Effect of Dietary Blue-Green Microalgae Inclusion as a Replacement to Soybean Meal on Laying Hens’ Performance, Egg Quality, Plasma Metabolites, and Hematology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and SP Treatments
2.2. Productive Performance
2.3. Egg Quality
2.4. Metabolites Assay
2.5. Hematological Parameters
2.6. Statistical Analysis
3. Results
3.1. Productive Performance
3.2. Egg Quality
3.3. Blood Metabolites
3.4. Hematological Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohan, A.; Misra, N.; Srivastav, D.; Umapathy, D.; Kumar, S. Spirulina-The Nature’s Wonder: A Review. Sch. J. Appl. Med. Sci. 2014, 2, 1334–1339. [Google Scholar]
- Ravi, M.; Lata, S.; Syed, D.; Solomon, A.; Paul, F.D. The Beneficial Effects of Spirulina Focusing on Its Immunomodulatory and Antioxidant Properties. Nutr. Diet. Suppl. 2010, 2, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.A.V.; Freitas, B.C.B.; Rosa, G.M.; Moraes, L.; Morais, M.G.; Mitchell, B.G. Operational and Economic Aspects of Spirulina-Based Biorefinery. Bioresour. Technol. 2019, 292, 121946. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina—From Growth to Nutritional Product: A Review. Trends Food Sci. Technol. 2017, 69, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Habib, M.A.B.; Parvin, M.; Huntington, T.C.; Hasan, M.R. A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish; FAO: Rome, Italy, 2008. [Google Scholar]
- Vilahur, G.; Sutelman, P.; Ben-Aicha, S.; Mendieta, G.; Radiké, M.; Schoch, L.; Casaní, L.; Borrell-Pagés, M.; Padro, T.; Badimon, L. Supplementation With Spirulina Reduces Infarct Size and Ameliorates Cardiac Function in a Pig Model of STEMI. Front. Pharmacol. 2022, 13, 891801. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, X.; Zhang, Z.; Deng, K.; An, S.; Gao, X.; Wang, Z.; Liu, Z.; Wang, F.; Liu, D.; et al. Spirulina Supplementation Improves Lipid Metabolism and Autophagic Activities in the Liver and Muscle of Hu Lambs Fed a High-Energy Diet. Arch. Anim. Nutr. 2020, 74, 476–495. [Google Scholar] [CrossRef]
- Azabji-Kenfack, M.; Dikosso, S.E.; Loni, E.G.; Onana, E.A.; Sobngwi, E.; Gbaguidi, E.; Kana, A.L.N.; Nguefack-Tsague, G.; von der Weid, D.; Njoya, O.; et al. Potential of Spirulina platensis as a Nutritional Supplement in Malnourished HIV-Infected Adults in Sub-Saharan Africa: A Randomised, Single-Blind Study. Nutr. Metab. Insights 2011, 4, NMI-S5862. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Bhadouria, P.; Bisen, P. Nutritional and Therapeutic Potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Anvar, A.A.; Nowruzi, B. Bioactive Properties of Spirulina: A Review. Microb. Bioact. 2021, 4, 134–142. [Google Scholar] [CrossRef]
- Ragab El-Sabagh, M.; Attia, M.; Eldaim, A.; Mahboub, D.H.; Abdel-Daim, M. Effects of Spirulina platensis Algae on Growth Performance, Antioxidative Status and Blood Metabolites in Fattening Lambs. J. Agric. Sci. 2014, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, E.S.; Alsanie, W.F.; Gaber, A.; Kamel, N.N.; Alaqil, A.A.; Abbas, A.O. Blue-Green Algae (Spirulina platensis) Alleviates the Negative Impact of Heat Stress on Broiler Production Performance and Redox Status. Animals 2021, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Curabay, B.; Sevim, B.; Cufadar, Y.; Ayasan, T. Effects of Adding Spirulina platensis to Laying Hen Rations on Performance, Egg Quality, and Some Blood Parameters. J. Hell. Vet. Med. Soc. 2021, 72, 2945–2952. [Google Scholar] [CrossRef]
- Shanmugapriya, B.; Saravana Babu, S.; Hariharan, T.; Sivaneswaran, S.; Anusha, M.B. Dietary Administration of Spirulina platensis Asprobiotics Ongrowth Performanceand Histopathology in Broilerchicks. Int. J. Recent Sci. Res. 2015, 6, 2650–2653. [Google Scholar]
- Shokri, H.; Khosravi, A.; Taghavi, M. Efficacy of Spirulina platensis on Immune Functions in Cancer Mice with Systemic Candidiasis. J. Mycol. Res. 2014, 1, 7–13. [Google Scholar]
- Şahan, A. Determination of Some Haematological and Non-Specific Im-Mune Parameters in Nile Tilapia (Oreochromis niloticus L., 1758) Fed with Spirulina (Spirulina platensis) Added Diets. J. Aquac. Eng. Fish. Res. 2015, 1, 133–139. [Google Scholar] [CrossRef]
- Ismail, M.F.; Ali, D.A.; Fernando, A.; Abdraboh, M.E.; Gaur, R.L.; Ibrahim, W.M.; Raj, M.H.G.; Ouhtit, A. Chemoprevention of Rat Liver Toxicity and Carcinogenesis by Spirulina. Int. J. Biol. Sci. 2009, 5, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Coskun, Z.K.; Kerem, M.; Gurbuz, N.; Omeroglu, S.; Pasaoglu, H.; Demirtas, C.; Lortlar, N.; Salman, B.; Pasaoglu, O.T.; Turgut, H.B. The Study of Biochemical and Histopathological Effects of Spirulina in Rats with TNBS-Induced Colitis. Bratisl. Lek. Listy. 2011, 112, 235–243. [Google Scholar]
- Gupta, S.; Hrishikeshvan, H.J.; Sehajpal, P.K. Spirulina Protects against Rosiglitazone Induced Osteoporosis in Insulin Resistance Rats. Diabetes Res. Clin. Pract. 2010, 87, 38–43. [Google Scholar] [CrossRef]
- Gad, A.S.; Khadrawy, Y.A.; El-Nekeety, A.A.; Mohamed, S.R.; Hassan, N.S.; Abdel-Wahhab, M.A. Antioxidant Activity and Hepatoprotective Effects of Whey Protein and Spirulina in Rats. Nutrition 2011, 27, 582–589. [Google Scholar] [CrossRef]
- Altmann, B.A.; Wigger, R.; Ciulu, M.; Mörlein, D. The Effect of Insect or Microalga Alternative Protein Feeds on Broiler Meat Quality. J. Sci. Food Agric. 2020, 100, 4292–4302. [Google Scholar] [CrossRef]
- Tavernari, F.D.C.; Roza, L.F.; Surek, D.; Sordi, C.; Silva, M.L.B.D.; Albino, L.F.T.; Migliorini, M.J.; Paiano, D.; Boiago, M.M. Apparent Metabolisable Energy and Amino Acid Digestibility of Microalgae Spirulina platensis as an Ingredient in Broiler Chicken Diets. Br. Poult. Sci. 2018, 59, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Velten, S.; Neumann, C.; Bleyer, M.; Gruber-Dujardin, E.; Hanuszewska, M.; Przybylska-Gornowicz, B.; Liebert, F. Effects of 50 Percent Substitution of Soybean Meal by Alternative Proteins from Hermetia Illucens or Spirulina platensis in Meat-Type Chicken Diets with Graded Amino Acid Supply. Open J. Anim. Sci. 2018, 8, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lee, S.I.; Kim, I.H. Effect of Dietary Spirulina (Arthrospira) Platensis on the Growth Performance, Antioxidant Enzyme Activity, Nutrient Digestibility, Cecal Microflora, Excreta Noxious Gas Emission, and Breast Meat Quality of Broiler Chickens. Poult. Sci. 2018, 97, 2451–2459. [Google Scholar] [CrossRef]
- Omar, A.E.; Al-Khalaifah, H.S.; Osman, A.; Gouda, A.; Shalaby, S.I.; Roushdy, E.M.; Abdo, S.A.; Ali, S.A.; Hassan, A.M.; Amer, S.A. Modulating the Growth, Antioxidant Activity, and Immunoexpression of Proinflammatory Cytokines and Apoptotic Proteins in Broiler Chickens by Adding Dietary Spirulina platensis Phycocyanin. Antioxidants 2022, 11, 991. [Google Scholar] [CrossRef]
- Feshanghchi, M.; Baghban-Kanani, P.; Kashefi-Motlagh, B.; Adib, F.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Zangeronimo, M.G.; Swelum, A.A.; et al. Milk Thistle (Silybum marianum), Marine Algae (Spirulina platensis) and Toxin Binder Powders in the Diets of Broiler Chickens Exposed to Aflatoxin-B1: Growth Performance, Humoral Immune Response and Cecal Microbiota. Agriculture 2022, 12, 805. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Ahmed, A.M.H.; Abdel-Maqsoud, A.; Badran, A.M.M.; Abdel-Moneim, A.M.E. Potential Ameliorative Role of Spirulina platensis in Powdered or Extract Forms against Cyclic Heat Stress in Broiler Chickens. Environ. Sci. Pollut. Res. 2022, 29, 45578–45588. [Google Scholar] [CrossRef] [PubMed]
- Hajati, H.; Zaghari, M.; Oliveira, H.C. Arthrospira (Spirulina) Platensis Can Be Considered as a Probiotic Alternative to Reduce Heat Stress in Laying Japanese Quails. Rev. Bras. Cienc. Avic. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Abd El-Dayem, G.A.; Saleh, G.K.; Abd El-wahab, R.A.E.-R. Impact of Dietary Spirulina (Arthrospira) Platensison Growth Performance, Gene Expression and Antioxidant Status of Quail Challenged with Salmonella Enteritidis. Mansoura Vet. Med. J. 2021, 22, 38–47. [Google Scholar] [CrossRef]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Seidavi, A.; Ayaşan, T.; Laudadio, V. Effects of Horsetail (Equisetum arvense) and Spirulina (Spirulina platensis) Dietary Supplementation on Laying Hens Productivity and Oxidative Status. Animals 2021, 11, 335. [Google Scholar] [CrossRef]
- Rey, A.I.; De-Cara, A.; Rebolé, A.; Arija, I. Short-Term Spirulina (Spirulina platensis) Supplementation and Laying Hen Strain Effects on Eggs’ Lipid Profile and Stability. Animals 2021, 11, 1944. [Google Scholar] [CrossRef]
- Zahroojian, N.; Moravej, H.; Shivazad, M. Effects of Dietary Marine Algae (Spirulina platensis) on Egg Quality and Production Performance of Laying Hens. J. Agric. Sci. Technol. 2013, 15, 1353–1360. [Google Scholar]
- Khan, F.; Shuvo, A.A.S.; Khan, M.J.; Islam, K.M.S. Effects of Dietary Inclusion of Spirulina platensis on Egg Yolk Pigmentation. Livest. Res. Rural. Dev. 2021, 33, 101. [Google Scholar]
- Holman, B.W.B.; Malau-Aduli, A.E.O. Spirulina as a Livestock Supplement and Animal Feed. J. Anim. Physiol. Anim. Nutr. 2013, 97, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Ghany, W.A.A. Microalgae in Poultry Field: A Comprehensive Perspectives. Adv Anim Vet Sci. 2020, 8, 888–897. [Google Scholar] [CrossRef]
- NRC Nutrient Requirements of Poultry: Ninth Revised Edition; The National Academies Press: Washington, DC, USA, 1994; ISBN 978-0-309-04892-7.
- Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- Drabkin, D.L.; Austin, J.H. Spectrophotometric Studies: I. Spectrophotometric Constants for Common Hemoglobin Derivatives in Human, Dog, and Rabbit Blood. J. Biol. Chem. 1932, 98, 719–733. [Google Scholar] [CrossRef]
- Li, F.; Xu, L.M.; Shan, A.S.; Hu, J.W.; Zhang, Y.Y.; Li, Y.H. Effect of Daily Feed Intake in Laying Period on Laying Performance, Egg Quality and Egg Composition of Genetically Fat and Lean Lines of Chickens. Br. Poult. Sci. 2011, 52, 163–168. [Google Scholar] [CrossRef]
- Selim, S.; Hussein, E.; Abou-Elkhair, R. Effect of Spirulina platensis as a Feed Additive on Laying Performance, Egg Quality and Hepatoprotective Activity of Laying Hens. Eur. Poult. Sci. 2018, 82, 1–13. [Google Scholar]
- Çalişlar, S. The Important of Beta Carotene on Poultry Nutrition. Selcuk. J. Agric. Food Sci. 2019, 33, 252–259. [Google Scholar] [CrossRef]
- Mariey, Y.A.; Samak, H.R.; Ibrahem, M.A. Effect of Using Spirulina platensis Algae as Afeed Additive for Poultry Diets: 1-Productive and Reproductive Performances of Local Laying Hens. Egypt. Poult. Sci. J. 2012, 32, 201–215. [Google Scholar]
- Seyidoglu, N.; Belenli, D. A “Super Food” for Alternative Nutrients: Spirulina platensis. Online J. Sci. Technol. 2019, 9, 1–6. [Google Scholar]
- Mitchell, W.K.; Wilkinson, D.J.; Phillips, B.E.; Lund, J.N.; Smith, K.; Atherton, P.J. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition. Adv. Nutr. 2016, 7, 828S–838S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariana, M.; Samie, A.; Edriss, M.A.; Jahanian, R. Effects of Powder and Extract Form of Green Tea and Marigold, and α-Tocopheryl Acetate on Performance, Egg Quality and Egg Yolk Cholesterol Levels of Laying Hens in Late Phase of Production. J. Med. Plants Res. 2011, 5, 2710–2716. [Google Scholar]
- Ekantari, N.; Harmayani, E.; Pranoto, Y.; Marsono, Y. Calcium of Spirulina platensis Has Higher Bioavailability than Those of Calcium Carbonate and High-Calcium Milk in Sprague Dawley Rats Fed with Vitamin D-Deficient Diet. Pak. J. Nutr. 2017, 16, 179–186. [Google Scholar] [CrossRef] [Green Version]
- An, S.H.; Kim, D.W.; An, B.K. Effects of Dietary Calcium Levels on Productive Performance, Eggshell Quality and Overall Calcium Status in Aged Laying Hens. Asian-Australas J. Anim. Sci. 2016, 29, 1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, S.; Mehta, P. The Hepatoprotective Potential of Spirulina and Vitamin C Supplemention in Cisplatin Toxicity. Food Funct 2012, 3, 164–169. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.M.; Hamad, S.M.; Gomaa, M. Protective Effects of Spirulina on the Liver Function and Hyperlipidemia of Rats and Human. Braz. Arch. Biol. Technol. 2014, 57, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver Enzyme Alteration: A Guide for Clinicians. Can. Med. Assoc. J. 2005, 172, 367. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.; Prakash Bhartiya, J.; Kumar Verma, S.; Kumar Nandkeoliar, M. Evaluation of Blood Urea, Creatinine and Uric Acid as Markers of Kidney Functions in Hypertensive Patients: A Prospective Study. Indian J. Basic Appl. Med. Res. 2014, 3, 682. [Google Scholar]
- Charlton, M.R. Protein Metabolism and Liver Disease. Baillieres Clin. Endocrinol. Metab. 1996, 10, 617–635. [Google Scholar] [CrossRef]
- Chiu, H.W.; Hua, K.F. Hepatoprotective Effect of Wheat-Based Solid-State Fermented Antrodia Cinnamomea in Carbon Tetrachloride-Induced Liver Injury in Rat. PLoS ONE 2016, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Selmi, C.; Leung, P.S.C.; Fischer, L.; German, B.; Yang, C.Y.; Kenny, T.P.; Cysewski, G.R.; Gershwin, M.E. The Effects of Spirulina on Anemia and Immune Function in Senior Citizens. Cell. Mol. Immunol. 2011, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Mani, U.; Sadliwala, A.; Iyer, U.; Parikh, P. The Effect of Spirulina Supplementation on Blood Haemoglobin Levels of Anaemic Adult Girls. J. Food Sci. Technol. 2000, 37, 642–644. [Google Scholar]
- Promya, J.; Chitmanat, C. The Effects of Spirulina platensis and Cladophora Algae on the Growth Performance, Meat Quality and Immunity Stimulating Capacity of the African Sharptooth Catfish (Clarias gariepinus). Int. J. Agric. Biol. 2011, 13, 77–82. [Google Scholar]
- Yeganeh, S.; Teimouri, M.; Amirkolaie, A.K. Dietary Effects of Spirulina platensis on Hematological and Serum Biochemical Parameters of Rainbow Trout (Oncorhynchus Mykiss). Res. Vet. Sci. 2015, 101, 84–88. [Google Scholar] [CrossRef]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional Composition, Nutritional Properties, and Biological Activities of Moroccan Spirulina Microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Zhou, J.; Huang, X.; Li, M. Effects of Psychological Stress on Serum Iron and Erythropoiesis. Int. J. Hematol. 2008, 88, 52–56. [Google Scholar] [CrossRef]
- Hasan, R.; Sarker, S.; Islam, M.S.; Sikder, M.H.; Rahman, M.M. Efficacy Of Spirulina On Production Indices Of Advanced Age Layer Chicken. Ann. Bangladesh Agric. 2018, 22, 67–76. [Google Scholar]
- Elmalawany, A.M.; Salem, T.A.; Mohamed, A.H.; Osman, G.Y. Effect of Blue Green Algae on Some Biochemical and Hematological Markers in Mice. Int. J. Adv. Res. 2014, 2, 568–574. [Google Scholar]
- Dvm, S.E.; Olfati, A.; Emami, S. Effects of Dietary Supplementing of Spirulina platensis and Chlorella Vulgaris Microalgae on Hematologic Parameters in Streptozotocin-Induced Diabetic Rats. Iran. J. Pediatr. Hematol. Oncol. 2017, 7, 163–170. [Google Scholar]
- Kelkar, G.; Subhadra, K.; Chengappa, R.K. Effect of Antioxidant Supplementation on Hematological Parameters, Oxidative Stress and Performance of Indian Athletes. J. Hum. Ecol. 2008, 24, 209–213. [Google Scholar] [CrossRef]
Item | Contents per 100 g SBM * | Contents per 100 g SP |
---|---|---|
Chemical composition | ||
Dry matter | 90.0 g | 94.4 g |
Crude protein | 44.0 g | 56.4 g |
Total lipids | 0.5 g | 7.2 g |
Carbohydrate | - | 14.2 g |
Crude fiber | 7.0 g | 0.02 g |
Total ash | - | 7.5 g |
Gross energy | - | 43.6 MJ |
Minerals * | ||
Calcium | 250.0 mg | 436.3 mg |
Phosphorus | 200.0 mg | 124.5 mg |
Sodium | 40.0 mg | 220.1 mg |
Potassium | 1970.0 mg | 167.8 mg |
Iron | - | 11.5 mg |
Zinc | - | 2.4 mg |
Essential amino acids * | ||
Isoleucine | 2.5 g | 6.6 g |
Leucine | - | 8.3 g |
Valine | 2.4 g | 6.6 g |
Lysine | 2.7 g | 4.8 g |
Tryptophan | 0.6 g | 1.1 g |
Phenylalanine | - | 4.7 g |
Methionine | 0.7 g | 2.4 g |
Threonine | 1.7 g | 5.3 g |
Nonessential amino acids * | ||
Cysteine | 0.7 g | 1.0 g |
Tyrosine | - | 4.5 g |
Alanine | - | 8.5 g |
Arginine | 3.4 g | 7.4 g |
Aspartic acid | - | 11.5 g |
Glutamic acid | - | 10.2 g |
Glycine | - | 5.5 g |
Histidine | - | 2.5 g |
Proline | - | 4.3 g |
Serine | - | 4.9 g |
Ingredients (g/kg as Fed) | Control | 3% SP | 6% SP | 9% SP | 12% SP |
---|---|---|---|---|---|
Spirulina | 0.0 | 30.0 | 60.0 | 90.0 | 120.0 |
Soybean meal (44% CP) | 275.0 | 236.4 | 197.7 | 159.1 | 120.5 |
Yellow corn | 566.5 | 575.1 | 583.8 | 592.4 | 601.0 |
Wheat bran | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Soybean oil | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
Bone meal | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
Limestone | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 |
Salt (NaCl) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Premix 2 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
DL-Methionine | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Calculated nutrients | |||||
Metabolizable energy (MJ/kg) | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 |
Calcium (g/kg) | 40.2 | 40.2 | 40.2 | 40.2 | 40.2 |
Available phosphorus (g/kg) | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 |
Determined nutrients | |||||
Crude protein (g/kg) | 167.5 | 170.0 | 170.0 | 174.5 | 174.7 |
Crude fat (g/kg) | 66.0 | 64.5 | 63.8 | 62.1 | 61.5 |
Crude fiber (g/kg) | 47.0 | 46.5 | 46.5 | 45.8 | 45.5 |
Parameters 1 | Dietary Spirulina platensis (SP) Groups | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | 3% SP | 6% SP | 9% SP | 12% SP | Treatment | Linear | Quadratic | ||
IBW, g | 1550.0 | 1549.7 | 1549.8 | 1550.8 | 1550.1 | 2.26 | 0.998 | 0.863 | 0.981 |
FBW, g | 1597.4 b | 1597.0 b | 1599.0 ab | 1600.8 ab | 1604.7 a | 2.42 | 0.153 | 0.016 | 0.354 |
Hen-day EP, % | 89.2 c | 88.9 c | 91.4 b | 92.9 a | 91.8 b | 0.19 | <0.001 | <0.001 | <0.001 |
EW, g | 61.2 d | 61.2 d | 62.1 b | 62.9 a | 61.7 c | 0.09 | <0.001 | <0.001 | <0.001 |
FI, g/d | 99.5 c | 99.5 c | 100.9 b | 101.4 b | 104.4 a | 0.19 | <0.001 | <0.001 | <0.001 |
FCR | 1.82 b | 1.83 ab | 1.78 c | 1.74 d | 1.84 a | 0.006 | <0.001 | 0.011 | <0.001 |
Parameters 1 | Dietary Spirulina platensis (SP) Groups | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | 3% SP | 6% SP | 9% SP | 12% SP | Treatment | Linear | Quadratic | ||
AI, % | 9.87 b | 10.47 ab | 10.93 a | 10.70 a | 10.67 a | 0.246 | 0.034 | 0.020 | 0.037 |
HU | 81.92 b | 85.44 a | 87.80 a | 87.71 a | 85.70 a | 0.839 | <0.001 | <0.001 | <0.001 |
YI, % | 40.18 b | 40.95 ab | 41.19 ab | 42.60 a | 41.83 ab | 0.702 | 0.153 | 0.028 | 0.464 |
YC | 7.90 e | 8.50 d | 9.87 c | 11.20 b | 12.67 a | 0.124 | <0.001 | <0.001 | <0.001 |
SW, % | 8.71 b | 8.89 ab | 9.02 ab | 9.18 a | 8.80 ab | 0.141 | 0.152 | 0.288 | 0.042 |
ST, mm | 0.32c | 0.33 c | 0.37 b | 0.42 a | 0.42 a | 0.008 | <0.001 | <0.001 | 0.439 |
SS, kg/cm2 | 3.84 c | 3.95 c | 4.43 b | 4.72 a | 4.49 b | 0.070 | <0.001 | <0.001 | 0.001 |
Parameters 1 | Dietary Spirulina platensis (SP) Groups | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | 3% SP | 6% SP | 9% SP | 12% SP | Treatment | Linear | Quadratic | ||
TP, g/dL | 4.62 e | 5.27 d | 6.16 c | 7.68 a | 6.81 b | 0.138 | <0.001 | <0.001 | <0.001 |
ALB, g/dL | 2.97 c | 3.42 b | 3.52 b | 4.32 a | 4.09 a | 0.106 | <0.001 | <0.001 | 0.096 |
GLB, g/dL | 1.65 c | 1.85 c | 2.64 b | 3.36 a | 2.72 b | 0.122 | <0.001 | <0.001 | <0.001 |
CA, mg/dL | 25.58 d | 28.59 c | 31.21 b | 32.56 a | 31.76 ab | 0.384 | <0.001 | <0.001 | <0.001 |
PP, mg/dL | 6.40 b | 6.35 b | 6.50 b | 7.08 a | 6.90 a | 0.084 | <0.001 | <0.001 | 0.608 |
AST, U/mL | 63.70 a | 62.15 a | 58.52 b | 57.19 b | 57.55 b | 0.755 | <0.001 | <0.001 | 0.035 |
ALT, U/mL | 36.86 a | 32.68 b | 29.57 c | 22.17 e | 25.31 d | 0.660 | <0.001 | <0.001 | <0.001 |
CRT, mg/dL | 0.28 a | 0.27 ab | 0.26 bc | 0.25 d | 0.26 cd | 0.005 | <0.001 | <0.001 | 0.037 |
UA, mg/dL | 5.71 a | 5.43 b | 5.24 c | 4.94 d | 5.13 cd | 0.068 | <0.001 | <0.001 | 0.002 |
Parameters 1 | Dietary Spirulina platensis (SP) Groups | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | 3% SP | 6% SP | 9% SP | 12% SP | Treatment | Linear | Quadratic | ||
WBC, 103/µL | 36.18 e | 42.73 d | 51.60 c | 66.78 a | 58.08 b | 1.375 | <0.001 | <0.001 | <0.001 |
RBC, 106/µL | 2.24 c | 2.25 c | 2.29 bc | 2.39 a | 2.34 ab | 0.022 | <0.001 | <0.001 | 0.454 |
HB, g/dL | 10.85 b | 10.68 b | 12.90 a | 13.36 a | 11.61 b | 0.329 | <0.001 | <0.001 | <0.001 |
HT, % | 30.58 c | 30.49 c | 31.51 bc | 32.86 a | 31.76 b | 0.380 | <0.001 | <0.001 | 0.240 |
MCV, fL | 136.36 | 135.89 | 137.59 | 137.63 | 136.16 | 2.328 | 0.973 | 0.855 | 0.677 |
MCH, pg/cell | 48.38 b | 47.60 b | 56.30 a | 55.97 a | 49.80 b | 1.548 | <0.001 | 0.027 | 0.001 |
MCHC, g/dL | 35.49 b | 35.11 b | 41.02 a | 40.64 a | 36.61 b | 1.109 | <0.001 | 0.032 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.O.; Alaqil, A.A.; Mehaisen, G.M.K.; Kamel, N.N. Effect of Dietary Blue-Green Microalgae Inclusion as a Replacement to Soybean Meal on Laying Hens’ Performance, Egg Quality, Plasma Metabolites, and Hematology. Animals 2022, 12, 2816. https://doi.org/10.3390/ani12202816
Abbas AO, Alaqil AA, Mehaisen GMK, Kamel NN. Effect of Dietary Blue-Green Microalgae Inclusion as a Replacement to Soybean Meal on Laying Hens’ Performance, Egg Quality, Plasma Metabolites, and Hematology. Animals. 2022; 12(20):2816. https://doi.org/10.3390/ani12202816
Chicago/Turabian StyleAbbas, Ahmed O., Abdulaziz A. Alaqil, Gamal M. K. Mehaisen, and Nancy N. Kamel. 2022. "Effect of Dietary Blue-Green Microalgae Inclusion as a Replacement to Soybean Meal on Laying Hens’ Performance, Egg Quality, Plasma Metabolites, and Hematology" Animals 12, no. 20: 2816. https://doi.org/10.3390/ani12202816
APA StyleAbbas, A. O., Alaqil, A. A., Mehaisen, G. M. K., & Kamel, N. N. (2022). Effect of Dietary Blue-Green Microalgae Inclusion as a Replacement to Soybean Meal on Laying Hens’ Performance, Egg Quality, Plasma Metabolites, and Hematology. Animals, 12(20), 2816. https://doi.org/10.3390/ani12202816