The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens
Abstract
:Simple Summary
Abstract
1. Introdution
Hypotheses
2. Materials and Methods
2.1. Sample
2.2. Skull Measurements
2.3. Analysis
3. Results
3.1. Comparison of Wild vs. Captive Black-Footed Ferrets
3.2. Comparison of Black-Footed Ferret Groups
3.3. Comparison of Black-Footed Ferrets with Closely Related Species
4. Discussion
4.1. Captivity and Cranial Morphology
4.2. Possible Effects of Diet on Cranial Morphology
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillman, C.N.; Clark, T.W. Mustela nigripes . Mamm. Species 1980, 126, 1–3. [Google Scholar] [CrossRef]
- Audubon, J.; Bachman, J. The Viviparous Quadrupeds of North America; Audubon, V.G., Ed.; Audubon: New York, NY, USA, 1851; Volume 2. [Google Scholar]
- Campbell, T.M., III; Clark, T.W.; Richardson, L.; Forrest, S.C.; Houston, B.R. Food habits of Wyoming black-footed ferrets. Am. Midl. Nat. 1987, 117, 208–210. [Google Scholar]
- Jachowski, D.S.; Millspaugh, J.J.; Biggins, D.E.; Livieri, T.M.; Matchett, M.R.; Rittenhouse, C.D. Resource Selection by Black-Footed Ferrets in South Dakota and Montana. Nat. Areas J. 2011, 31, 218–225. [Google Scholar] [CrossRef]
- Anderson, E.; Forrest, S.C.; Clark, T.W.; Richardson, L. Paleobiology, biogeography, and systematics of the black-footed ferret, Mustela nigripes (Audubon and Bachman), 1851. Great Basin Nat. Mem. 1986, 8, 11–62. [Google Scholar]
- Marsh, R. Ground squirrels, prairie dogs, and marmots as pests on rangeland. In Proceedings of the Conference for Organization and Practice of Vertebrate Pest Control, Hampshire, England, 30 August–3 September 1982; Plant Protection Division: Fernherst, England, 1984; pp. 195–208. [Google Scholar]
- Clark, T.W. Restoration of the endangered black-footed ferret: A twenty-year overview. Restor. Endanger. Species 1994, 11, 272–297. [Google Scholar] [CrossRef]
- Henderson, F.R.; Springer, P.F.; Adrian, R. The Black Footed Ferret in South Dakota; Department of Game, Fish and Parks: Washington, DC, USA, 1969.
- Lockhart, J.M.; Thorne, E.T.; Gober, D.R.; Roelle, J.E.; Miller, B.J.; Godbey, J.L.; Biggins, D.E. A historical perspective on recovery of the black-footed ferret and the biological and political challenges affecting its future. In Recovery of the Black-Footed Ferret: Progress and Continuing Challenges; USGS: Washington, DC, USA, 2006; pp. 6–19. [Google Scholar]
- Forrest, S.C.; Biggins, D.E.; Richardson, L.; Clark, T.W.; Campbell, T.M.; Fagerstone, K.A.; Thorne, E.T. Population Attributes for the Black-Footed Ferret (Mustela nigripes) at Meeteetse, Wyoming, 1981–1985. J. Mammal. 1988, 69, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Box, H.O.; Miller, B.; Reading, R.P.; Forrest, S. Prairie Night: Black-Footed Ferrets and the Recovery of Endangered Species; Smithsonian Institution Press: Washington, DC, USA, 1996. [Google Scholar]
- Ballou, J.D.; Oakleaf, R. Demographic and genetic captive-breeding recommendations for black-footed ferrets. In Conservation Biology and the Black-Footed Ferret; Seal, U.S., Thorne, E.T., Bogan, M.A., Anderson, S.H., Eds.; Yale University Press: New Haven, CT, USA, 1989; pp. 247–269. [Google Scholar]
- Marinari, P.E.; Kreeger, J.S.; Roelle, J.; Miller, B.; Godbey, J.; Biggins, D. An adaptive management approach for black-footed ferrets in captivity. In Recovery of the Black-Footed Ferret: Progress and Continuing Challenges; USGS: Washington, DC, USA, 2006; pp. 23–27. [Google Scholar]
- Wisely, S.M.; Ososky, J.J.; Buskirk, S.W. Morphological changes to black-footed ferrets (Mustela nigripes) resulting from captivity. Can. J. Zool.-Rev. Can. De Zool. 2002, 80, 1562–1568. [Google Scholar] [CrossRef]
- Hillman, C.N. Field Observations of Black-Footed Ferrets in South Dakota; South Dakota State University, South Dakota Cooperative Wildlife Research Unit: Brookings, SD, USA, 1968. [Google Scholar]
- Vargas, A.; Anderson, S.H. Effects of diet on captive black-footed ferret (Mustela nigripes) food preference. Zoo Biol. 1996, 15, 105–113. [Google Scholar] [CrossRef]
- Santymire, R.M.; Lavin, S.R.; Marinari, P.; Kreeger, J. Influence of Nutrition on Fitness and Reproduction in Male Black-Footed Ferrets. Biol. Reprod. 2010, 83, 671. [Google Scholar] [CrossRef]
- Vargas, A.; Anderson, S.H. Effects of Experience and Cage Enrichment on Predatory Skills of Black-Footed Ferrets (Mustela nigripes). J. Mammal. 1999, 80, 263–269. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, J. Specializing in Captive Feline, Canine, and Small Carnivore Diets. 2014. Available online: https://www.kenmeat.co.ke/products-kenmeat/ (accessed on 14 May 2014).
- Antonelli, T.; Leischner, C.; Ososky, J.; Hartstone-Rose, A. The effect of captivity on the oral health of the critically endangered black-footed ferret (Mustela nigripes). Can. J. Zool. 2016, 94, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Cordy, D.R. Osteodystrophia fibrosa accompanied by visceral accumulation of lead. Cornell Vet. 1957, 47, 480. [Google Scholar] [PubMed]
- Groves, C.P. The skulls of Asian rhinoceroses: Wild and captive. Zoo Biol. 1982, 1, 251–261. [Google Scholar] [CrossRef]
- Duckler, G.L. Parietal depressions in skulls of the extinct saber-toothed felid Smilodon fatalis: Evidence of mechanical strain. J. Vertebr. Paléontol. 1997, 17, 600–609. [Google Scholar] [CrossRef]
- Zuccarelli, M.D. Research Article: Comparative morphometric analysis of captive vs. wild African lion (Panthera leo) skulls. Bios 2004, 75, 131–138. [Google Scholar] [CrossRef]
- Hartstone-Rose, A.; Selvey, H.; Villari, J.R.; Atwell, M.; Schmidt, T. The Three-Dimensional Morphological Effects of Captivity. PLoS ONE 2014, 9, e113437. [Google Scholar] [CrossRef]
- Kapoor, V.; Antonelli, T.; Parkinson, J.A.; Hartstone-Rose, A. Oral health correlates of captivity. Res. Veter-Sci. 2016, 107, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.S.; Williams, S.H. The influence of diet on masticatory motor patterns in musteloid carnivorans: An analysis of jaw adductor activity in ferrets (Mustela putorius furo) and kinkajous (Potos flavus). J. Exp. Zool. Part A-Ecol. Integr. Physiol. 2017, 327, 551–561. [Google Scholar] [CrossRef]
- Hartstone-Rose, A.; Hertzig, I.; Dickinson, E. Bite Force and Masticatory Muscle Architecture Adaptations in the Dietarily Diverse Musteloidea (Carnivora). Anat. Rec. 2019, 302, 2287–2299. [Google Scholar] [CrossRef]
- Hartstone-Rose, A.; Dickinson, E.; Deutsch, A.R.; Worden, N.; Hirschkorn, G.A. Masticatory muscle architectural correlates of dietary diversity in Canidae, Ursidae, and across the order Carnivora. Anat. Rec.-Adv. Integr. Anat. Evol. Biol. 2021, 305, 477–497. [Google Scholar] [CrossRef]
- Santymire, R.M.; Lonsdorf, E.V.; Lynch, C.M.; Wildt, D.E.; Marinari, P.E.; Kreeger, J.S.; Howard, J.G. Inbreeding causes decreased seminal quality affecting pregnancy and litter size in the endangered black-footed ferret. Anim. Conserv. 2018, 22, 331–340. [Google Scholar] [CrossRef]
- Wisely, S.M.; Buskirk, S.W.; Fleming, M.A.; McDonald, D.; Ostrander, E. Genetic Diversity and Fitness in Black-Footed Ferrets Before and During a Bottleneck. J. Hered. 2002, 93, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Anderson, S.H. Comparison of black-footed ferret (Mustela nigripes) and domestic ferret (M. putorius furo) courtship activity. Zoo Biol. 1990, 9, 201–210. [Google Scholar] [CrossRef]
- Wolf, K.; Wildt, D.; Vargas, A.; Marinari, P.; Kreeger, J.; Ottinger, M.; Howard, J. Age-Dependent Changes in Sperm Production, Semen Quality, and Testicular Volume in the Black-Footed Ferret (Mustela nigripes). Biol. Reprod. 2000, 63, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.S.; Thome, E.T.; Appel, M.J.G.; Belitsky, D.W. Canine distemper in black-footed ferrets (Mustela nigripes) from Wyoming. J. Wildl. Dis. 1988, 24, 385–398. [Google Scholar] [CrossRef]
- Carpenter, J.W.; Appel, M.J.; Erickson, R.C.; Novilla, M.N. Fatal vaccine-induced canine distemper virus infection in black-footed ferrets. J. Am. Vet. Med. Assoc. 1976, 169, 961–964. [Google Scholar]
- Williams, E.S.; Anderson, S.L.; Cavender, J.; Lynn, C.; List, K.; Hearn, C.; Appel, M.J.G. Vaccination of black-footed ferret (Mustela nigripes)× Siberian polecat (M. eversmanni) hybrids and domestic ferrets (M. putorius furo) against canine distemper. J. Wildl. Dis. 1996, 32, 417–423. [Google Scholar] [CrossRef]
- Rocke, T.E.; Smith, S.; Marinari, P.; Kreeger, J.; Enama, J.T.; Powell, B.S. accination with F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against plague upon oral challenge with Yersinia pestis. J. Wildl. Dis. 2008, 44, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Matchett, M.R.; Biggins, D.E.; Carlson, V.; Powell, B.; Rocke, T. Enzootic Plague Reduces Black-Footed Ferret (Mustela nigripes) Survival in Montana. Vector-Borne Zoonotic Dis. 2010, 10, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.C.; Osorio, J.E.; Bunck, C.M.; Rocke, T.E. Sylvatic Plague Vaccine: A New Tool for Conservation of Threatened and Endangered Species? Ecohealth 2012, 9, 243–250. [Google Scholar] [CrossRef]
- Coues, E. Fur-Bearing Animals: A Monograph of North American Mustelidae, in Which an Account of the Wolverene, the Martens or Sables, the Ermine, the Mink and Various other Kinds of Weasels, Several Species of Skunks, the Badger, the Land and Sea Otters, and Numerous Exotic Allies of These Animals, Is Contributed to the History of North American Mammals; US Government Printing Office: Washington, DC, USA, 1877.
- Curtis, A.; Orke, M.; Tetradis, S.; Van Valkenburgh, B. Diet-related differences in craniodental morphology between captive-reared and wild coyotes, Canis latrans (Carnivora: Canidae). Biol. J. Linn. Soc. 2018, 123, 677–693. [Google Scholar] [CrossRef]
- Ewer, R.F. The Carnivores; Cornell UP: Ithica, NY, USA, 1973. [Google Scholar]
- Hartstone-Rose, A.; Perry, J.M.G.; Morrow, C.J. Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles. Anat. Rec. 2012, 295, 1336–1351. [Google Scholar] [CrossRef] [PubMed]
- Radinsky, L. Approaches in evolutionary morphology: A search for patterns. Annu. Rev. Ecol. Syst. 1985, 16, 1–14. [Google Scholar] [CrossRef]
- Haberstroh, L.I.; Ullrey, D.E.; Sikarski, J.G.; Richter, N.A.; Colmery, B.H.; Myers, T.D. Diet and Oral Health in Captive Amur Tigers (Panthera tigris altaica). J. Zoo Anim. Med. 1984, 15, 142. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.; Mastromonaco, G.F.; Goodrowe, K.; Santymire, R.M.; Waddell, W.; Schulte-Hostedde, A. The effects of inbreeding on sperm morphometry of captive-bred endangered mammals. Can. J. Zool. 2017, 95, 599–606. [Google Scholar] [CrossRef]
- Dobson, A.; Lyles, A. Ecology-Black-footed ferret recovery. Science 2000, 288, 985. [Google Scholar] [CrossRef] [Green Version]
- Biggins, D.; Miller, B.J.; Hanebury, L.R.; Oakleaf, B.; Farmer, A.H.; Crete, R.; Dood, A. A technique for evaluating black-footed ferret habitat. In Management of Prairie Dog Complexes for the Reintroduction of the Black-Footed Ferret; U.S. Fish and Wildlife Service: Washington, DC, USA, 1993; pp. 73–88. [Google Scholar]
- Morgan, K.N.; Tromborg, C.T. Sources of stress in captivity. Appl. Anim. Behav. Sci. 2007, 102, 262–302. [Google Scholar] [CrossRef]
- Bayazit, V. Evaluation of cortisol and stress in captive animals. Aust. J. Basic Appl. Sci. 2009, 3, 1022–1031. [Google Scholar]
- Baker, M.; Gemmell, E.; Gemmell, R.T. Physiological changes in brushtail possums, Trichosurus vulpecula, transferred from the wild to captivity. J. Exp. Zool. 1998, 280, 203–212. [Google Scholar] [CrossRef]
- Constable, P.; Hinchcliff, K.; Demma, N.; Callahan, M.; Dale, B.; Fox, K.; Adams, L.; Wack, R.; Kramer, L. Serum biochemistry of captive and free-ranging gray wolves (Canis lupus). J. Zoo Wildl. Med. 1998, 29, 435–440. [Google Scholar]
- Kilbourn, A.M.; Karesh, W.B.; Wolfe, N.D.; Bosi, E.J.; Cook, R.A.; Andau, M. ealth evaluation of free-ranging and semi-captive orangutans (Pongo pygmaeus pygmaeus) in Sabah, Malaysia. J. Wildl. Dis. 2003, 39, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Regan, H.J.; Kitchener, A.C. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Rev. 2005, 35, 215–230. [Google Scholar] [CrossRef]
- Lieberman, D.E.; Krovitz, G.E.; Yates, F.W.; Devlin, M.; Claire, M.S. Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face. J. Hum. Evol. 2004, 46, 655–677. [Google Scholar] [CrossRef] [PubMed]
Group | Description | Male | Female | Total |
---|---|---|---|---|
Wild | Wild specimens accessioned prior to the modern reintroduction campaign (1876–1971) | 30 | 20 | 50 |
Early captive | Specimens that were captive prior to the Black-Footed Ferret Recovery Act | 8 | 3 | 11 |
Recovery phase I | Captive bred specimens fed the “60/40” diet from 1985 to 1996 | 53 | 58 | 111 |
Recovery phase II | Captive bred specimens from 1996 until the most recent accessions which were fed a less obdurate diet | 18 | 16 | 34 |
M. putorious | European polecat | 13 | 11 | 24 |
M. eversmanii | Steppe polecat | 7 | 5 | 12 |
Total | 129 | 113 | 242 |
Num. a | Cranial Measurement | Description a |
---|---|---|
1 | Total length | Inion to alveolare (prosthion) |
2 | Basal length | Opisthion (inferior foramen magnum) to alveolare |
3 | Rostral length | Orbitale to alveolare |
4 | Neurocranium length | Orbitale to inion |
5 | Total height | Inferior mandibular angle to vertex |
6 | Max height | Greatest dorsal-ventral height |
7 | Zygomatic width | Zygonion to zygonion |
8 | Interorbital constriction | Supraorbitale to supraorbitale |
9 | Postorbital constriction | Cranial width at narrowest location posterior to orbits |
10 | Bicoronion width | Coronion to coronion |
11 | Biangular width | Gonion to gonion |
12 | Neurocranium width | Porion to porion |
13 | Jaw length | Interdentale to condylare |
14 | Coronoid height | Inferior mandibular angle to coronion |
15 | Condyle height | Inferior mandibular angle to dorsal-most condyle |
16 | Upper canine AP | Anteroposterior length of upper canine |
17 | Upper carnassial length | Anteroposterior length of upper carnassial |
18 | Lower carnassial length | Anteroposterior length of lower carnassial |
19 | Palatal length | Orale to staphylion |
20 | Palatal width | Endomolare to endomolare |
21 | Bicanine width | Maximum distance measured on lateral-most points on the upper canines |
22 | Temporal fossa AP | Anteroposterior length of the temporal fossa |
23 | Temporal fossa ML | Mediolateral width of the temporal fossa |
Measurement | Captive | Captive SD | Wild | Wild SD | p-Value a |
---|---|---|---|---|---|
Total length | 64.58 | 0.2884 | 64.9 | 0.4284 | 0.5452 |
Basal length | 62.32 | 0.2548 | 64.26 | 0.4058 | <0.001 *** |
Total height | 27.69 | 0.1413 | 28.35 | 0.2302 | 0.0157 * |
Max height | 31.67 | 0.1411 | 30.97 | 0.2299 | 0.0112 * |
Zygomatic width | 40.69 | 0.2277 | 41.55 | 0.3919 | 0.061 |
Interorbital constriction | 17.19 | 0.1074 | 17.47 | 0.1751 | 0.1756 |
Post-orbital constriction | 11.81 | 0.1293 | 12.6 | 0.2106 | 0.002 ** |
Bicoronion width | 30.76 | 0.1718 | 29.97 | 0.2864 | 0.0195 * |
Biangular width | 30.93 | 0.1852 | 31.25 | 0.3032 | 0.365 |
Neurocranium width | 28.68 | 0.1677 | 28.83 | 0.2745 | 0.646 |
Rostral length | 17.85 | 0.0991 | 18.28 | 0.1604 | 0.0252 * |
Neurocranium length | 51.43 | 0.2702 | 51.07 | 0.4014 | 0.4498 |
Jaw length | 42.38 | 0.2332 | 42.98 | 0.3816 | 0.1807 |
Coronoid height | 19.72 | 0.1147 | 20.69 | 0.1902 | <0.001 *** |
Condyle height | 6.17 | 0.0724 | 7.37 | 0.1179 | <0.001 *** |
Upper canine anteroposterior | 4.26 | 0.0301 | 4.25 | 0.0485 | 0.8747 |
Upper carnassial length | 7.41 | 0.0374 | 7.44 | 0.0601 | 0.6421 |
Lower carnassial length | 8.15 | 0.0483 | 8.35 | 0.0787 | 0.0373 * |
Palatal length | 31.9 | 0.1382 | 32.74 | 0.2238 | 0.0019 ** |
Palatal width | 24.06 | 0.2106 | 24.99 | 0.3431 | 0.0231 * |
Bicanine width | 16.28 | 0.1106 | 16.74 | 0.1767 | 0.0311 * |
Temporal fossa anteroposterior | 17.93 | 0.1294 | 17.68 | 0.2146 | 0.3269 |
Temporal fossa mediolateral | 16.8 | 0.1256 | 17.12 | 0.2121 | 0.1944 |
Principle component 1 | −0.09 | 0.4385 | 0.85 | 0.6622 | 0.2404 |
Principle component 2 | −0.5 | 0.1531 | 1.38 | 0.2312 | <0.001 *** |
Principle component 3 | 0.15 | 0.1529 | −0.13 | 0.2308 | 0.3101 |
Principle component 4 | 0.11 | 0.1348 | −0.104 | 0.2035 | 0.3851 |
Principle component 5 | 0 | 0.1314 | −0.25 | 0.1984 | 0.2918 |
Measurement | Captive | Captive SD | Wild | Wild SD | p-Value a |
---|---|---|---|---|---|
Total length | 59.89 | 0.267 | 60.85 | 0.425 | 0.0607 |
Basal length | 58.3 | 0.221 | 60.59 | 0.421 | <0.001 *** |
Total height | 25.59 | 0.14 | 26.34 | 0.272 | 0.0161 * |
Max height | 29 | 0.144 | 29.11 | 0.28 | 0.7277 |
Zygomatic width | 37.42 | 0.178 | 39.4 | 0.347 | <0.001 *** |
Interorbital constriction | 15.82 | 0.096 | 16.32 | 0.187 | 0.0199 * |
Post-orbital constriction | 11.33 | 0.121 | 12.1 | 0.234 | 0.0045 ** |
Bicoronion width | 28.61 | 0.141 | 28.7 | 0.272 | 0.7601 |
Biangular width | 29.05 | 0.179 | 29.71 | 0.345 | 0.0922 |
Neurocranium width | 26.96 | 0.15 | 27.11 | 0.286 | 0.6574 |
Rostral length | 16.63 | 0.089 | 17.38 | 0.173 | <0.001 *** |
Neurocranium length | 48.07 | 0.274 | 48.53 | 0.436 | 0.3728 |
Jaw length | 39.1 | 0.164 | 40.04 | 0.32 | 0.0103 * |
Coronoid height | 17.89 | 0.098 | 19.44 | 0.191 | <0.001 *** |
Condyle height | 5.54 | 0.051 | 6.91 | 0.099 | <0.001 *** |
Upper canine anteroposterior | 3.75 | 0.032 | 3.86 | 0.063 | 0.1282 |
Upper carnassial length | 7.03 | 0.034 | 7.189 | 0.064 | 0.0352 * |
Lower carnassial length | 7.53 | 0.042 | 7.78 | 0.08 | 0.0069 ** |
Palatal length | 29.61 | 0.131 | 30.63 | 0.255 | <0.001 *** |
Palatal width | 22.61 | 0.209 | 24.48 | 0.407 | <0.001 *** |
Bicanine width | 14.78 | 0.08 | 15.24 | 0.154 | 0.009 ** |
Temporal fossa anteroposterior | 16.32 | 0.109 | 16.34 | 0.212 | 0.9075 |
Temporal fossa mediolateral | 15.4 | 0.104 | 16.12 | 0.202 | 0.0019 * |
Principle component 1 | −0.52 | 0.465 | 2.51 | 0.7 | <0.001 *** |
Principle component 2 | −0.15 | 0.162 | 1.44 | 0.244 | <0.001 *** |
Principle component 3 | −0.17 | 0.172 | 0.88 | 0.259 | 0.0012 ** |
Principle component 4 | −0.3 | 0.153 | −0.07 | 0.23 | 0.4129 |
Principle component 5 | 0.05 | 0.147 | −0.02 | 0.221 | 0.782 |
Predicted | |||||
---|---|---|---|---|---|
Early Captive | Recovery Phase I | Recovery Phase II | Wild | ||
Actual | Early Captive | 6, 2 | 0 | 0 | 1, 0 |
Recovery phase I | 0 | 25, 24 | 6, 2 | 2, 0 | |
Recovery phase II | 0 | 2, 0 | 15, 14 | 0, 1 | |
Wild | 8, 0 | 0 | 0 | 17, 19 |
Sex | PC | Early Captive * | Recovery Phase I | Recovery Phase II | Wild |
---|---|---|---|---|---|
Males | PC1 | A B | B | A | A |
PC2 | A | B | B | A | |
PC3 | A | A | A | A | |
PC4 | A | A | A | A | |
Females | PC1 | A | B | B | |
PC2 | A | A | B | ||
PC3 | A | A | B | ||
PC4 | A | B | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonelli, T.; Leischner, C.L.; Hartstone-Rose, A. The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens. Animals 2022, 12, 2708. https://doi.org/10.3390/ani12192708
Antonelli T, Leischner CL, Hartstone-Rose A. The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens. Animals. 2022; 12(19):2708. https://doi.org/10.3390/ani12192708
Chicago/Turabian StyleAntonelli, Tyler, Carissa L. Leischner, and Adam Hartstone-Rose. 2022. "The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens" Animals 12, no. 19: 2708. https://doi.org/10.3390/ani12192708
APA StyleAntonelli, T., Leischner, C. L., & Hartstone-Rose, A. (2022). The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens. Animals, 12(19), 2708. https://doi.org/10.3390/ani12192708