Effects of Heat Stress in Dairy Cows Offered Diets Containing Either Wheat or Corn Grain during Late Lactation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows and Design
2.2. Experimental Procedures
2.3. Measurements and Sampling
2.4. Physiology
2.5. Calculations and Statistical Analyses
3. Results
3.1. Main Effects of the Heat Challenge
3.2. Feed Intake
3.3. Milk Yield and Composition
3.4. Physiology
3.5. Rates of Change within Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, G.L. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1999, 77, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.R.; Leury, B.J.; Fahri, F.; DiGiacomo, K.; Hung, A.; Chauhan, S.; Clarke, I.J.; Collier, R.; Little, S.; Baumgard, L.; et al. Amelioration of thermal stress impacts in dairy cows. Anim. Prod. Sci. 2013, 53, 965–975. [Google Scholar] [CrossRef]
- Conte, G.; Ciampolini, R.; Cassandro, M.; Lasagna, E.; Calamari, L.; Bernabucci, U.; Abeni, F. Feeding and nutrition management of heat-stressed dairy ruminants. Ital. J. Anim. Sci. 2018, 17, 604–620. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rivas, P.A.; DiGiacomo, K.; Russo, V.M.; Leury, B.J.; Cottrell, J.J.; Dunshea, F.R. Feeding slowly fermentable grains has the potential to ameliorate heat stress in grain-fed wethers. J. Anim. Sci. 2016, 94, 2981–2991. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rivas, P.A.; Digiacomo, K.; Giraldo, P.A.; Leury, B.J.; Cottrell, J.J.; Dunshea, F.R. Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. J. Anim. Sci. 2017, 95, 5547–5562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Rivas, P.A.; Sullivan, M.; Cottrell, J.J.; Leury, B.J.; Gaughan, J.B.; Dunshea, F.R. Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer. Trop. Anim. Health Prod. 2018, 50, 1763–1769. [Google Scholar] [CrossRef]
- Ørskov, E.R. Starch digestion and utilization in ruminants. J. Anim. Sci. 1986, 63, 1624–1633. [Google Scholar] [CrossRef]
- Bland, I.M.; DiGiacomo, K.; Williams, S.R.O.; Leury, B.J.; Dunshea, F.R.; Moate, P.J. The use of infra-red thermography to measure flank temperatures of dairy cows fed wheat- or maize-based diets. In Proceedings of the British Society of Animal Science Annual Conference, Nottingham, UK, 17 April 2013; p. 182. [Google Scholar]
- Moate, P.J.; Deighton, M.H.; Williams, S.R.O.; Pryce, J.E.; Hayes, B.J.; Jacobs, J.L.; Eckard, R.J.; Hannah, M.C.; Wales, W.J. Reducing the carbon footprint of Australian milk production by mitigation of enteric methane emissions. Anim. Prod. Sci. 2016, 56, 1017–1034. [Google Scholar] [CrossRef]
- Rugoho, I.; Gourley, C.J.P.; Hannah, M.C. Nutritive characteristics, mineral concentrations and dietary cation-anion differences of feeds used within grazing-based dairy farms in Australia. Anim. Prod. Sci. 2017, 57, 858. [Google Scholar] [CrossRef]
- Gengler, W.R.; Martz, F.A.; Johnson, H.D.; Krause, G.F.; Hahn, L. Effect of Temperature on Food and Water Intake and Rumen Fermentation. J. Dairy Sci. 1970, 53, 434–437. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Nidumolu, U.; Crimp, S.; Gobbett, D.; Laing, A.; Howden, M.; Little, S. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia. Int. J. Biometeorol. 2014, 58, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Garner, J.B.; Douglas, M.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; DiGiacomo, K.; Leury, B.J.; Hayes, B.J. Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim. Prod. Sci. 2017, 57, 1233–1241. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Milner, T.C.; Garner, J.B.; Moate, P.J.; Jacobs, J.L.; Hannah, M.C.; Wales, W.J.; Marett, L.C. Dietary Fat and Betaine Supplements Offered to Lactating Cows Affect Dry Matter Intake, Milk Production and Body Temperature Responses to an Acute Heat Challenge. Animals 2021, 11, 3110. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, L.; Dong, R.Y.; Liang, M.Y.; Lu, Y.; Sun, X.Q.; Zhao, X. Comparing responses of dairy cows to short-term and long-term heat stress in climate-controlled chambers. J. Dairy Sci. 2021, 104, 2346–2356. [Google Scholar] [CrossRef] [PubMed]
- Earle, D.J. The objective score for measuring body condition. J. Agric. 1976, 74, 228–231. [Google Scholar]
- Garner, J.B.; Douglas, M.L.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; Nguyen, T.T.T.; Reich, C.M.; Hayes, B.J. Genomic selection improves heat tolerance in dairy cattle. Sci. Rep. 2016, 6, 34114. [Google Scholar] [CrossRef]
- Jeelani, R.; Konwar, D.; Khan, A.; Kumar, D.; Chakraborty, D.; Brahma, B. Reassessment of temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. J. Therm. Biol. 2019, 82, 99–106. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; National Academies Press: Washington DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Dairy One. Analytical Procedures. Available online: https://dairyone.com/download/forage-forage-lab-analytical-procedures/ (accessed on 7 October 2019).
- Atwater, W.O.; Woods, C.D. The Chemical Composition of American Food Materials; US Department of Agriculture, Office of Experiment Stations, Bulletin No. 109; Government Printing Office: Washington, DC, USA, 1896.
- Tyrrell, H.F.; Reid, J.T. Prediction of the Energy Value of Cow’s Milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Moate, P.J.; Deighton, M.H.; Jacobs, J.; Ribaux, B.E.; Morris, G.L.; Hannah, M.C.; Mapleson, D.; Islam, M.S.; Wales, W.J.; Williams, S.R.O. Influence of proportion of wheat in a pasture-based diet on milk yield, methane emissions, methane yield, and ruminal protozoa of dairy cows. J. Dairy Sci. 2020, 103, 2373–2386. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Hahn, G.L.; Young, B.A. Review of current assessment of cattle and microclimate during periods of high heat load. Anim. Prod. Aust. 2002, 24, 77–80. [Google Scholar]
- Yousef, M.K. Stress Physiology in Livestock; CRC Press Inc.: Boca Raton, FL, USA, 1985. [Google Scholar]
- Cowley, F.C.; Barber, D.G.; Houlihan, A.V.; Poppi, D.P. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.H.; Ghassemi Nejad, J.; Peng, D.Q.; Kim, H.R.; Kim, S.H.; Lee, H.G. Characterization of Short-Term Heat Stress in Holstein Dairy Cows Using Altered Indicators of Metabolomics, Blood Parameters, Milk MicroRNA-216 and Characteristics. Animals 2021, 11, 722. [Google Scholar] [CrossRef]
- Gao, S.T.; Guo, J.; Quan, S.Y.; Nan, X.M.; Fernandez, M.V.S.; Baumgard, L.H.; Bu, D.P. The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci. 2017, 100, 5040–5049. [Google Scholar] [CrossRef] [Green Version]
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of Hot, Humid Weather on Milk Temperature, Dry Matter Intake, and Milk Yield of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.T.; Bowman, P.J.; Haile-Mariam, M.; Pryce, J.E.; Hayes, B.J. Genomic selection for tolerance to heat stress in Australian dairy cattle. J. Dairy Sci. 2016, 99, 2849–2862. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.N.; Warner, R.G. Influence of Varying Rumen Temperature on Central Cooling or Warming and on Regulation of Voluntary Feed Intake in Dairy Cattle. J. Dairy Sci. 1968, 51, 1481–1489. [Google Scholar] [CrossRef]
- Offner, A.; Bach, A.; Sauvant, D. Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol. 2003, 106, 81–93. [Google Scholar] [CrossRef]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Herrera-Saldana, R.E.; Huber, J.T.; Poore, M.H. Dry Matter, Crude Protein, and Starch Degradability of Five Cereal Grains. J. Dairy Sci. 1990, 73, 2386–2393. [Google Scholar] [CrossRef]
- Moate, P.J.; Jacobs, J.L.; Hannah, M.C.; Morris, G.L.; Beauchemin, K.A.; Alvarez Hess, P.S.; Eckard, R.J.; Liu, Z.; Rochfort, S.; Wales, W.J.; et al. Adaptation responses in milk fat yield and methane emissions of dairy cows when wheat was included in their diet for 16 weeks. J. Dairy Sci. 2018, 101, 7117–7132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Deighton, M.H.; Hannah, M.C.; Ribaux, B.E.; Morris, G.L.; Jacobs, J.L.; Hill, J.; Wales, W.J. Effects of feeding wheat or corn and of rumen fistulation on milk production and methane emissions of dairy cows. Anim. Prod. Sci. 2019, 59, 891–905. [Google Scholar] [CrossRef]
- Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Joy, A.; Zhang, M.; Dunshea, F.R. Reducing the Fermentability of Wheat with a Starch Binding Agent Reduces Some of the Negative Effects of Heat Stress in Sheep. Animals 2022, 12, 1396. [Google Scholar] [CrossRef]
- Castro, L.P.; Pereira, M.N.; Dias, J.D.L.; Lage, D.V.D.; Barbosa, E.F.; Melo, R.P.; Ferreira, K.; Carvalho, J.T.R.; Cardoso, F.F.; Pereira, R.A.N. Lactation performance of dairy cows fed rehydrated and ensiled corn grain differing in particle size and proportion in the diet. J. Dairy Sci. 2019, 102, 9857–9869. [Google Scholar] [CrossRef]
- Tvedten, H.; Kopcia, M.; Haines, C. Mixed Venous and Arterial Blood in Bovine Coccygeal Vessel Samples for Blood Gas Analysis. Vet. Clin. Pathol. 2000, 29, 4–6. [Google Scholar] [CrossRef]
- Freer, M.; Dove, H.; Nolan, J.V. (Eds.) Nutrient Requirements of Domesticated Ruminants; CSIRO Publishing: Collingwood, VIC, Australia, 2007; p. 270. [Google Scholar]
Parameter | Corn | Wheat | Alfalfa |
---|---|---|---|
Crude protein | 90 | 136 | 186 |
Neutral detergent fiber | 63 | 88 | 447 |
Starch | 741 | 616 | 9 |
Ash | 11.3 | 22.7 | 92.8 |
Crude fat | 37 | 18 | 16 |
Gross energy (MJ/kg DM) | 18.8 | 18.5 | 17.5 |
Metabolizable Energy (MJ/kg DM) | 14.6 | 13.2 | 9.0 |
Parameter | CRN 1 | WHT 1 | SED 2 | p-Value |
---|---|---|---|---|
n | 7 | 7 | ||
Pre-challenge | ||||
Grain DMI 3 | 6.2 | 6.2 | 0.02 | 0.190 |
Forage DMI | 12.8 | 12.8 | 0.04 | 0.519 |
Total DMI | 19.0 | 19.0 | 0.04 | 0.227 |
MEI 4 | 206 | 197 | 0.4 | 0.001 |
Starch | 4.7 | 3.9 | 0.01 | 0.001 |
Heat challenge | ||||
Grain DMI | 5.9 | 5.9 | 0.07 | 0.441 |
Forage DMI | 11.5 | 9.9 | 0.56 | 0.016 |
Total DMI | 17.4 | 15.8 | 0.57 | 0.021 |
MEI | 189 | 167 | 5.3 | 0.002 |
Starch | 4.5 | 3.7 | 0.05 | 0.001 |
Recovery (mean) | ||||
Grain DMI | 6.2 | 6.2 | 0.02 | 0.293 |
Forage DMI | 11.7 | 10.8 | 0.41 | 0.042 |
Total DMI | 17.9 | 17.0 | 0.44 | 0.061 |
MEI | 196 | 179 | 4.1 | 0.002 |
Starch | 4.7 | 3.9 | 0.02 | 0.001 |
Recovery (day 7) | ||||
Grain DMI | 6.0 | 6.0 | 0.01 | 0.282 |
Forage DMI | 12.0 | 12.2 | 0.31 | 0.398 |
Total DMI | 18.0 | 18.2 | 0.31 | 0.387 |
MEI | 193.9 | 197.6 | 2.76 | 0.206 |
Starch | 4.6 | 3.8 | 0.01 | 0.000 |
Parameter | CRN 1 | WHT 1 | SED 2 | p-Value |
---|---|---|---|---|
n | 7 | 7 | ||
Pre-challenge | ||||
Milk production | ||||
Milk yield | 18.2 | 18.2 | 0.56 | 0.997 |
Energy corrected milk | 19.4 | 18.5 | 0.71 | 0.246 |
Fat | 0.82 | 0.76 | 0.038 | 0.173 |
Protein | 0.61 | 0.59 | 0.026 | 0.384 |
Lactose | 0.92 | 0.89 | 0.045 | 0.468 |
Milk composition | ||||
Fat | 44.5 | 42.7 | 1.98 | 0.380 |
Protein | 33.8 | 32.7 | 1.19 | 0.406 |
Lactose | 49.6 | 49.4 | 1.17 | 0.842 |
Heat challenge | ||||
Milk production | ||||
Milk yield | 17.8 | 16.4 | 0.82 | 0.125 |
Energy corrected milk | 19.2 | 17.6 | 0.92 | 0.097 |
Fat | 0.83 | 0.76 | 0.048 | 0.154 |
Protein | 0.59 | 0.53 | 0.025 | 0.040 |
Lactose | 0.92 | 0.84 | 0.044 | 0.098 |
Milk composition | ||||
Fat | 45.8 | 47.3 | 2.04 | 0.474 |
Protein | 33.1 | 33.0 | 1.08 | 0.952 |
Lactose | 51.0 | 51.6 | 0.56 | 0.289 |
Recovery (mean) | ||||
Milk production | ||||
Milk yield | 17.1 | 15.8 | 0.79 | 0.126 |
Energy corrected milk | 18.2 | 16.3 | 0.53 | 0.005 |
Fat | 0.77 | 0.65 | 0.030 | 0.004 |
Protein | 0.58 | 0.53 | 0.013 | 0.005 |
Lactose | 0.86 | 0.80 | 0.032 | 0.062 |
Milk composition | ||||
Fat | 44.9 | 41.6 | 2.39 | 0.191 |
Protein | 34.4 | 33.2 | 0.10 | 0.223 |
Lactose | 50.7 | 49.3 | 0.47 | 0.019 |
Recovery (day 7) | ||||
Milk production | ||||
Milk yield | 18.3 | 17.1 | 0.98 | 0.281 |
Energy corrected milk | 19.0 | 17.6 | 1.18 | 0.248 |
Fat | 0.77 | 0.72 | 0.074 | 0.494 |
Protein | 0.62 | 0.58 | 0.031 | 0.311 |
Lactose | 0.93 | 0.84 | 0.048 | 0.113 |
Milk composition | ||||
Fat | 42.0 | 43.9 | 3.3 | 0.594 |
Protein | 34.8 | 34.1 | 1.3 | 0.585 |
Lactose | 50.2 | 50.1 | 0.59 | 0.956 |
Parameter | CRN 1 | WHT 1 | SED 2 | p-Value |
---|---|---|---|---|
n | 7 | 7 | ||
Pre-challenge | ||||
Mean VT | 38.4 | 38.4 | 0.07 | 0.806 |
Minimum VT | 37.7 | 37.8 | 0.07 | 0.578 |
Maximum VT | 39.5 | 39.4 | 0.09 | 0.699 |
Duration VT > 38.8 °C (min) | 192 | 219 | 43.3 | 0.557 |
Respiration rate | 34 | 38 | 3.4 | 0.226 |
Heat challenge | ||||
Mean VT | 39.3 | 39.5 | 0.13 | 0.179 |
Minimum VT | 38.4 | 38.5 | 0.14 | 0.875 |
Maximum VT | 40.2 | 40.3 | 0.09 | 0.508 |
Duration VT > 38.8 °C (min) | 1016 | 1135 | 110 | 0.300 |
Respiration rate | 79 | 93 | 5.0 | 0.017 |
Recovery (mean) | ||||
Mean VT | 38.3 | 38.3 | 0.05 | 0.309 |
Minimum VT | 37.7 | 37.6 | 0.05 | 0.287 |
Maximum VT | 39.3 | 39.1 | 0.09 | 0.059 |
Duration VT > 38.8 °C (min) | 142 | 148 | 35.6 | 0.862 |
Respiration rate | 46 | 55 | 4.1 | 0.039 |
Recovery (day 6) | ||||
Mean VT | 38.4 | 38.3 | 0.07 | 0.442 |
Minimum VT | 37.7 | 37.7 | 0.08 | 0.731 |
Maximum VT | 39.1 | 39.2 | 0.12 | 0.570 |
Duration VT > 38.8 °C (min) | 87 | 156 | 46.9 | 0.177 |
Respiration rate | 77 | 66 | 7.3 | 0.146 |
Parameter | CRN 1 | WHT 1 | SED 2 | p-Value |
---|---|---|---|---|
n | 7 | 7 | ||
Pre-challenge | ||||
pCO2 | 77 | 80 | 5.3 | 0.575 |
pO2 | 82 | 80 | 26.2 | 0.925 |
TCO2 | 2 | 30 | 1.1 | 0.376 |
Bicarbonate 3 | 27 | 28 | 1.0 | 0.372 |
Sodium 4 | 132.5 | 132.4 | 0.79 | 0.877 |
Potassium 5 | 12.0 | 12.1 | 0.1 | 0.073 |
Chloride 6 | 106 | 106 | 1.6 | 0.816 |
Glucose | 3.3 | 3.5 | 0.10 | 0.204 |
Lactate | 0.78 | 1.18 | 0.159 | 0.039 |
Heat challenge | ||||
pCO2 | 69 | 62 | 3.9 | 0.145 |
pO2 | 108 | 107 | 22.9 | 0.952 |
TCO2 | 25 | 24 | 0.8 | 0.835 |
Bicarbonate | 23 | 23 | 0.7 | 0.993 |
Sodium | 134.5 | 135.7 | 0.62 | 0.081 |
Potassium | 11.5 | 11.4 | 0.48 | 0.753 |
Chloride | 111 | 110 | 1.0 | 0.194 |
Glucose | 3.6 | 3.7 | 0.11 | 0.286 |
Lactate | 1.44 | 1.43 | 0.254 | 0.975 |
Recovery (mean) | ||||
pCO2 | 77 | 77 | 7.2 | 0.956 |
pO2 | 144 | 106 | 33.0 | 0.267 |
TCO2 | 27 | 28 | 1.0 | 0.561 |
Bicarbonate | 25 | 26 | 0.9 | 0.509 |
Sodium | 132.3 | 132.4 | 1.05 | 0.940 |
Potassium | 11.8 | 12.1 | 0.17 | 0.093 |
Chloride | 108 | 107 | 1.5 | 0.336 |
Glucose | 3.4 | 3.5 | 0.16 | 0.159 |
Lactate | 0.47 | 0.76 | 0.194 | 0.168 |
Parameter | CRN 1 | WHT 1 | SED 2 | p-Value |
---|---|---|---|---|
Heat challenge | ||||
Feed intake (kg/day) | ||||
Grain DMI 3 | −0.08 | −0.12 | 0.035 | 0.323 |
Forage DMI | −0.51 | −1.31 | 0.334 | 0.034 |
Total DMI | −0.60 | −1.43 | 0.341 | 0.031 |
Milk production (kg/day) | ||||
Milk yield | −0.53 | −0.84 | 0.337 | 0.365 |
ECM 4 | −0.43 | −0.64 | 0.345 | 0.559 |
Fat | −0.01 | −0.01 | 0.014 | 0.974 |
Protein | −0.02 | −0.03 | 0.011 | 0.508 |
Lactose | −0.03 | −0.05 | 0.018 | 0.348 |
Milk composition (g/kg) | ||||
Fat | 0.02 | 0.14 | 0.047 | 0.025 |
Protein | −0.05 | −0.05 | 0.027 | 0.157 |
Lactose | 0.04 | 0.01 | 0.022 | 0.157 |
Vaginal temperature (°C) | ||||
Mean | 0.34 | 0.36 | 0.063 | 0.822 |
Minimum | 0.27 | 0.23 | 0.054 | 0.465 |
Maximum | 0.31 | 0.24 | 0.070 | 0.343 |
Duration > 38.8 °C (min) | 272 | 230 | 50.3 | 0.420 |
Recovery | ||||
Feed intake (kg/day) | ||||
Grain DMI | 0.00 | 0.00 | 0.005 | 0.830 |
Forage DMI | 0.15 | 0.42 | 0.110 | 0.029 |
Total DMI | 0.17 | 0.42 | 0.119 | 0.056 |
Milk production (kg/day) | ||||
Milk yield | 0.44 | 0.81 | 0.186 | 0.074 |
ECM | 0.53 | 0.69 | 0.121 | 0.225 |
Fat | 0.02 | 0.02 | 0.007 | 0.892 |
Protein | 0.02 | 0.03 | 0.005 | 0.025 |
Lactose | 0.02 | 0.04 | 0.004 | 0.003 |
Milk composition (g/kg) | ||||
Fat | 0.02 | −0.02 | 0.035 | 0.312 |
Protein | 0.02 | 0.03 | 0.013 | 0.614 |
Lactose | −0.01 | 0.00 | 0.010 | 0.345 |
Vaginal temperature (°C) | ||||
Mean | 0.05 | 0.06 | 0.021 | 0.756 |
Minimum | 0.05 | 0.10 | 0.038 | 0.214 |
Maximum | 0.04 | −0.01 | 0.028 | 0.116 |
Duration >38.8 °C (min) | 2.2 | 0.6 | 15.1 | 0.920 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garner, J.B.; Williams, S.R.O.; Moate, P.J.; Jacobs, J.L.; Hannah, M.C.; Morris, G.L.; Wales, W.J.; Marett, L.C. Effects of Heat Stress in Dairy Cows Offered Diets Containing Either Wheat or Corn Grain during Late Lactation. Animals 2022, 12, 2031. https://doi.org/10.3390/ani12162031
Garner JB, Williams SRO, Moate PJ, Jacobs JL, Hannah MC, Morris GL, Wales WJ, Marett LC. Effects of Heat Stress in Dairy Cows Offered Diets Containing Either Wheat or Corn Grain during Late Lactation. Animals. 2022; 12(16):2031. https://doi.org/10.3390/ani12162031
Chicago/Turabian StyleGarner, Josie B., S. Richard O. Williams, Peter J. Moate, Joe L. Jacobs, Murray C. Hannah, Greg L. Morris, William J. Wales, and Leah C. Marett. 2022. "Effects of Heat Stress in Dairy Cows Offered Diets Containing Either Wheat or Corn Grain during Late Lactation" Animals 12, no. 16: 2031. https://doi.org/10.3390/ani12162031
APA StyleGarner, J. B., Williams, S. R. O., Moate, P. J., Jacobs, J. L., Hannah, M. C., Morris, G. L., Wales, W. J., & Marett, L. C. (2022). Effects of Heat Stress in Dairy Cows Offered Diets Containing Either Wheat or Corn Grain during Late Lactation. Animals, 12(16), 2031. https://doi.org/10.3390/ani12162031