Salmonella Behavior in Meat during Cool Storage: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Search Strategies
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Statistical Analyses
3. Results
3.1. Systematic Review
3.2. Meta-Analyses Results
4. Discussion
4.1. Systematic Review
4.2. Meta-Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BRAZIL. Surtos de Doenças Transmitidas por Alimentos no Brasil: Informe 2018. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis, Coordenação Geral de Doenças Transmissíveis. Maio de 2019. 2019. Available online: https://www.saude.gov.br/images/pdf/2019/maio/17/Apresentacao-Surtos-DTA-Maio-2019.pdf (accessed on 20 April 2020).
- Centers for Disease Control and Prevention (CDC). National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED). 2019. Available online: https://www.cdc.gov/salmonella/general/index.html (accessed on 10 July 2020).
- EFSA—European Food Safety Authority. Zoonotic Diseases: Progress Has Stalled. 2018. Available online: https://www.efsa.europa.eu/en/news/zoonotic-diseases-progress-has-stalled (accessed on 5 October 2019).
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Júnior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 84, e00591-19. [Google Scholar] [CrossRef] [Green Version]
- Dib, A.L.; Agabou, A.; Chahed, A.; Kurekci, C.; Moreno, E.; Espigares, M.; Espigares, E. Isolation, molecular characterization and antimicrobial resistance of enterobacteriaceae isolated from fish and seafood. Food Control 2018, 88, 54–60. [Google Scholar] [CrossRef]
- Cunha-Neto, A.; Panzenhagen, P.; Carvalho, L.; Rodrigues, D.; Conte-Junior, C.; Figueiredo, E. Occurrence and antimicrobial resistance profile of Salmonella isolated from native fish slaughtered and commercialised in Brazil. J. Food Saf. Food Qual. 2019, 70, 94–98. [Google Scholar] [CrossRef]
- Gomba, A.; Chidamba, L.; Korsten, L. Prevalence and serovar diversity of Salmonella spp. In primary horticultural fruit production environments. Food Control 2016, 69, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wu, Q.; Huang, J.; Wu, S.; Zhang, J.; Chen, L.; Wei, X.; Ye, Y.; Li, Y.; Wang, J.; et al. Prevalence and characterization of Salmonella isolated from raw vegetables in China. Food Control 2019, 109, 106915. [Google Scholar] [CrossRef]
- Bier, D.; Kich, J.D.; Duarte, S.C.; Silva, M.R.; Valsoni, L.M.; Ramos, C.A.; Rodrigues, D.P.; Araújo, F.R. Survey of Salmonella spp. in beef meat for export at slaughterhouses in Brazil. Braz. J. Vet. Res. 2018, 38, 2037–2043. [Google Scholar] [CrossRef]
- Marks, B.P. Status of microbial modeling in food process models. Compr. Rev. Food Sci. Food Saf. 2008, 7, 137–143. [Google Scholar] [CrossRef]
- Pouillot, R.; Lubran, M.B. Predictive microbiology models vs. Modeling microbial growth within Listeria monocytogenes risk assessment: What parameters matter and why. Food Microbiol 2011, 28, 720–726. [Google Scholar] [CrossRef]
- Akbar, A.; Anal, A.K. Isolation of Salmonella from ready-to-eat poultry meat and evaluation of its survival at low temperature, microwaving and simulated gastric fluids. J. Food Sci. Technol. 2014, 52, 3051–3057. [Google Scholar] [CrossRef] [Green Version]
- Manios, S.G.; Skandamis, P.N. Effect of frozen storage, different thawing methods and cooking processes on the survival of Salmonella spp. and Escherichia coli O:157:H7 in commercially shaped beef patties. Meat Sci. 2015, 101, 25–32. [Google Scholar] [CrossRef]
- Chen, C.H.; Ravishankar, S.; Marchello, J.; Friedman, M. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity. J. Food Prot. 2013, 76, 1264–1269. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Al-Holy, M.A.; Ghoush, M.H.A.; Al-Nabulsi, A.A.; Qatatsheh, A.A.; Shahbaz, H.M.; Osaili, T.M.; Holley, R.A. The use of malic and acetic acids in washing solution to control Salmonella spp. on chicken breast. J. Food Sci. 2018, 83, 2197–2203. [Google Scholar] [CrossRef]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of swamp cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef]
- Djordjević, J.; Bošković, M.; Starčević, M.; Ivanović, J.; Karabasil, N.; Dimitrijević, M.; Lazić, I.B.; Baltić, M.Ž. Survival of Salmonella spp. in minced meat packaged under vacuum and modified atmosphere. Braz. J. Microbiol. 2018, 49, 607–613. [Google Scholar] [CrossRef]
- Morys, M.K.; Khalaf, H.H.; Sharoba, A.M.; El-tanahi, H.H.; Cutter, C.N. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J. Food Sci. 2014, 79, 675–684. [Google Scholar] [CrossRef]
- Kahraman, T.; Issa, G.; Bingol, E.B.; Kahraman, B.B.; Dumen, E. Effect of rosemary essential oil and modified-atmosphere packaging (MAP) on meat quality and survival of pathogens in poultry fillets. Braz. J. Microbiol. 2015, 46, 591–599. [Google Scholar] [CrossRef] [Green Version]
- OSF– Open Science Framework Platform. Available online: https://osf.io/8ayu2 (accessed on 29 September 2022). [CrossRef]
- JabRef Team. 2020. Available online: https://www.jabref.org (accessed on 11 April 2021).
- GIMP. GNU Image Manipulation Program. Available online: https://www.gimp.org (accessed on 20 August 2021).
- ImageJ. ImageJ Team. University of Wisconsin-Madison, US. Available online: http://imagej.net (accessed on 20 August 2021).
- R Development Core Team. R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available online: https://www.r-project.org (accessed on 20 August 2021).
- Ahn, J.; Grun, I.U.; Mustapha, A. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef]
- Ahn, J.; Grun, I.U.; Mustapha, A. Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. J. Food Prot. 2004, 67, 148–155. [Google Scholar] [CrossRef]
- Baker, R.C.; Qureshi, R.A.; Hotchkiss, J.H. Effect of an elevated level of carbon dioxide containing atmosphere on the growth of spoilage and pathogenic bacteria at 2, 7, and 13 °C. Poult. Sci. J. 1985, 65, 729–737. [Google Scholar] [CrossRef]
- Bolton, D.J.; Meally, A.; McDowell, D.; Blair, I.S. A survey for serotyping, antibiotic resistance profiling and PFGE characterization of and the potential multiplication of restaurant Salmonella isolates. J. Appl. Microbiol. 2007, 103, 1681–1690. [Google Scholar] [CrossRef]
- Cagri-Mehmetoglu, A. Inhibition of Listeria monocytogenes and Salmonella Enteritidis on chicken wings using scallop-shell powder. Poul. Sci. 2011, 90, 2600–2605. [Google Scholar] [CrossRef]
- Chaine, A.; Arnaud, E.; Kondjoyan, A.; Collignan, A.; Sarter, S. Effect of steam and lactic acid treatments on the survival of Salmonella Enteritidis and Campylobacter jejuni inoculated on chicken skin. Int. J. Food Microbiol. 2013, 162, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.P.; Mills, E.W.; Cutter, C.N. Reduction of bacteria on pork carcasses associated with chilling method. J. Food Prot. 2003, 66, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bauermeister, L.J.; Hill, G.N.; Manpreet, S.; Bilgili, S.F.; Mckee, S.R. Efficacy of various antimicrobials on reduction of Salmonella and Campylobacter and quality attributes of ground chicken obtained from poultry treated in a postchill decontamination tank. J. Food Prot. 2014, 77, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Kim, N.H.; Kim, S.A.; Song, J.H.; Rhee, M.S. Survival of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus) in raw ready-to-eat crab marinated in soy sauce. Int. J. Food Microbiol. 2016, 238, 50–55. [Google Scholar] [CrossRef]
- Cosansu, S.; Ayhan, K. Effects of lactic and acetic acid on survival of Salmonella Enteritidis during refrigerated and frozen storage of chicken meats. Food Bioproc. Technol. 2012, 5, 372–377. [Google Scholar] [CrossRef]
- Cutter, C.N.; Dorsa, W.J.; Handie, A.; Rodriguez-Morales, S.; Zhou, X.; Breen, P.J.; Compadre, C.M. Antimicrobial activity of cetylpyridinium chloride washes against pathogenic bacteria on beef surfaces. J. Food Prot. 2000, 63, 593–600. [Google Scholar] [CrossRef]
- Cutter, C.N.; Riveira-Betancourt, M. Interventions for the reduction of Salmonella Typhimurium DT 104 and non-O157:H7 Enterohemorrhagic Escherichia coli on beef surfaces. J. Food Prot. 2000, 63, 1326–1332. [Google Scholar] [CrossRef]
- De oliveira, T.L.C.; Soares, R.A.; Piccoli, R.H. A Weibull model to describe antimicrobial kinetics of orégano and lemongrass essential oils against Salmonella Enteritidis in ground beef during refrigerated storage. Meat Sci. 2013, 93, 645–651. [Google Scholar] [CrossRef]
- Dorsa, W.J.; Cutter, C.N.; Siragusa, G.R. 1998. Long-term bacterial profile of refrigerated ground beef made from carcass tissue, experimentally contaminated with pathogens and spoilage bacteria after hot water, alkaline, or organic acid washes. J. Food Prot. 1998, 61, 1615–1622. [Google Scholar] [CrossRef]
- Dow, A.; Alvarado, C.; Brashears, M. Reduction of inoculated Salmonella cocktail in ground turkey and turkey breasts using Lactobacillus-based intervention. Poul. Sci. 2011, 90, 876–879. [Google Scholar] [CrossRef]
- Edwards, G.; Janes, M.; Lampila, L.; Supan, J. Consumer method to control Salmonella and Listeria species in shrimp. J. Food Prot. 2013, 7, 59–64. [Google Scholar] [CrossRef]
- Ellis, M.; Cooksey, K.; Dawson, P.; Han, I.; Vergano, P. Quality of fresh chicken breats using a combination of modified atmosphere packaging and chlorine dioxide sachets. J. Food Prot. 2006, 69, 1991–1996. [Google Scholar] [CrossRef]
- Erkmen, O.; Barazi, A. Modeling the effects of modified atmosphere on Salmonella Typhimurium in packaged meat during storage in the refrigerator and at 12 °C. Ann. Microbiol. 2008, 58, 73–81. [Google Scholar] [CrossRef]
- Escriu, R.; Mor-Mur, M. Role of quantity and quality of fat in meat models inoculated with Listeria innocua or Salmonella Typhimurium treated by high pressure and refrigerated stored. Food Microbiol. 2009, 26, 834–840. [Google Scholar] [CrossRef]
- Fratianni, F.; Martino, L.; Melone, A.; Feo, V.; Coppola, R.; Nazzaro, F. Preservation of chicken breasts meat treated with thyme and balm Essentials oils. J. Food Sci. 2010, 75, 528–535. [Google Scholar] [CrossRef]
- Grisi, T.C.S.L.; Gorlach-Lira, K. Action of nisin and high pH on growth of Staphylococcus aureus and Salmonella sp. In pure culture and in the meat of land crab (Ucides Cordatus). Braz. J. Microbiol. 2005, 36, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Gunes, G.; Ozturk, A.; Yilmaz, N.; Ozcelik, B. Maintenance of safety and quality of refrigerated ready-to-cook seasoned ground beef product (meatball) by combining gamma irradiation with modified atmosphere packaging. J. Food Sci. 2011, 76, 413–420. [Google Scholar] [CrossRef]
- Hajmeer, M.; Basheer, I.; Hew, C.; Cliver, D.O. Modeling the survival of Salmonella spp. in chorizos. Int. J. Food Microbiol. 2006, 107, 59–67. [Google Scholar] [CrossRef]
- Harris, K.; Miller, M.F.; Loneragan, G.H.; Brashears, M.M. Validation of the use of organic acids and acidified sodium chlorite to reduce Escherichia coli O157 and Salmonella Typhimurium in beef trim and ground beef in a simulated processing environment. J. Food Prot. 2006, 69, 1802–1807. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Chraief, I.; Abedrabba, M.; Bouix, M.; Leveau, J.V.; Mohammed, H.; Hamdi, M. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compoitions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 2008, 125, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.K.; Yanamala, S.; Francisco, M.S.; Loneragan, H.; Miller, M.F.; Brashears, M.M. Reduction of multidrug-resistant and drug-susceptibles Salmonella in ground beef and freshly harvested beef briskets after exposure to commonly used industry antimicrobial interventions. J. Food Prot. 2010, 73, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.; Beuchat, L.R. Efficacy of a lactic acid/sodium benzoate wash solution in reducing bacterial contamination of raw chicken. Int. J. Food Microbiol. 1995, 27, 91–98. [Google Scholar] [CrossRef]
- Ingham, S.C.; Losinski, J.A.; Becker, K.L. Growth of Escherichia coli O157:H7 and Salmonella serovars on raw beef, pork, chicken, bratwurst and cured corned beef: Implications for HACCP plan critical limits. J. Food Saf. 2004, 24, 246–256. [Google Scholar] [CrossRef]
- Ingham, S.C.; Tautorus, C.L. Survival of Salmonella Typhimurium, Listeria monocytogenes, and indicator bacteria on cooked uncured turkey loaf store under vacuum at 3 °C. J. Food Saf. 1991, 11, 285–292. [Google Scholar] [CrossRef]
- King, A.M.; Miller, R.K.; Castilho, A.; Griffin, D.B.; Hardin, M.D. Effects of lactic acid and commercial chilling processes on survival of Salmonella, Yersinia enterocolitica, and Campylobacter coli in pork variety meats. J. Food Prot. 2012, 75, 1589–1594. [Google Scholar] [CrossRef] [Green Version]
- Kinsella, K.J.; Prendergast, D.M.; McCann, M.S.; Blair, I.S.; McDowell, D.A.; Sheridan, J.J. The survival of Salmonella enterica serovar Typhimurium DT104 and total viable counts on beef surfaces at different relative humidities and temperatures. J. Appl. Microbiol. 2008, 106, 171–180. [Google Scholar] [CrossRef]
- Kinsella, K.J.; Rowe, T.A.; Blair, I.S.; McDowell, D.A.; Sheridan, J.J. The influence of attachment to beef surfaces on the survival of cells of Salmonella enterica Typhimurium DT104, at different aw values and at low storage temperatures. Food Microbiol. 2007, 24, 786–793. [Google Scholar] [CrossRef]
- Knudsen, G.M.; Sommer, H.M.; SØrensen, N.D.; Olsen, J.E.; Aabo, S. Survival of Salmonella on cuts of beef carcasses subjected ti dry aging. J. Appl. Microbiol. 2011, 111, 848–854. [Google Scholar] [CrossRef]
- Kudra, L.L.; Sebranek, J.G.; Dickson, J.S.; Mendonca, A.J.; Zhang, Q.; Jackson-davis, A.; Prusa, K.J. Control of Salmonella enterica Typhimurim in chicken breats meat by irradiation combined with modified atmosphere packaging. J. Food Prot. 2011, 74, 1833–1839. [Google Scholar] [CrossRef]
- Kuleansan, H.; Çakmakçi, M.L. Effect of reuterin produced by Lactobacillus reuteri on the surface of sausages to inhibit the growth of Listeria monocytogenes and Salmonella spp. Mol. Nutr. Food Res. 2002, 46, 408–410. [Google Scholar] [CrossRef]
- Jacob, R.; Porto-Fett, A.C.S.; Call, J.E.; Luchansky, J.B. Fate of surface-inoculated Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on kippered beef during extended storage at refrigeration and abusive temperatures. J. Food Prot. 2009, 72, 403–407. [Google Scholar] [CrossRef]
- Jiménez, S.M.; Tiburzi, M.C.; Salsi, M.S.; Moguilevsky, M.A.; Pirovani, M.E. Survival of Salmonella on refrigerated chicken carcasses and subsequent transfer to cutting board. Lett. Appl. Microbiol. 2009, 48, 687–691. [Google Scholar] [CrossRef]
- Jofré, A.; Garriga, M.; Aymerich, T. Inhibition of Salmonella sp. Listeria monocyotgenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Sci. 2008, 78, 53–59. [Google Scholar] [CrossRef]
- Liu, C.; Mou, J.; Su, Y.C. Behavior of Salmonella and Listeria monocytogenes in raw yellowfin tuna during cold storage. Foods 2016, 5, 16. [Google Scholar] [CrossRef]
- Mann, J.E.; Smith, L.; Brashears, M.M. Validation of time and temperature values as critical limits for Salmonella and background flora growth during the production of fresh ground and boneless pork products. J. Food Prot. 2004, 67, 1389–1393. [Google Scholar] [CrossRef]
- Mbandi, E.; Shelef, L.A. Enhanced antimicrobial effects of combination of lactate and diacetate on Listeria monocytogenes and Salmonella spp. in beef bologna. Int. J. Food Microbiol. 2002, 76, 191–198. [Google Scholar] [CrossRef]
- Melo, G.F.A.; Costa, A.C.V.; Garino-Junior, F.; Medeiros, R.S.; Madruga, M.S.; Neto, V.Q. The sensitivity of bacterial foodborne pathogens to Croon blanchetians bail essential oil. Braz. J. Food Microbiol. 2013, 44, 1189–1194. [Google Scholar] [CrossRef] [Green Version]
- Mohan, A.; Pohlman, F.W.; McDaniel, J.A.; Hunt, M.C. Role of peroxyacetic acid, octanoic acid, malic acid and potassium lactate on the microbiological and instrumental color characteristics of ground beef. J. Food Sci. 2012, 77, 188–193. [Google Scholar] [CrossRef]
- Moon, H.; Kim, N.H.; Kim, S.H.; Kim, Y.; Ryu, J.H.; Rhee, M.S. Teriyaki sauce with carvacrol or thymol effectively controls Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and indigenous flora in marinated beef and marinade. Meat Sci. 2017, 129, 147–152. [Google Scholar] [CrossRef]
- Morey, A.; Singh, M. Low-temperature survival of Salmonella spp. in a model food system with natural microflora. Foodborne Pathog. Dis. 2012, 9, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Muras, T.M.; Harris, K.B.; Lucia, L.M.; Hardin, M.D.; Savell, J.W. Dispersion and survival of Escherichia coli O157:H7 and Salmonella Typhimurium during production of marinated beef inside skirt steaks and tri-tip roasts. J. Food Prot. 2012, 75, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.C.; Ko, K.Y.; Min, B.R.; Ismail, H.; Lee, E.J.; Cordray, J.; Ahn, D.U. Influence of rosemary-tocopherol/packaging combination on meat quality and the survival of pathogens in restructured irradiated pork loins. Meat Sci. 2006, 74, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.V.T.; Nannapaneni, R.; Kiess, A.; Schilling, W.; Sharma, C.S. Reduction of Salmonella on Turkey Breast Cutlets by Plant-Derived Compounds. Foodborne Pathog. Dis. 2014, 11, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Niebuhr, S.E.; Laury, A.; Acuff, G.R.; Dickson, J.S. Evaluation of nonpathogenic surrogate bacteria as process validation indicators for Salmonella enterica for selected antimicrobial treatments, cold storage, and fermentation in meat. J. Food Prot. 2008, 71, 714–718. [Google Scholar] [CrossRef] [Green Version]
- Nisiotou, A.; Chorianopoulos, N.G.; Gounadaki, A.; Panagou, E.Z.; Nychas, G.J.E. Effect of wine-based marinedes on the behavior of Salmonella Typhimurium and background flora in beef fillets. Int. J. Food Microbiol. 2013, 164, 119–127. [Google Scholar] [CrossRef]
- Park, N.Y.; Hong, S.H.; Yoon, K.S. Effects of commercial marinade seasoning and a natural blend of cultured sugar and vinegar on Campylobacter jejuni and Salmonella Typhimurium and the texture of chicken breats. Poul. Sci. 2014, 93, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Marsh, K.S.; Dawson, P. Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Sci. 2010, 85, 493–499. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Li, M.; Li, Y.; Kelso, L.C.; Costello, T.A.; Johnson, M.G. A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breats during refrigerated and frozen storage. Poul. Sci. 2012, 91, 1482–1488. [Google Scholar] [CrossRef]
- Prandl, O.; Kniewallner, K.; Jochle, W. Storage of vacuum ground meat pretreated with acetylated monoglycerides: Effects of temperature on natural occurring or artificial microbial contamination and on shelf life. J. Vet. Med. 1988, 35, 121–130. [Google Scholar] [CrossRef]
- Provincial, L.; Guillén, E.; Gil, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Survival of Listeria monocytogenes and Salmonella Enteritidis in sea bream (Sparus aurata) fillets packaged under enriched CO2 modified atmospheres. Int. J. Food Microbiol. 2013, 162, 213–219. [Google Scholar] [CrossRef]
- Pathania, A.; Mckee, S.R.; Bilgili, S.F.; Singh, M. Antimicrobial activity of commercial marinades against multiple strains of Salmonella spp. Int. J. Food Microbiol. 2010, 139, 214–217. [Google Scholar] [CrossRef]
- Sakaridis, I.; Soultos, N.; Batzios, C.; Ambrosiadis, I.; Koidis, P. Lactic acid bactéria isolated from chicken carcasses with inhibitory activity against Salmonella spp. and Listeria monocytogenes. Czech J. Food Sci. 2014, 32, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Emerging Infectious Diseases. Foodborne Illness Acquired in the United States. Emerg Infect Dis. 2011, 17, 16–22. Available online: https://wwwnc.cdc.gov/eid/article/17/1/pdfs/p1-1101.pdf (accessed on 15 July 2022). [CrossRef]
- Scannell, A.G.M.; Ross, R.P.; Hill, C.; Arendt, E.K. An effective lacticin biopreservative in fresh pork sausage. J. Food Prot. 2000, 63, 370–375. [Google Scholar] [CrossRef]
- Scannell, A.G.M.; Hill, C.; Buckley, D.J.; Arendt, E.K. Determination of the influence of organic acids and nisin on shelf-life and microbiological safety aspects of fresh pork sausage. J. Appl. Microbiol. 1997, 83, 407–412. [Google Scholar] [CrossRef]
- Senne, M.M.; Gilliland, S.E. Antagonistic action of cells of Lactobacillus delbrueckii subs. lactis against pathogenic and spoilage microorganisms in fresh meat systems. J. Food Prot. 2003, 66, 418–425. [Google Scholar]
- Sharma, C.S.; Ates, A.; Joseph, P.; Nannapaneni, R.; Kiess, A. Reduction of Salmonella in skinless chicken breats fillets by lauric arginate surface application. Poul. Sci. 2013, 92, 1419–1424. [Google Scholar] [CrossRef]
- Shin, J.; Harte, B.; Ryser, E.; Selke, S. Active packaging of fresh chicken breats, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J. Food Sci. 2010, 75, 65–71. [Google Scholar] [CrossRef]
- Silva, A.S.; Sampaio, A.P.; Santos, M.S.; de Souza, B.W.S.; Evangelista-Barreto, N.S. Effect of chitosan coating on contamination of fresh bovine meat sold in the open market. Rev. Cienc. Agron. 2019, 50, 38–43. [Google Scholar] [CrossRef]
- Skandamis, P.; Tsigarida, E.; Nychas, G.-J.E. The effect of orégano essential oil on survival/death of Salmonella Typhimurium in meat stored at 5 °C under aerobic, VP/MAP conditions. Food Microbiol. 2002, 19, 97–103. [Google Scholar] [CrossRef]
- Smith, L.; Mann, J.E.; Harris, K.; Miller, M.F.; Brashears, M.M. Reduction of Escherichia coli O157:H7 and Salmonella in ground beef using lactic acid bacteria and the impact on sensory properties. J. Food Prot. 2005, 68, 1587–1992. [Google Scholar] [CrossRef] [PubMed]
- Stelzleni, A.M.; Ponrajan, A.; Harrison, M.A. Effects of buffered vinegar and sodium dodecyl sulfate plus levulinic acid on Salmonella Typhimurium survival, shelf-life, and sensory characteristics of ground beef patties. Meat Sci. 2013, 95, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stollewerk, K.; Jofré, A.; Comaposada, J.; Arnau, J.; Garriga, M. 2014. NaCl-free processing, acidification, smoking and high pressure: Effects on growth of Listeria monocytogenes and Salmonella enterica in QDS processed dry-cured ham. Food Control 2014, 35, 56–64. [Google Scholar] [CrossRef]
- Stollewerk, K.; Jofré, A.; Comaposada, J.; Arnau, J.; Garriga, M. The effect of NaCl-free processing and high pressure on the fate of Listeria monocytogenes and Salmonella on sliced smoked dry-cured ham. Meat Sci. 2012, 90, 472–477. [Google Scholar] [CrossRef]
- Van Netten, P.; Valentijin, A.; Mossel, D.A.A.; Veld, H.I. The survival and growth of acid-adaptaded mesophilic pathogens that contaminate meat after lactic acid decontamination. J. Appl. Microbiol. 1998, 84, 559–567. [Google Scholar] [CrossRef]
- Wan Norhana, M.N.; Poole, S.E.; Deeth, H.C.; Dykes, G.A. Effects of nisin, EDTA and salts of organic acids on Listeria monocytogenes, Salmonella and native microflora on fresh vacuum packaged shrimps stored at 4 °C. Food Microbiol. 2013, 31, 43–50. [Google Scholar] [CrossRef]
- Wan Norhana, M.N.; Poole, S.E.; Deeth, H.C.; Dykes, G.A. The effects of temperature, chlorine and acids on the survival of Listeria and Salmonella strains associated with uncooked shrimp carapace and cooked shrimp flesh. Food Microbiol. 2010, 27, 250–256. [Google Scholar] [CrossRef]
- Wen, X.; Dickson, J. Survival of Campylobacter jejuni and Salmonella enterica Typhimurium in vacuum-packed, moisture-enhanced pork. J. Food Prot. 2012, 75, 576–579. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Database | Number of Articles |
---|---|
SciELO | 117 |
PubMed | 184 |
Web of Science | 139 |
Scopus | 214 |
Total | 654 |
Extracted Data (n = 83 Studies) | Temperatures | Total Treatments | ||
---|---|---|---|---|
0 °C to 4.4 °C (k = 283 Treatments) | 5 °C to 7.5 °C (k = 80 Treatments) | |||
Sample | Beef | 87 (23.96%) | 50 (13.77%) | 363 |
Chicken | 66 (18.18%) | 6 (1.65%) | ||
Pork | 47 (12.94%) | 6 (1.65%) | ||
Turkey | 24 (6.61%) | 5 (1.37%) | ||
Fish | 16 (4.40%) | 4 (1.10%) | ||
Seafood | 19 (5.23%) | 1 (0.27%) | ||
Broth | 9 (2.47%) | 6 (1.65%) | ||
Other | 15 (4.13%) | 2 (0.55%) | ||
Treatments | Treatments * | 95 (26.17%) | 30 (8.26%) | 363 |
Control ** | 47 (12.94%) | 16 (4.40%) | ||
Antimicrobial ** | 141 (38.84%) (72 S) | 34 (9.36%) (21 S) | ||
Packing | Normal | 196 (53.99%) | 60 (16.52%) | 363 |
Vacuum | 51 (14.04%) | 8 (2.20%) | ||
MAP | 22 (6.06%) | 7 (1.93%) | ||
Media (broth) | 14 (3.85%) | 5 (1.37%) | ||
Storage time (days) | ≤10 d | 171 (47.10%) | 27 (7.43%) | 363 |
11 ≤ d ≥ 35 d | 94 (25.89%) | 48 (13.22%) | ||
>35 d | 18 (4.95%) | 5 (1.37%) | ||
Serovar | Cocktail | 65 (17.90%) | 27 (7.43%) | 363 |
Enteritidis | 52 (14.32%) | 13 (3.58%) | ||
Typhimurium | 117 (32.23%) | 27 (7.43%) | ||
Others | 49 (13.49%) | 13 (3.58%) | ||
Inoculation level (log CFU mL−1) | 1.0 and 2.0 | 2 (0.55%) | 7 (1.92%) | 363 |
3.0 | 15 (4.13%) | 28 (7.71%) | ||
4.0 | 44 (12.12%) | 13 (3.58%) | ||
5.0 | 66 (18.18%) | 15 (4.13%) | ||
6.0 | 93 (25.61%) | 14 (3.85%) | ||
>6.0 | 63 (17.35%) | 3 (0.82%) | ||
Storage effect on control treatment | Growth (>2 log) | 3 (0.82%) | 4 (1.10%) | 363 |
Growth (>1 log) | 3 (0.82%) | 2 (0.55%) | ||
Growth (<1 log) | 19 (5.23%) | 8 (2.20%) | ||
Reduction (<1 log) | 68 (18.73%) | 21 (5.78%) | ||
Reduction (>1 log) | 25 (6.88%) | 6 (1.65%) | ||
Reduction (>2 log) | 22 (6.06%) | 3 (0.82%) | ||
Not changed | 2 (0.55%) | 2 (0.55%) | ||
Storage effect on antimicrobial treatment | Growth (>2 log) | 7 (1.92%) | 0 (0.00%) | |
Growth (>1 log) | 6 (1.65%) | 0 (0.00%) | ||
Growth (<1 log) | 13 (3.58%) | 5 (1.37%) | ||
Reduction (<1 log) | 41 (11.29%) | 5 (1.37%) | ||
Reduction (>1 log) | 32 (8.81%) | 11 (3.03%) | ||
Reduction (>2 log) | 37 (10.19%) | 11 (3.03%) | ||
Not changed | 5 (1.37%) | 2 (0.55%) |
Subgroup | Storage Temperatures | ||||||
---|---|---|---|---|---|---|---|
0 °C to 4.4 °C | 5 °C to 7.5 °C | ||||||
Effects (log CFU/g ± Se) (95% CI) | I2 (%) | p-Value | Effects (log CFU/g ± Se) (95% CI) | I2 (%) | p-Value | ||
Sample | Beef (K = 66 and 41) | −1.2423 ± 0.1908 [−1.6163, −0.8684] | 98.56 | *** | −0.5966 ± 0.2600 [−1.1063, −0.0869] | 98.39 | * |
Chicken (K = 55 and 5) | −0.1567 ± 0.2108 [−0.5700, 0.2565] | 96.87 | 0.4572 | −0.3200 ± 0.4213 [−1.1458, 0.5059] | 73.04 | 0.4476 | |
Pork (K = 31 and 6) | −0.9883 ± 0.2140 [−1.4077, −0.5690] | 92.74 | *** | −0.3873 ± 0.2565 [−0.8900, 0.1154] | 54.04 | 0.1310 | |
Fish (K= 16 and 4) | −1.9339 ± 0.2286 [−2.3818, −1.4859] | 83.62 | *** | −1.3413 ± 0.3165 [−1.9615, −0.7211] | 80.07 | *** | |
Turkey (K= 20 and 5) | −1.0523 ± 0.1536 [−1.3534, −0.7512] | 80.23 | *** | −0.7743 ± 0.6247 [−1.9988, 0.4501] | 75.72 | 0.2152 | |
Broth (K = 3 and 4) | −3.5328 ± 1.7255 [−6.9146, −0.1509] | 97.93 | * | 0.5373 ± 0.5992 [−0.6371, 1.7116] | 93.10 | 0.3699 | |
Package | Normal (K =161 and 50) | −0.8666 ± 0.1196 [−1.1010, −0.6322] | 97.62 | *** | −0.7720 ± 0.2280 [−1.2188, −0.3252] | 97.74 | *** |
Vacuum (K = 29 and 5) | −0.2512 ± 0.3315 [−0.9009, 0.3985] | 96.56 | 0.4485 | −0.2741 ± 0.6339 [−1.5165, 0.9683] | 95.35 | 0.6654 | |
MAP (K = 22 and 5) | −1.1129 ± 0.3519 [−1.8025, −0.4232] | 97.00 | ** | 0.2235 ± 0.7322 [−1.2116, 1.6585] | 97.79 | 0.7602 | |
Antimicrobial | With (k = 122 and 30) | −1.1911 ± 0.1912 [−1.5658, −0.8164] | 97.96 | *** | −1.2572 ± 0.2807 [−1.8076, −0.7074] | 98.20 | *** |
Without (K = 71 and 24) | −0.7376 ± 0.1199 [−0.9726, −0.5026] | 96.07 | *** | −0.1628 ± 0.3071 [−0.7647, 0.4390] | 96.32 | 0.5959 | |
Serovar | Cocktail (K = 58 and 19) | −1.0364 ± 0.1385 [−1.3079, −0.7649] | 92.62 | *** | −0.4163 ± 0.1982 [−0.8046, −0.0279] | 83.14 | * |
Typhim. (K = 91 and 24) | −0.7557 ± 0.1637 [−1.0766, −0.4348] | 96.46 | *** | −0.4878 ± 0.3458 [−1.1654, 0.1899] | 97.34 | 0.1584 | |
Enteriti. (K = 48 and 10) | −1.1029 ± 0.1923 [−1.4798, −0.7260] | 95.38 | *** | −0.5041 ± 0.5966 [−1.6733, 0.6652] | 99.10 | 0.3981 | |
Inoculation type | Mixture (K = 69 and 27) | −1.2321 ± 0.1569 [−1.5396, −0.9247] | 95.34 | *** | −0.4277 ± 0.3105 [−1.0363, 0.1809] | 98.55 | 0.1684 |
Surfa. (K = 157 and 39) | −0.7828 ± 0.1344 [−1.0462, −0.5195] | 97.91 | *** | −0.6779 ± 0.2394 [−1.1471, −0.2087] | 95.39 | ** | |
Level | Up 4 log (K = 51 and 33) | −0.2101 ± 0.1335 [−0.4717, 0.0515] | 96.55 | 0.1154 | −0.4656 ± 0.3017 [−1.0570, 0.1257] | 98.65 | 0.1227 |
> 4 log (K = 175 and 33) | −1.1305 ± 0.1446 [−1.4140, −0.8470] | 97.42 | *** | −0.680 ± 0.1874 [−1.0494, −0.3147] | 89.58 | *** | |
Storage time | Up 10 d (K = 150 and 22) | −0.9794 ± 0.1612 [−1.2953, −0.6636] | 97.51 | *** | −0.2729 ± 0.1907 [−0.6466, 0.1008] | 81.22 | 0.1523 |
>10 d (K = 76 and 44) | −0.8010 ± 0.1350 [−1.0657, −0.5364] | 97.21 | *** | −0.7017 ± 0.2504 [−1.1924, −0.2110] | 98.30 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.L.d.; Vieira, B.S.; Carvalho, F.T.; Carvalho, R.C.T.; Figueiredo, E.E.d.S. Salmonella Behavior in Meat during Cool Storage: A Systematic Review and Meta-Analysis. Animals 2022, 12, 2902. https://doi.org/10.3390/ani12212902
Silva JLd, Vieira BS, Carvalho FT, Carvalho RCT, Figueiredo EEdS. Salmonella Behavior in Meat during Cool Storage: A Systematic Review and Meta-Analysis. Animals. 2022; 12(21):2902. https://doi.org/10.3390/ani12212902
Chicago/Turabian StyleSilva, Jorge Luiz da, Bruno Serpa Vieira, Fernanda Tavares Carvalho, Ricardo César Tavares Carvalho, and Eduardo Eustáquio de Souza Figueiredo. 2022. "Salmonella Behavior in Meat during Cool Storage: A Systematic Review and Meta-Analysis" Animals 12, no. 21: 2902. https://doi.org/10.3390/ani12212902
APA StyleSilva, J. L. d., Vieira, B. S., Carvalho, F. T., Carvalho, R. C. T., & Figueiredo, E. E. d. S. (2022). Salmonella Behavior in Meat during Cool Storage: A Systematic Review and Meta-Analysis. Animals, 12(21), 2902. https://doi.org/10.3390/ani12212902