Effects of Sugar Beet Silage, High-Moisture Corn, and Corn Silage Feed Supplementation on the Performance of Dairy Cows with Restricted Daily Access to Pasture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Grazing Management
2.3. Pasture and Supplements
2.4. Milk Production and Body Weight
2.5. Dry Matter Intake
2.6. Blood and Rumen Parameters
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Food
3.2. Grazing Management and DMI
3.3. Milk Production and Body Weight
3.4. Blood and Ruminal Parameters
4. Discussion
4.1. Milk Production and Composition
4.2. Blood and Ruminal Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dillon, P. Achieving high dry-matter intake from pasture with grazing dairy cows. In Fresh Herbage for Dairy Cattle; Elgersma, A., Dijkstra, J., Tamminga, S., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–26. [Google Scholar]
- Bargo, F.; Muller, L.D.; Kolver, E.S.; Delahoy, J.E. Invited review: Production and digestion of supplemented dairy cows on pasture. J. Dairy Sci. 2003, 86, 1–42. [Google Scholar] [CrossRef]
- Pulido, R.G.; Leaver, J.D. Quantifying the influence of sward height, concentrate level and initial milk yield on the milk production and grazing behaviour of continuously stocked cows. Grass Forage Sci. 2001, 56, 57–67. [Google Scholar] [CrossRef]
- Chilibroste, P.; Soca, P.; Mattiauda, D.A.; Bentancur, O.; Robinson, P.H. Short term fasting as a tool to design effective grazing strategies for lactating dairy cattle: A review. Aust. J. Exp. Agric. 2007, 47, 1075–1084. [Google Scholar] [CrossRef]
- Gregorini, P. Diurnal grazing pattern: Its physiological basis and strategic management. Anim. Prod. Sci. 2012, 52, 416–430. [Google Scholar] [CrossRef]
- Mattiauda, D.; Tamminga, S.; Gibb, M.; Soca, P.; Bentancur, O.; Chilibroste, P. Restricting access time at pasture and time of grazing allocation for Holstein dairy cows: Ingestive behaviour, dry matter intake and milk production. Livest. Sci. 2013, 152, 53–62. [Google Scholar] [CrossRef]
- Peyraud, J.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Ruiz-Albarrán, M.; Balocchi, O.; Noro, M.; Wittwer, F.; Pulido, R.G. Effect of the type of silage on milk yield, intake and rumen metabolism of dairy cows grazing swards with low herbage mass. Anim. Sci. J. 2015, 87, 878–884. [Google Scholar] [CrossRef]
- Wales, W.J.; Marett, L.C.; Greenwood, J.S.; Wright, M.M.; Thornhill, J.B.; Jacobs, J.L.; Ho, C.K.M.; Auldist, M.J. Use of partial mixed rations in pasture-based dairying in temperate regions of Australia. Anim. Prod. Sci. 2013, 53, 1167–1178. [Google Scholar] [CrossRef]
- Baudracco, J.; Lopez-Villalobos, N.; Holmes, C.W.; McDonald, K.A. Effect of stocking rate, supplementation, genotype and their interactions on grazing dairy systems: A review. N. Z. J. Agric. Res. 2010, 53, 109–133. [Google Scholar] [CrossRef]
- Evans, E.; Bernhardson, D.; Lamont, J. Effects of feeding fresh sugar beets to lactating dairy cows on milk production and milk composition. Prof. Anim. Sci. 2016, 32, 253–258. [Google Scholar] [CrossRef]
- Hellwing, A.; Messerschmidt, U.; Larsen, M.; Weisbjerg, M. Effects of feeding sugar beets, ensiled with or without an additive, on the performance of dairy cows. Livest. Sci. 2017, 206, 37–44. [Google Scholar] [CrossRef]
- Evans, E.; Messerschmidt, U. Review: Sugar beets as a substitute for grain for lactating dairy cattle. J. Anim. Sci. Biotechnol. 2017, 8, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.; Steingass, H.; Jungbluth, T.; Drochner, W. Sugar beet mash silage as a component of a total-mixed-ration for dairy cows effects on parameters of digestion and animal performance. Arch. Tierernaehrung 2001, 54, 47–59. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Use of sugar beet silage in feedlot catle diets. Can. J. Anim. Sci. 2006, 86, 127–131. [Google Scholar]
- Canseco, C.; Abarzúa, A.; Parga, J.; Teuber, N.; Balocchi, O.; Lopetegui, J. Calidad nutritiva de las praderas. In Manejo del Pastoreo; Teuber, N., Balocchi, O., Parga, J., Eds.; Fundación para la Innovacion Agraria (FIA): Osorno, Chile, 2009; pp. 51–67. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1996. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Goering, H.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Applications); United States Department of Agriculture: Washington, DC, USA, 1970.
- Bryant, R.H.; Dalley, D.E.; Gibbs, J.; Edwards, G.R. Effect of grazing management on herbage protein concentration, milk production and nitrogen excretion of dairy cows in mid-lactation. Grass Forage Sci. 2013, 69, 644–654. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123–124, 403–419. [Google Scholar] [CrossRef]
- El Tawab, A.M.A.; Kholif, A.E.; Hassan, A.M.; Matloup, O.H.; El-Nor, S.A.A.; Olafadehan, O.A.; Khattab, M. Feed utilization and lactational performance of Friesian cows fed beet tops silage treated with lactic acid bacteria as a replacement for corn silage. Anim. Biotechnol. 2019, 31, 473–482. [Google Scholar] [CrossRef]
- Keim, J.P.; Mora, J.; Ojeda, S.; Saldías, B.; Bedenk, U. The Replacement of Ground Corn with Sugar Beet in the Diet of Pasture-Fed Lactating Dairy Cows and Its Effect on Productive Performance and Rumen Metabolism. Animals 2022, 12, 1927. [Google Scholar] [CrossRef] [PubMed]
- Lanzas, C.; Sniffen, C.J.; Seo, S.A.; Tedeschi, L.O.; Fox, D.G. A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants. Anim. Feed Sci. Technol. 2007, 136, 167–190. [Google Scholar] [CrossRef]
- Krohn, C.C.; Andersen, P.E. Rations with beet and barley separately or as a complete feed to dairy cows. Nutr. Abstr. Rev. B 1979, 50, 3670. [Google Scholar]
- Kirchgessner, M.; Müller, H.L.; Birkenmaier, F.; Schwarz, F.J. Energy-utilization of saccharose in lactating dairy-cows and consequences for the Energy Evaluation of Sucrose. J. Anim. Physiol. Anim. Nutr. 1994, 71, 247–260. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Crump, P.M.; Shaver, R.D. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J. Dairy Sci. 2013, 96, 533–550. [Google Scholar] [CrossRef] [Green Version]
- Wittwer, F. Manual de Patología Clínica Veterinaria, Tercera Edición, Ediciones UACh; Universidad Austral de Chile: Valdivia, Chile, 2021; p. 358. [Google Scholar]
- Geishauser, T.; Leslie, K.; Kelton, D.; Duffield, T. Evaluation of five cowside tests for use with milk to detect subclinical ketosis in dairy cows. J. Dairy Sci. 1998, 81, 438–443. [Google Scholar] [CrossRef]
- Sinclair, K.D.; Sinclair, L.A.; Robinson, J.J. Nitrogen metabolism and fertility in cattle: I. Adaptative changes in intake and metabolism to diets differing in their rate of energy and nitrogen release in the rumen. J. Anim. Sci. 2000, 78, 2659–2669. [Google Scholar] [CrossRef]
- Noro, M.; Vargas, V.; Pulido, R.G.; Wittwer, F. Efecto del tipo de concentrado sobre los indicadores del metabolismo de energía y de proteínas en vacas lecheras en pastoreo primaveral. Arch. Med. Vet. 2006, 38, 227–232. [Google Scholar] [CrossRef]
- Holmes, C.; Brookes, I.; Garrick, D.; Mackenzie, D.; Parkinson, T.; Wilson, G. Milk Production from Pasture; Massey University: Palmerston North, New Zealand, 2002; p. 602. [Google Scholar]
Treatments 2 | |||
---|---|---|---|
SBS | CS | HMC | |
Ingredient 1 | |||
CP, % DM | 15.2 | 15.5 | 15.3 |
NDF, % DM | 33.7 | 35.9 | 29.5 |
ADF, % DM | 16.8 | 16.4 | 13.1 |
Lipid, % DM | 1.7 | 2.3 | 2.2 |
ME, Mcal ME/kg DM | 2.70 | 2.78 | 2.76 |
Ash, % DM | 7.0 | 6.8 | 5.5 |
Item | Feeds | |||||
---|---|---|---|---|---|---|
Silages | Pasture | Concentrate | ||||
SBS | CS | HMC | Pasture Silage | |||
DM, % | 28.9 ± 1.43 | 39.5 ± 5.06 | 72.7 ± 2.62 | 28.3 ± 1.43 | 25.1 ± 5.77 | 91.5 ± 1.26 |
Ash, % | 6.7 ± 0.02 | 5.7 ± 0.86 | 1.2 ± 0.03 | 6.9 ± 0.32 | 7.75 ± 0.66 | 4.6 ± 0.15 |
CP, % | 12.8 ± 0.36 | 7.2 ± 0.23 | 6.9 ± 0.10 | 14.1 ± 0.27 | 18.1 ± 2.86 | 21.7 ± 1.15 |
NDF, % | 29.0 ± 0.88 | 36.7 ± 3.07 | 8.2 ± 0.24 | 44.0 ± 2.92 | 39.9 ± 1.23 | 20.0 ± 0.84 |
ADF, % | 19.1 ± 0.46 | 20.0 ± 1.44 | 2.6 ± 0.19 | 30.1 ± 0.35 | 17.7 ± 0.74 | 7.1 ± 0.23 |
EE, % | 0.7 ± 0.06 | 2.3 ± 0.22 | 2.9 ± 0.12 | 2.2 ± 0.42 | 1.56 ± 0.15 | 3.8 ± 0.11 |
ME, Mcal/kg DM | 2.69 ± 0.01 | 2.65 ± 0.04 | 2.95 ± 0.01 | 2.40 ± 0.01 | 2.74 ± 0.06 | 2.80 ± 0.01 |
NFC, % | 50.8 ± 0.58 | 48.1 ± 2.21 | 80.7 ± 0.26 | 32.8 ± 2.78 | 32.8 ± 3.87 | 49.1 ± 0.78 |
Starch, % | - | 30.8 ± 3.42 | 71.2 ± 1.16 | - | - | 32.2 ± 0.61 |
pH | 3.44 ± 0.11 | 3.4 ± 0.06 | 5.0 ± 0.08 | 3.6 ± 0.10 | - | - |
N-NH3, % total N | 5.55 ± 0.23 | 8.9 ± 0.75 | 9.89 ± 1.89 | 8.0 ± 0.92 | - | - |
Lactic Acid, % | 2.22 | 2.46 | 5.87 | 4.10 | - | - |
Acetic Acid, % | 0.54 | 0.65 | 1.02 | 1.21 | - | - |
Treatment | SEM 1 | p-Value | |||
---|---|---|---|---|---|
SBS | CS | HMC | |||
Herbage mass, kg DM/ha | |||||
Pre-grazing | 3368 | 3415 | 3422 | 61.79 | 0.7609 |
Post-grazing | 2074a | 2002ab | 1956b | 46.05 | 0.0471 |
Intake, kg DM/cow/d | |||||
Pasture | 9.46b | 10.31a | 10.20ab | 0.243 | 0.029 |
Treatment silage | 6.27a | 5.95b | 5.03c | 0.059 | <0.001 |
Grass silage | 0.29b | 0.15c | 1.42a | 0.009 | <0.001 |
Concentrate | 3.53 | 3.83 | 3.83 | - | - |
Total | 19.55b | 20.19ab | 20.54a | 0.249 | 0.020 |
Nutrient intake | |||||
CP, kg CP/d | 3.36a | 3.24ab | 3.20b | 0.047 | 0.039 |
ME, Mcal/d | 52.96b | 55.77a | 56.73a | 0.687 | 0.001 |
NDF, kg NDF/d | 6.56b | 7.05a | 5.87c | 0.098 | <0.001 |
Treatments | SEM 1 | p-Value | |||
---|---|---|---|---|---|
SBS | CS | HMC | |||
Milk production, kg/d | 32.68 | 31.77 | 33.43 | 0.686 | 0.297 |
Feed efficiency, milk yield/feed intake | 1.67 | 1.57 | 1.62 | - | - |
Milk fat content, % | 4.18 | 4.42 | 3.99 | 0.144 | 0.152 |
Milk protein content, % | 2.97b | 3.11ab | 3.21a | 0.045 | 0.006 |
Milk urea N, mg/L | 279 | 257 | 237 | 13.80 | 0.152 |
Milk Fat, kg/d | 1.36 | 1.39 | 1.33 | 0.052 | 0.750 |
Milk protein, kg/d | 0.97 | 0.99 | 1.07 | 0.031 | 0.052 |
Body weight, kg | 593 | 595 | 594 | 8.41 | 0.988 |
Treatment | SEM 1 | p-Value | |||
---|---|---|---|---|---|
SBS | CS | HMC | |||
BHB, mmol/L | 1.01 | 0.92 | 0.79 | 0.062 | 0.077 |
Cholesterol, mmol/L | 4.57 | 4.74 | 4.18 | 0.198 | 0.186 |
Blood urea N, mmol/L | 4.89a | 3.88b | 2.94c | 0.178 | <0.001 |
Albumin, g/L | 33.17 | 33.67 | 32.79 | 0.688 | 0.706 |
Treatment | Time of Day | SEM 1 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
SBS | CS | HMC | Am | Pm | Trt | Time | Int | ||
pH | 6.45 | 6.52 | 6.39 | 6.58 | 6.33 | 0.03 | 0.463 | <0.01 | 0.46 |
VFA, mmol/L | |||||||||
Acetate | 40.46 | 39.47 | 45.64 | 39.03 | 44.69 | 1.51 | 0.363 | 0.06 | 0.234 |
Propionate | 22.29 | 21.02 | 20.50 | 19.01 | 23.53 | 0.49 | 0.355 | <0.01 | 0.090 |
Butyrate | 21.26 | 20.10 | 20.50 | 16.29 | 24.95 | 0.76 | 0.827 | <0.01 | 0.355 |
Valeric | 9.61 | 5.81 | 6.39 | 6.13 | 8.38 | 1.06 | 0.302 | 0.298 | 0.305 |
Isobutyrate | 6.80 | 6.07 | 5.55 | 4.76 | 7.52 | 0.46 | 0.586 | <0.01 | 0.456 |
Isovaleric | 5.85 | 5.03 | 3.69 | 3.02 | 6.69 | 0.59 | 0.419 | <0.01 | 0.618 |
Total | 106.29 | 97.52 | 102.28 | 88.26 | 115.79 | 2.23 | 0.306 | <0.01 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleixo, J.A.; Daza, J.; Keim, J.P.; Castillo, I.; Pulido, R.G. Effects of Sugar Beet Silage, High-Moisture Corn, and Corn Silage Feed Supplementation on the Performance of Dairy Cows with Restricted Daily Access to Pasture. Animals 2022, 12, 2672. https://doi.org/10.3390/ani12192672
Aleixo JA, Daza J, Keim JP, Castillo I, Pulido RG. Effects of Sugar Beet Silage, High-Moisture Corn, and Corn Silage Feed Supplementation on the Performance of Dairy Cows with Restricted Daily Access to Pasture. Animals. 2022; 12(19):2672. https://doi.org/10.3390/ani12192672
Chicago/Turabian StyleAleixo, José A., José Daza, Juan P. Keim, Ismael Castillo, and Rubén G. Pulido. 2022. "Effects of Sugar Beet Silage, High-Moisture Corn, and Corn Silage Feed Supplementation on the Performance of Dairy Cows with Restricted Daily Access to Pasture" Animals 12, no. 19: 2672. https://doi.org/10.3390/ani12192672
APA StyleAleixo, J. A., Daza, J., Keim, J. P., Castillo, I., & Pulido, R. G. (2022). Effects of Sugar Beet Silage, High-Moisture Corn, and Corn Silage Feed Supplementation on the Performance of Dairy Cows with Restricted Daily Access to Pasture. Animals, 12(19), 2672. https://doi.org/10.3390/ani12192672