Effects of a Combined Geothermal and Solar Heating System as a Renewable Energy Source in a Pig House and Estimation of Energy Consumption Using Artificial Intelligence-Based Prediction Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Housing and Animal Care
2.2. Growth Performance
2.3. Consumption of Electricity and CO2 Concentration
2.4. Inside and Outside Temperature Measurement and Outflow and Inflow Temperature
2.5. Hydrogen Sulfide (H2S) and Ammonia (NH3) Concentration
2.6. Formaldehyde, Total Volatile Organic Compounds (TVOCs) and Particulate Matter (PM2.5)
2.7. Description of the GHPS System
2.8. Solar System Efficiency and Geothermal Heat Pump Coefficient of Performance
2.9. Development of the Prediction Model and Pre-Processing of Data
2.9.1. Gene Expression Programming Model
2.9.2. Performance Evaluation of Prediction Model
2.10. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Electricity Consumption and CO2 Concentration
3.3. Pig House Inside Temperature and Outflow and Inflow Temperature
3.4. Concentration of NH3, H2S, FA, PM2.5 and TVOC
3.5. COP of GHP and Solar System Collector’s EfficiencyTVOC
3.6. Performance Evaluation of the GEP Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AHP | Air heat pump |
AI | Artificial intelligence |
ANN | Artificial neural networking |
ANOVA | Analysis of variance |
AQS | Ambient air quality standards |
BHE | Bore hole exchanger |
BWG | Body weight gain |
Cc | CO2 concentration |
COP | Coefficient of performance |
CO2 | Carbon dioxide |
Cp | Specific heat (kcal/kg °C) |
Ec | Electricity consumption |
ET | Expression trees |
FA | Formaldehyde |
FCR | Feed conversion ratio |
FCU | Fan coil unit |
FI | Feed intake |
G | Solar radiation |
GEP | Gene expression programming |
GER | Geothermal energy resources |
GHG | Greenhouse gas |
GHP | Geothermal heat pump |
GHPS | Combined geothermal heat pump and solar system |
H | Humidity |
HI | Heating load |
H2S | Hydrogen sulphide |
KOPIA | Korean Photovoltaic Industry Association |
kW | Kilowatt |
kWh | Kilowatt hour |
M | Mass flow rate (kg/h) |
MAE | Mean absolute error |
NH3 | Ammonia |
NRE | New renewable energy |
Pc | Concentration of PM2.5 |
PM2.5 | Particulate matter |
R | Correlation coefficient |
RER | Renewable energy resource |
RMSE | Root mean square value |
SE | Solar energy |
SPSS | Statistical package for social science |
T | Temperature |
Tm | Mean collector temperature |
Ta | Ambient temperature |
TVOC | Total volatile organic compounds |
ΔT | Inlet˗outlet temperature difference (°C) |
V | Ventilation rate |
α1 | Coefficient of first-order heat loss |
α2 | Coefficient of second-order heat loss |
µ | General mean |
αij | Effect of treatment |
eij | Random error |
Yij | Response variable |
ƞcollector | Solar collector efficiency |
ƞo | Optical efficiency |
References
- Bilen, K.; Ozyurt, O.; Bakırcı, K.; Karslı, S.; Erdogan, S.; Yılmaz, M.; Comaklı, O. Energy production, consumption, and environmental pollution for sustainable development: A Case Study in Turkey. Renew. Sustain. Energy Rev. 2008, 12, 1529–1561. [Google Scholar] [CrossRef]
- Kythreotou, N.; Florides, G.; Tassou, S.A. A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus. Energy 2012, 40, 226–235. [Google Scholar] [CrossRef]
- Kwak, Y.; Shin, H.; Kang, M.; Mun, S.-H.; Jo, S.-K.; Kim, S.-H.; Huh, J.-H. Energy modeling of pig houses: A South Korean feasibility study. Energy Strat. Rev. 2021, 36, 100672. [Google Scholar] [CrossRef]
- Jacobson, L.D. Pig Housing Systems Designed to Manage or Adapt to Climate Change Impacts; University of Minnesota: Minneapolis, MN, USA, 2011; p. 10. [Google Scholar]
- Aikins, K.A.; Choi, J.M. Current status of the performance of GSHP (ground source heat pump) units in the Republic of Korea. Energy 2012, 47, 77–82. [Google Scholar] [CrossRef]
- Choi, H.C.; Park, J.H.; Song, J.I.; Na, J.C.; Kim, M.J.; Bang, H.T.; Kang, H.J.; Park, S.B.; Chae, H.S.; Suh, O.S.; et al. Evaluation on heating effects of geothermal heat pump system in farrowing house. J. Livest. Hous. Environ. 2010, 16, 205–215. [Google Scholar]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Chmielowiec-Korzeniowska, A. The concentration of volatile organic compounds (VOCs) in pig farm air. Ann. Agric. Environ. Med. 2009, 16, 249–256. [Google Scholar]
- Lee, J.-Y. Current status of ground source heat pumps in Korea. Renew. Sustain. Energy Rev. 2009, 13, 1560–1568. [Google Scholar] [CrossRef]
- Lee, Y.; Park, S.; Kim, J.; Kim, H.C.; Koo, M.-H. Geothermal resource assessment in Korea. Renew. Sustain. Energy Rev. 2010, 14, 2392–2400. [Google Scholar] [CrossRef]
- Mun, H.S.; Dilawar, M.A.; Gil Jeong, M.; Rathnayake, D.; Won, J.S.; Park, K.W.; Lee, S.R.; Ryu, S.B.; Yang, C.J. Effect of a Heating System Using a Ground Source Geothermal Heat Pump on Production Performance, Energy-Saving and Housing Environment of Pigs. Animals 2020, 10, 2075. [Google Scholar] [CrossRef]
- Islam, M.; Mun, H.-S.; Bostami, A.B.M.R.; Ahmed, S.T.; Park, K.-J.; Yang, C.-J. Evaluation of a ground source geothermal heat pump to save energy and reduce CO 2 and noxious gas emissions in a pig house. Energy Build. 2016, 111, 446–454. [Google Scholar] [CrossRef]
- Benli, H.; Durmuş, A. Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Build. 2009, 41, 220–228. [Google Scholar] [CrossRef]
- Mun, H.-S.; Ahmed, S.T.; Islam, M.; Park, K.-J.; Yang, C.-J. Retrofitting of a pig nursery with solar heating system to evaluate its ability to save energy and reduce environmental pollution. Eng. Agric. Environ. Food 2015, 8, 235–240. [Google Scholar] [CrossRef]
- Hussain, M.I.; Lee, G.H. Utilization of Solar Energy in Agricultural Machinery Engineering: A Review. J. Biosyst. Eng. 2015, 40, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.; Hurley, W. A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 2010, 30, 1488–1495. [Google Scholar] [CrossRef]
- Hussain, M.I.; Lee, G.H. Thermal performance evaluation of a conical solar water heater integrated with a thermal storage system. Energy Convers. Manag. 2014, 87, 267–273. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renew. Sustain. Energy Rev. 2011, 15, 1777–1790. [Google Scholar] [CrossRef]
- Islam, M.; Mun, H.-S.; Bostami, A.B.M.R.; Park, K.-J.; Yang, C.-J. Combined active solar and geothermal heating: A renewable and environmentally friendly energy source in pig houses. Environ. Prog. Sustain. Energy 2016, 35, 1156–1165. [Google Scholar] [CrossRef]
- Ferreira, C. Gene Expression Programming, Mathematical Modeling by an Artificial Intelligence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Nigussie, D.; Zurita-Milla, R.; Clevers, J. Possibilities and limitations of artificial neural networks for subpixel mapping of land cover. Int. J. Remote Sens. 2011, 32, 7203–7226. [Google Scholar] [CrossRef]
- Koza, J.R.; Poli, R. Genetic Programming in Search Methodologies: Introductory Tutorial in Optimization and Decision Support Techniques; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kim, Y.S.; Kim, S.W.; Weaver, M.A.; Lee, C.Y. Increasing the Pig Market Weight: World Trends, Expected Consequences and Practical Considerations. Asian-Australas. J. Anim. Sci. 2005, 18, 590–600. [Google Scholar] [CrossRef]
- Ettah, E.B.; Obiefuna, J.; Njar, G.N. The relationship between solar radiation and the efficiency of solar panels in port harcourt, Nigeria. Int. J. Appl. Sci. Technol. 2011, 1, 124–126. [Google Scholar]
- Katkar, A.A.; Shinde, N.; Patil, P.; Tech, M. Performance & evaluation of industrial solar cell w.r.t. temperature and humidity. Int. J. Res. Mech. Eng. Technol. 2011, 1, 69–73. [Google Scholar]
- Tunc, M.; Sisbot, S.; Camdali, U. Energy analysis of electricity generation for the geothermal resources using organic rankine cycle: Kızıldere-Denizli Case. Environ. Prog. Sustain. Energy 2013, 32, 830–836. [Google Scholar] [CrossRef]
- Prendeville, S.; Sanders, C.; Sherry, J.; Costa, F. Circular Economy: Is It Enough. EcoDesign Centre, Wales. Available online: http://www.edcw.org/en/resources/circulareconomy-it-enough (accessed on 21 July 2014).
- Wang, H.; Qi, C. Performance study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings. Energy Build. 2008, 40, 1278–1286. [Google Scholar] [CrossRef]
- Man, Y.; Yang, H.; Wang, J.; Fang, Z. In situ operation performance test of ground coupled heat pump system for cooling and heating provision in temperate zone. Appl. Energy 2012, 97, 913–920. [Google Scholar] [CrossRef]
- Tong, Y.; Kozai, T.; Nishioka, N.; Ohyama, K. Greenhouse heating using heat pumps with a high coefficient of performance (COP). Biosyst. Eng. 2010, 106, 405–411. [Google Scholar] [CrossRef]
- Sanner, B.; Karytsas, C.; Mendrinos, D.; Rybach, L. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 2003, 32, 579–588. [Google Scholar] [CrossRef]
- Quaschning, V. Solar Thermal Water Heating. Available online: https://www.volker-quaschning.de/articles/fundamentals4/index.php (accessed on 1 September 2022).
- Omer, A.M. Ground-Source heat pumps systems and applications. Renew. Sustain. Energy Rev. 2008, 12, 344–371. [Google Scholar] [CrossRef]
- Hessel, E.F.; Zurhake, C. Heating and cooling performance of an under floor earth tube air tempering system in a mechanical ventilated farrowing house. In Proceedings of the XVII World congress of the International Commission of Agricultural and Bio Systems Engineering (CIGR), Québec City, QC, Canada, 13–17 June 2010. [Google Scholar]
- Choi, H.C.; Salim, H.M.; Akter, N.; Na, J.C.; Kang, H.K.; Kim, M.J.; Kim, D.W.; Bang, H.T.; Chae, H.S.; Suh, O.S. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens. Poult. Sci. 2012, 91, 275–281. [Google Scholar] [CrossRef]
- Licharz, H.; Rösmann, P.; Krommweh, M.S.; Mostafa, E.; Büscher, W. Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses. Energies 2020, 13, 662. [Google Scholar] [CrossRef] [Green Version]
- Philippe, F.-X.; Cabaraux, J.-F.; Nicks, B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 2011, 141, 245–260. [Google Scholar] [CrossRef]
- Cambra-López, M.; Hermosilla, T.; Lai, H.T.; Aarnink, A.J.A.; Ogink, N.W.M. Ogink Particulate matter emitted from poultry and pig houses: Source identification and quantification. Trans. ASABE 2011, 54, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.C.; Song, J.; Na, J.C.; Kim, M.J.; Bang, H.T.; Kang, H.G.; Park, S.B.; Chae, H.S.; Suh, O.S.; Yoo, Y.S.; et al. Evaluation on cooling effects of geothermal heat pump system in farrowing house. J. Anim. Environ. Sci. 2010, 16, 99–108. [Google Scholar]
- Rybach, L. Geothermal energy: Sustainability and the environment. Geothermics 2003, 32, 463–470. [Google Scholar] [CrossRef]
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Charoenvisal, K. Energy Performance and Economic Evaluations of the Geothermal Heat Pump System Used in the Knowledge. Ph.D. Thesis, Works I and II Buildings, Blacksburg, VA, USA, 2008; p. 144. [Google Scholar]
- Nakomcic-Smargdakis, B.; Dragutinovic, N. Geothermal heat pump application for CO2 reduction using clean development mechanism. J. Renew. Sust. Energy 2016, 8, 023901. [Google Scholar] [CrossRef]
- EPA. Sources of Greenhouse Gas Emissions; United States Environmental Protection Agency: Washington, DC, USA, 2017. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 11 August 2022).
- Wang, M.; Wu, Z.; Chen, Z.; Tian, J.; Liu, J. Economic Performance Study on the Application of Ground Source Heat Pump System in Swine Farms in Beijing China. AASRI Procedia 2012, 2, 8–13. [Google Scholar] [CrossRef]
Items | Model Setting |
---|---|
Title 2 | |
Genes (expression trees) | 3 |
Chromosomes | 200 |
Head size | 10 |
Set of functions | +, −, ×, ÷ |
Linking functions | + |
Parameters | Control | GHPS | SEM | p-Value |
---|---|---|---|---|
Initial body weight (kg) | 13.00 | 12.98 | 0.671 | 0.981 |
Final body weight (kg) | 40.73 | 42.00 | 1.161 | 0.758 |
Weight gain (kg) | 27.73 | 29.01 | 0.660 | 0.281 |
Feed intake (kg) | 55.77 | 58.44 | 1.075 | 0.692 |
FCR | 1.38 | 1.42 | 0.027 | 0.854 |
Periods | Electricity Use | Reduced | CO2 Emission | Reduced | ||
---|---|---|---|---|---|---|
Control | GHPS | Control | GHPS | |||
0–4 weeks | 2055 a | 1622 b | 433 | 1179 a | 741 b | 438 |
4–7 weeks | 1384 a | 1091 b | 293 | 757 a | 499 b | 258 |
Total | 3439 a | 2713 b | 726 | 1936 a | 1240 b | 1501 |
Items | Control | GHPS | SEM | p-Value |
---|---|---|---|---|
Formaldehyde | 0.04 | 0.03 | 0.031 | 0.053 |
Particulate matter | 36.10 a | 34.01 b | 0.017 | 0.034 |
Total volatile organic compounds | 125 | 125 | 0.036 | 0.814 |
Ammonia | 2.58 | 2.49 | 0.029 | 0.981 |
Ambient Temperature (°C) | Solar Intensity (W/m2) | Efficiency of Collector (%) | Output of Energy (kWh/m2/d) | COP of GHP | |
---|---|---|---|---|---|
1st week | 7.85 | 1154.88 | 61.45 | 210.62 | 4.35 |
2nd week | 12.15 | 1191.35 | 60.40 | 172.29 | 4.60 |
3rd week | 12.51 | 1582.83 | 65.01 | 208.19 | 4.98 |
4th week | 16.15 | 1396.27 | 63.08 | 188.14 | 4.35 |
5th week | 15.33 | 1262.32 | 62.95 | 173.01 | 4.47 |
6th week | 18.73 | 1451.50 | 64.90 | 198.31 | 4.83 |
7th week | 14.34 | 1362.23 | 64.10 | 187.90 | 4.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, H.-S.; Dilawar, M.A.; Mahfuz, S.; Ampode, K.M.B.; Chem, V.; Kim, Y.-H.; Moon, J.-P.; Yang, C.-J. Effects of a Combined Geothermal and Solar Heating System as a Renewable Energy Source in a Pig House and Estimation of Energy Consumption Using Artificial Intelligence-Based Prediction Model. Animals 2022, 12, 2860. https://doi.org/10.3390/ani12202860
Mun H-S, Dilawar MA, Mahfuz S, Ampode KMB, Chem V, Kim Y-H, Moon J-P, Yang C-J. Effects of a Combined Geothermal and Solar Heating System as a Renewable Energy Source in a Pig House and Estimation of Energy Consumption Using Artificial Intelligence-Based Prediction Model. Animals. 2022; 12(20):2860. https://doi.org/10.3390/ani12202860
Chicago/Turabian StyleMun, Hong-Seok, Muhammad Ammar Dilawar, Shad Mahfuz, Keiven Mark B. Ampode, Veasna Chem, Young-Hwa Kim, Jong-Pil Moon, and Chul-Ju Yang. 2022. "Effects of a Combined Geothermal and Solar Heating System as a Renewable Energy Source in a Pig House and Estimation of Energy Consumption Using Artificial Intelligence-Based Prediction Model" Animals 12, no. 20: 2860. https://doi.org/10.3390/ani12202860
APA StyleMun, H. -S., Dilawar, M. A., Mahfuz, S., Ampode, K. M. B., Chem, V., Kim, Y. -H., Moon, J. -P., & Yang, C. -J. (2022). Effects of a Combined Geothermal and Solar Heating System as a Renewable Energy Source in a Pig House and Estimation of Energy Consumption Using Artificial Intelligence-Based Prediction Model. Animals, 12(20), 2860. https://doi.org/10.3390/ani12202860