarty, E.S.; Swain, D.L.; García-Guerra, A.; Trotter, M.G. Accelerometer derived rumination monitoring detects changes in behaviour around parturition. Appl. Anim. Behav. Sci. 2022, 247, 105566. [Google Scholar] [CrossRef]
- Cavendish, B.; McDonagh, J.; Tzimiropoulos, G.; Slinger, K.R.; Huggett, Z.J.; Bell, M.J. Changes in dairy cow behavior with and without assistance at calving. Agriculture 2021, 11, 722. [Google Scholar] [CrossRef]
- Mammi, L.M.E.; Cavallini, D.; Fustini, M.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Calving difficulty influences rumination time and inflammatory profile in Holstein dairy cows. J. Dairy Sci. 2021, 104, 750–761. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Szenci, O. Rumination time and reticuloruminal temperature as possible predictors of dystocia in dairy cows. J. Dairy Sci. 2017, 100, 1568–1579. [Google Scholar] [CrossRef] [Green Version]
Clinical Signs | Parturition Score | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Relaxation of the broad pelvic ligaments | Firm, no-marginal relaxation 0 to 20% | Mildly softened up to 50% | Totally softened, but palpable up to 100% | Totally softened, not palpable 100% |
Secretion of vaginal mucous a | None | Slight <10 cm long diameter <1 cm | Moderate >10 cm long diameter <1 cm | Extensive >10 cm long diameter >1 cm |
Physiological hyperplasia of the udder | Empty, small palpable | Slightly filled | Partially filled | Totally filled, enlarged, not palpable |
Edema of the udder | None | On the base | Entire udder | Including the abdomen |
Filling of the teats | Flaccid None | Slightly filled ∼25% | Moderately filled ∼50% | Completely filled ∼100% |
Relaxation of the tail b | No flexibility | 45°∼90° | 90°∼120° | 120°∼180° |
Edema of the vulva a | Strongly folded, no Edema | Moderately folded, mild Edema | Mildly folded, moderate Edema | Not folded, high Edema, redness of inner mucosa |
Sensor Type | Event | Device | Number of Animals | Time | Sensitivity (%) | Specificity (%) | References |
---|---|---|---|---|---|---|---|
Intravaginal temperature data logger | Vaginal temperature (<0.2 °C) a | Minilog 8 (attached to CIDR) b | 85 | 48 h | 70–80 c | 73–81 c | Burfeind et al. [48] |
24 h | 71–78 c | 71–79 c | |||||
Vaginal temperature (0.1 °C/6 h at 24 h and 0.2 °C/6 h at 12 and 6 h) | Minilog II-t (attached to CIDR) | 42 | 24 h | 74 | 74 | Ouellet et al. [54] | |
12 h | 69 | 69 | |||||
6 h | 68 | 67 | |||||
Vaginal temperature | Vel’Phone | 35 | Predicting calving with 48 h SMS | 82.9 | - | Chanvallon et al. [55] | |
Vaginal temperature | Vel’Phone | 215 | Predicting calving with 48 h SMS | 62.4 | - | Choukeir et al. [56] | |
Vaginal temperature (0.3 °C) | Gyuonkei | 44 | Predicting calving by Alert 1 | 79.5 | - | Sakatani et al. [57] | |
Tail temperature sensor | Ventral tail base surface temperature (0.36 °C warm, 0.28 °C cold season) d | - | 35 | Calving within 24 h | 80–89 | 89–91 | Koyama et al. [58] |
Within 18 h | 83–92 | 87–88 | |||||
Within 12 h | 84–90 | 82–85 | |||||
Within 6 h | 83–90 | 79–82 | |||||
Ventral tail base surface temperature d | - | 108 | Calving within 24 h | 84.3 | - | Higaki et al. [59] | |
Reticulo-rumen temperature | Temperature-sensing reticulo-rumen bolus (≤0.2 °C) a | - | 261 | Calving within 24 h | 69 e, 69 f | 69 e, 69 f | Costa et al. [60] |
Within 12 h | 69 e, 70 f | 65 e, 65 f |
Sensor Type | Event | Device | Number of Animals | Time | Sensitivity (%) | Specificity (%) | References |
---|---|---|---|---|---|---|---|
Noseband | Rumination time | RumiWatch (3D accelerometer) | 24 (n = 11 and n = 13) a | 1 h | 73.8 | 87.6 | Zehner et al. [73] |
Eating time | 27.7 | 89.6 | |||||
Other activity time | 91.7 | 48.7 | |||||
Ear | Activity, rumination, feeding, and temperature | SensOor Agis (3D accelerometer) | 400 | Hourly basis (12 h, 6 h b, 3 h b and 1 h b) | 51.5 | 99.4 | Rutten et al. [74] |
Daily basis | 36.4 | 98.9 | |||||
Ear | Activity, rumination, and lying time | SMARTBOW (3D accelerometer) | 444 | Hourly basis (24 h b, 12 h b, 6 h b, 3 h b and 1 h) | 54 | 94.5 | Krieger et al. [75] |
Ear | Rumination time | SensOor Agis (3D accelerometer) | 42 | Hourly basis (22 h, 12 h and 6 h) | 51–63 | 51–63 | Ouellet et al. [54] |
Right hind leg | Lying bouts | Onset Pendant G data logger | 39–67 | 27–63 | |||
Lying time | 48–57 | 47–57 | |||||
Hind leg | Standing and lying time, standing bouts | Gemini Datalogger (accelerometer) | 101 | 24 h period | 77.8 | 77.8 | Proudfoot et al. [76] |
- | Dry matter intake | Insentec electronic feed and water intake system | 72.7 | 81.8 | |||
Feeding time | 63.6 | 54.6 | |||||
Water intake | 81.8 | 54.6 | |||||
Left hind leg | No. of steps, total motion, lying time and lying bouts | IceQube (3D accelerometer) | 53 | 8 h period | 65.5–79.3 c | 78.6–83.9 c | Borchers et al. [77] |
Neck collar | Neck activity and rumination | HR tag (3-axis accelerometer and a microphone) | 58.6–79.3 c | 80.4–92.9 c | |||
Neck collar | Neck activity and rumination | Hi Tag (3-axis accelerometer and a microphone) | 27 | 24 h period | ~70 | ~70 | Clark et al. [78] |
Neck collar | Ruminating, feeding, resting time | Neck-mounted accelerometer | 25 | Hourly basis (24 h, 12 h, 8 h, 4 h b, and 2 h b) | 47–48 | 94–95 | Benaissa et al. [79] |
Right hind leg | Lying time, lying bouts, number of steps | Leg-mounted accelerometer | 54–56 | 94–96 | |||
Neck collar | Travelled distance, Time in cubicles, time in feeding zone, time in drinking zone | Localization node | 55–58 | 93–96 | |||
Neck collar | Rumination | Silent Herdsman collar (neck-mounted accelerometer) | 110 | 5 h window | 69.8 | 59.3 | Miller et al. [80] |
Eating | 59.3 | 61.7 | |||||
Activity | 66.7 | 62.3 | |||||
Tail | Tail raising | Tail-mounted tri-axial accelerometer | 78.6 | 83.5 | |||
Tail | Tail raising | Moocall (tail-mounted inclinometer) | 118 | Hourly basis (24 h, 12 h, 4 h, 2 h b, and 1 h b) | 66–75 | 63–89 | Voß et al. [81] |
Tail | Tail raising | Moocall (tail-mounted inclinometer and accelerometer) | 12 | 24 h | 100 | 95 | Giaretta et al. [82] |
3 h | 95.2 | 71.4 | |||||
- | Lying, standing, holding up the tail, turning the head to the side | Camera (360-degree GV-FER5700 camera) + behavior integrated hidden Markov model | 15 d | <3 h | 91.5 | - | Sumi et al. [83] |
Sensor Type | Event | Device | Number of Animals | Time | Sensitivity (%) | Specificity (%) | References |
---|---|---|---|---|---|---|---|
Ear tag Hind leg Vaginal temperature | Rumination time, Lying bouts, lying time, Vaginal temperature | SensOor (3D accelerometer), Onset Pendant G data logger, Minilog II-t | 42 | Hourly basis (24 h, 12 h, and 6 h) | 68–77 | 68–77 | Ouellet et al. [54] |
Noseband Hind leg | Rumination time, chews, boluses and other activities, Lying bouts, time, walking time and other leg movement | Noseband sensor (Rumiwatch) 3D accelerometer | 33 | 3 h period | 88.9 (primiparous) 85 (multiparous) | 93.3 74 | Fadul et al. [87] |
Neck Hind leg | Rumination time, neck activity, No. of steps, lying time, lying bouts | HR Tag (3-axis accelerometer and microphone), IceQube (3-axis accelerometer) | 53 | 24 h period a 8 h period a | 100.0 82.8 | 86.8 80.4 | Borchers et al. [77] |
Neck Hind leg | Feeding, rumination Lying, standing, No. of steps, standing time | NEDAP logger NEDAP logger | 40 b | 24 h period a | 100 | 98.9 | Quddus et al. [88] |
Neck Front leg | Eating, rumination and lying time No. of steps, standing, walking and lying time | Nedap Smarttag Neck sensor Nedap Smarttag Leg sensor | 572 | Hourly basis (24 h, 12 h, 6 h, 3 h c, and 1 h c) Threshold: 0.3 | 87–98 | 15–81 | Liseune et al. [89] |
Neck Hind leg Localization | Ruminating, feeding, resting time Lying time, lying bouts, no. of steps Travelled distance, time in cubicles, feeding zone and drinking zone | Neck-mounted accelerometer Leg-mounted accelerometer Localization node | 25 | Hourly basis (24 h, 12 h, 8 h, 4 h c, and 2 h c) | 79–85 | 97–98 | Benaissa et al. [79] |
Neck Tail | Rumination, eating, activity Tail raising | Silent Herdsman collar (neck-mounted accelerometer), Tail-mounted (tri-axial accelerometer) | 110 | 5 h period | 79.2 | 81.3 | Miller et al. [80] |
Event | Sensor Type | Device | Number of Animals | Time | Sensitivity (%) | Positive Predictive Value (%) | References |
---|---|---|---|---|---|---|---|
Vulvar lips separation | Magnetic sensor | C6 birth control | 80 | 0 h | 100 | 100 | Paulocci et al. [91] |
C6 birth control | 53 | 100 | 95 | Marchesi et al. [92] | |||
GPS-calving alarm | 18 | 100 | 100 | Calcante et al. [93] | |||
Intravaginal device expulsion | Physical sensor | - | 120 | 100 | 100 | Palombi et al. [94] | |
Patent | 117 | 100 | 100 | Crociati et al. [95] | |||
OraNasco® | 83 | 86.3 a | - | Crociati et al. [96] | |||
Temperature sensor | Vel’Phone® | 35 | 100 | 100 | Chanvallon et al. [55] | ||
Vel’Phone® | 257 | 100 | 100 | Choukeir et al. [56] | |||
Vel’Phone® | 44 | 100 | 100 | Horváth et al. [62] | |||
Gyuonkei (−0.3°C) | 44 | 97.2 | - | Sakatani et al. [57] | |||
iVET® | 54 | 74.1 | 92.6 | Dippon et al. [97] | |||
iVET® | 167 b | 78 | 93 | Henningsen et al. [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szenci, O. Accuracy to Predict the Onset of Calving in Dairy Farms by Using Different Precision Livestock Farming Devices. Animals 2022, 12, 2006. https://doi.org/10.3390/ani12152006
Szenci O. Accuracy to Predict the Onset of Calving in Dairy Farms by Using Different Precision Livestock Farming Devices. Animals. 2022; 12(15):2006. https://doi.org/10.3390/ani12152006
Chicago/Turabian StyleSzenci, Ottó. 2022. "Accuracy to Predict the Onset of Calving in Dairy Farms by Using Different Precision Livestock Farming Devices" Animals 12, no. 15: 2006. https://doi.org/10.3390/ani12152006
APA StyleSzenci, O. (2022). Accuracy to Predict the Onset of Calving in Dairy Farms by Using Different Precision Livestock Farming Devices. Animals, 12(15), 2006. https://doi.org/10.3390/ani12152006